

On the Computation of Accessibility Provided by Dynamic Transportation Modes

hEART 2023 - 11th Symposium of the European Association for Research in Transportation M.Sc. Severin Diepolder

Zurich, 06.09.2023

Involved Parties

Institute Polytechnique de Paris

Technical University of Munich

IRT SystemX

Assoc. Prof. Andrea Araldo

Prof. Dr. Constantinos Antoniou

Dr. Santa Maiti

Dr. Sebastian Hörl Dr. Tarek Chouaki

M.Sc. Severin Diepolder

Mobility Analytics and Consulting @ ioki

Topic & Motivation

New York 3.00 Paris Madrid 2.50- 2.00 - 1.50 - 1.00 - 0.90 - 0.80 - 0.70 - 0.70 - 0.60 uoilim - 0.50 uoilim - 0.40 Montreal Sydney Bostor - 0.30 - 0.20 - 0.10 - 0.05 0

Comparison of public transport based sociality scores

I. Biazzo (2019). General scores for accessibility and inequality measures in urban areas

Motivation

Integrating automated on-demand vehicles into public transit to improve mobility in suburban areas: a simulation-based approach.

Line Based Public Transport (LBT)

Operation Schemes

- Fixed schedule
- Fixed routes / stop locations
- Medium / high capacity

Shortcoming

- Catchment area limited around transit stops
- Not economically feasible for low-demand areas

Service Representation:

- Graph-based representation
- General Transit Feed Specification (GTFS)

Dynamic Feeder Transport Systems (DTS)

Dynamic Feeder Transportation Systems:

- access to LBT station
- egress from LBT station

Trip Metadata:

- wait time, search time, ...
- travel time

Dynamic Routing:

 Routes are deviated by the search for vehicle or by pooling of passengers Prerequisite

Accessibility

Isochronic Accessibility measure

$$A^i = \sum_{t_{ij} < t_{max}} n_j$$

 $n_j = opportunities in location j$ $A_i = Accessibility at location i$

E. J. Miller (2020). Measuring Accessibility: Methods and Issues

t_{ij} is calculated on a graph

Calculating Accessibility requires a graph, but no graph representation of flexibles modes is available

CityChrone

- Calculations based on time-expanded graphs
- public transport network input format GTFS
- aggregation of origins in centroid of hexagons

I. Biazzo (2022). CityChrone

Required Research

Research Question

How to calculate accessibility by intermodal DRT + conventional PT trips?

State of the Art

Existing tools rely on graphs for accessibility measurements: Access to conventional PT stops via DRT Chandra et al. (2013) Activity-Based Accessibility Nahmias-Biran et al. (2021), Zegras et al. (2021) Automated Vehicle sharing Ziemke et al (2023)

\rightarrow No tool available for non graph based modes

Approach

Development of a pipeline converting dynamic mode trips to graph-based representations. Followed by Accessibility analysis with existing graphs bases accessibility tool.

Setting

. . .

 V_{n+1}

• $v_k \in S_h$ at Hub

Spatio-Temporal Random Field

Marked locations denote non-hub locations of trips

Attributes of Marked Locations

- origin, destination
- wait time w, travel time y

Modelling as Random Field

- Y(x,t) random field for travel time
- W(x,t) random field for wait time

 $\lim_{N \to \infty} \mathbb{E} \hat{W}^{s}_{t_{k},N}(\mathbf{x}) = \mathbb{E} W^{s}_{t_{k}}(\mathbf{x})$ $\lim_{N \to \infty} \mathbb{E} \hat{Y}^{s}_{t_{k},N}(\mathbf{x}) = \mathbb{E} Y^{s}_{t_{k}}(\mathbf{x})$

Ordinary Kriging is the chosen spatial estimator

Spatial & Temporal Aggregation

Temporal aggregation using time-slot

Estimating using spatial autocorrelation

estimated location known location

trips for one time-slot and hub

Spatial Modelling / Ordinary Kriging

Estimation of waiting time for trips starting at centroid **u** at time t_k and ending at station **s**:

leg 2

Time-expanded graph

Performance of this virtual bus = expected performance of DRT, estimated via Kriging

S₃, 8:16

Virtual fixed bus line representing DRT.

s3, 8:14

Implemented Workflow

- Accessibility calculation for DRT as public transport feeders
- Easy transferability of methodology to other modes
- Preserving spatial and temporal patterns
- Inclusion of variable data sources (e.g. simulation, real world)

- In-depth verification of graph representation needed
- Calibration of estimator
- Inclusion of other spatial and temporal data to improve model
- Replace spatial aggregation with 3D Kriging

On the Computation of Accessibility Provided by Dynamic Transportation Modes

Thank You for the Attention

Severin Diepolder severin.diepolder@tum.de +49 151 4043 7589