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Overview of main research directions
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The MobilLab Transport Research Group
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= Head: Ass. Prof. dr. Ing. Francesco Viti
MSc — Univ. of Naples ‘Federico II’, Civil Engineering degree; PhD — TU Delft, transport planning
Post-doc — TU Delft (2007-2008) & Ku Leuven (2007 — 2012)

= Post docs
Marco Rinaldi, Computer scientist, automation and control I I
Frangois Sprumont, Spatial planner, mobility management (0.4) I&I
Open position (at partners Luxembourg Institute of Science and Technology)

= 6 PhD students
Guido Cantelmo, Civil engineer, network modelling I I
Bogdan Toader, Computer scientist, data science I I
Giorgos Laskaris, Transport and Geoinformation engineer, PT control E
Giulio Giorgione, Civil engineer, smart mobility & agent-based simulation I I

Xavier Mazur, Operations Research, complex network analysis I I

Ariane Scheffer, Civil Engineer, Transport modelling I I ! ! MOblLab



Modelling Daily Demand Flows

And some ingredients

for reliable estimation
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Mobility in Luxembourg
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= Luxembourg strong monocentric country, financial and EU-institutional capital
= 76% car users (89% from outside); #1 car ownership rate in EU
= High car-dependency, heavy through traffic flows, truck tourism,...

= 360 000 daily commuters; 180 000 cross-border workers; c of of the University staffliving in the Greater Region
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The complexity of daily mobility patterns
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Distinguishing regular daily demand patterns
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True Demand = regular pattern + structural deviations + random fluctuations
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The complexity of daily mobility patterns
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The traditional transport modelling approach

= The ‘traditional’ 4-stage model
= Socio-demographic data

= Travel surveys
= Trip-based, busiest peak hour
= Generally not suited for dynamic demand modeling

= Activity-based models
= Schedule-based
= Able to capture complex daily activity chains

= Hard to calibrate and to get suitable data
= Difficult to get consistent aggregated demand flows

= Currently not much used for estimating daily flows



Traffic models, data collection and estimation

methods

Infrastructure Planning

= Travel demand forecasting (static, quasi-static)
= 4-step models, activity-based models
= OD matrix correction / adjustments from traffic
data

Dynamic Traffic Management

= Dynamic demand estimation (dynamic, offline)
= Quasi-dynamic / sequential / simultaneous
=  Simulation DTA-based

Real-time information & management

= Dynamic state flow estimation (dynamic, online)
= Data-driven
= Model-driven
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The current state of the practice for calibrating
transportation models LAl

Supply Model



General bi-level dynamic demand estimation

problem framework il

Goal: find most likely demand and supply characteristics that reproduce the data

Distance btw estimated Distance btw simulated and

and prior matrix observed traffic states
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= Some (well-known) issues
=  Complex dynamics caused by travel behavior
=  Traffic models (DNL/DTA) course representation of real traffic propagation
= Highly combinatorial & non-linear problem



The under-determinedness problem

Spatial under-determinedness

Demand AC  Traffic Zone A

& /)
S Y7 [ Traffic Zone C
& Traffic Zone B @ %
Demand BC & &
e ey Eiair
e Gi>: Liar>
Observations

Non-linear mapping link-OD flows

k3 k1

k2

SRE

8|8|




A simple example: Antwerp network i I
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* Few route choice options
« Only traffic counts used for calibration Measured speeds
» Wrong structure of the demand matrix
* Spoiler: Better data and better models will solve the issue _
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A bit more complex example
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= Goal function unavoidably non-linear
= Different heuristics to escape from local optima exist
» Large part of the issue due to the structure of the OD matrix
= Solution: two-step approach

Incremental Demand Convex Combination
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Some ingredients for reliable dynamic

demand estimation uni.ln

1. Demand information —
1.  Mobility data
2. Travel Demand models
2. Data quality T
1.  Sensor locations
2. Different data types
3. Dynamic traffic flow models
1. Simulation of traffic flow propagation Reduce the
2. Reproduction of congestion dynamics mismatch between
4. Travel behavior models model and reality
1. Travel choice models
2. Traffic assignment and equilibrium
5. Optimisation algorithms Helps for orientating
1. Structure of the estimator = in the solution space
2.  Gradient vs. gradient-free methods _J  inthe right direction

Reduce solution
search space and
information reliability

J |
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The era of Big Data

And how it can help

demand modelling
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OUTSMARTING TRAFFIC, TOGETQER !

Retrieving available parking
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Using mobile phone data for daily demand
production and spatial-temporal distribution nni. I
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A new demand estimation framework

that uses (big) data

where it matters
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A new generic demand estimation framework
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= 1. Estimating the demand production & attraction
= Data driven: GSM, smartphone data

= Output: total activity-specific trips originating and ending in each zone

= 2. Estimating the spatio-temporal distribution
= Model driven: Utility-based model

First Step Second Step
GF

=  Qutput: OD matrix structure or — — Solution

Demand Level

— Classical Single
Step Procedure

= 3. Demand adjustment process —Tuo Steps

Approach

= Data: loop detectors

= (Classical approach




Including activity scheduling in daily demand

estimation part 1: utility-based modelling uni.ln

NETWORK MODEL
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UTILITY MODEL
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Utility-Based OD Estimation: lower level

The lower level: Utility Based Departure Time Choice Model
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Utility-Based OD Estimation: upper level

The “classical” Bi-level Demand The Utility-Based Demand Estimation
(d*1,...,d*n)=argmi1; zl(v1 ..... vn,fl,...,f'n) (d*l(m,n),...,d*n(co,n))zarg.min zl(vl,...,vn,fl,...,fn)
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Including activity scheduling in daily demand

estimation (3): adjustment process il

Demand Flow
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Application on a real sized network: Luxembourg
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Benchmarking scenario: Demand in/out of

Lux City i ln

Demand to Luxembourg Demand from Luxembourg
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Results of daily demand flows on some OD pair
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Trip-Based scenario: Classical approach Utility-based formulation
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including mobile phone data for demand flow

production nni. Iy
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Including activity scheduling in daily demand

estimation part 2: estimating activity primitives QLA

Observed activity-travel patterns Generated demand
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Examples of possible Mobility Data available
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120 000

» Travel Diaries w0 . Home-work
= Location and time of activities :E
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= Trajectories + semantic interpretation oo .
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Next step: from offline to online
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= Extending the utility-based DODE for real time applications
= Collaboration with TUM (Antoniou) & MIT (Prakhash, Ben-Akiva)
= Activity-related primitives used to construct daily patterns
= Ultility-based Kalman Filter

= Testing on Singapore & Luxembourg networks Time Dependent OD flows

= Total Demand
Histogram of observed data == = Home-Work Demand

----- Leisure Demand

# Observations
g

:

Time of the day



Outlook and closing remarks

= New Big Data gives opportunities for improving our demand models
» Understanding mobility needs
» Forecast future activity-travel patterns
= Enable users with enhanced information
» |mprove our understanding of traffic dynamics

» A unified model-data-driven modelling approach needed
= Travel demand models with dynamic flow estimation models
» Behavioural and data science approaches
» |nterdisciplinary effort
» Engineering
= Computer Science
= Social sciences
= Geography
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