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To	Design	Policies
We	Want	to	Understand	Needs	and	Habits	

of	People	
and

Develop	Policy	Simulation	of	Qatar

WHY	ALL	THIS?

2

• Travel of	people	by	different	means
• Activities are	the	key	to	understanding	and	modeling	people’s	travel	behavior
• We	are	social	animals	and	for	this	reason	understanding	human	interaction	is	
important
• This	means	define	policies	for	different	people	and	account	for	interactions
• Then	create	models	that	help	us	predict	what	will	happen	in	the	future	under	
different	policy	scenarios
• Model	need	to	be	sensitive	to	changes	in	space,	time,	and	attributes	of	
transportation	system



To	Understand

A	Few	Definitions
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Home

Origin Destination

Trip

Stage	1
Stage	2

-Means	of	travel	is	called	mode	of	travel	(drive	alone,	car	sharing,	
taking	a	bus,	cycling,	walking)

Activities
-In	home	stay	(sleep,	eat,	personal	
care)
-Work
-Eat	meal

Trip	with	two	stagesHome

Work

Ride	share	
parking	lot Work



The	Activities

Activities	in	Time	and	Space
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Ti
m
e

H
W

L

S

Activities:
H	…	Home W	…	Work L	…	Leisure S	…		Shopping



The	Activities

Activities	in	Time	and	Space
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Eventually	we	want	this	for	different	policy	scenarios
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Framework

Sequence	of	QSTM-ABM	
Models
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Population	
Synthesis

Long	Term	Choices

Daily	Schedules	&	
Choices

Routes	&	
Assignment	to
Networks

Pollutant	Emissions
&

Traffic	Simulation

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	t=0
Initialization

Every	year	after	
t=0

Spatial	Distribution	
People	and	Activities

Long	Term	Choices

Daily	Schedules	&	
Choices

Routes	&
Assignment	to	Networks

Pollutant	Emissions	&	
Traffic	Simulation



Sequence	of	QSTM-ABM	
Models
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PopGen

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	1
Initialization

Year	2	&	Later

Spatial	Distribution	
People	and	Activities

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

POPGEN:	For	each	spatial	unit	recreates	resident	
population	person	by	person	and	household	by	

household	using	externally	provided	data	
(Municipality,	Planning	Zone,	&	Traffic	Analysis	

Zone	Levels)

Uses	data	at	the	person	and	household	level	jointly	
with	seed	tables	of	relationships	among	control	
variables	of	our	choice		(Household	Interview)



Sequence	of	QSTM-ABM	
Models
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PopGen

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	1
Initialization

Year	2	&	Later

Spatial	Distribution	
People	and	Activities

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

CEMSELTS:	For	each	person	and	household	
generated	by	PopGen,	additional	attributes	are	
created	here	using	econometric	models,	lookup	

tables,	and	consistency	rules

Attributes	added	to	each	household	and	person:	
education,	employment	attributes	(employed	or	
not,	work	duration,	work	flexibility,	work	location,	
industry),	driver’s	license	holding,	student	status	

and	school	location,	number	of	cars,	etc.	



Sequence	of	QSTM-ABM	
Models
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PopGen

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	1
Initialization

Year	2	&	Later

Spatial	Distribution	
People	and	Activities

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

CEMDAP:	Creates	a	complete	day	for	each	
person	with	activities,	locations,	tours,	

trips,	mode	used	etc.	

It	also	ensures	consistent	schedules	within	
a	household	and	allocates	cars	to	each	

person/tour/trip	following	a	set	of	models



Sequence	of	QSTM-ABM	
Models
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PopGen

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	1
Initialization

Year	2	&	Later

Spatial	Distribution	
People	and	Activities

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Assignment	->	traffic	on	the	network	and	
passengers	on	transit



Sequence	of	QSTM-ABM	
Models
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PopGen

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Growth	
Forecast

Land	Use	–
Regional	
Economy

Household	
Evolution

Year	1
Initialization

Year	2	&	Later

Spatial	Distribution	
People	and	Activities

CEMSELTS

CEMDAP

DTA/TRANSIMS
&

Static	Assignment

MicroEmissions
&

EMFAC

Possibly	Depending	on	Information	
Available

(at	a	minimum	we	can	compute	
greenhouse	gas	emissions	from	vehicle	

kilometers	and	type	of	vehicles)
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Models	(Base	Year)

CEMSELTS
Individual	Level	

Models

Education

School	Status Labor	
Participation

Employment	
Industry

Employment	
Location	

Work	Duration

Work	Flexibility

Yes

Household	Level	
Models

Household	Income

Residential	Tenure

Housing	Type

Annual	Mileage

Vehicle	Fleet

Vehicle	Make	Choice

Primary	Driver	Allocation

No





Representing	Activity-travel	
Patterns	
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Workers
§ The	“work”	activity	has	spatial	
and	temporal	fixities

§ Person	schedules	his/her	
activities	around	the	work	activity

Non-Workers
§ No	obvious	activity	with	spatial	and	
temporal	fixities

§ Person	more	flexible	in	scheduling	
his/her	activities

Recognizing	Fixities



Available	Time	and	
Accessibility
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AM	Peak	
Max	
Finance

Midday	
Max	
Finance

PM	Peak	
Max	
Finance

Night	Time	
Max	
Finance

Santa	Monica



Santa	Monica	Retail



Transit	Accessibility

•60	meters	/	min	walking	speed
•6	min	penalty	for	switching	transit	lines
•Max	time	set	at	3	hours
•Sparse	distance	matrix	in	output

–Do	not	report	if	>	3	hours

Access	Points	to	Public	
Transportation

Routes	of	Public	Transportation



Walk	Time	Isochrones	Example



Transit	Travel	Time	Isochrones	Example



AM	Peak Midday

Manufacturing:	maximum	accessible	employees	within	10	mins

PM	Peak Nighttime



AM	Peak

Retail:	maximum	accessible	employees	within	10	mins

Midday

PM	Peak Nighttime



AM	Peak

Finance:	maximum	accessible	employees	within	10	mins

Midday

PM	Peak Nighttime



Los	Angeles	Car	vs Transit

Opportunity-based Dynamic Transit Accessibility in Southern California:  
Measurement, Findings, and a Comparison with Automobile Accessibility 

Ting Lei, Yali Chen and Konstadinos Goulias 
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COMPUTING TRANSIT ACCESSIBILITY Public transit is widely deemed as a potential means to solve many of the issues associated with the 
reliance on private automobiles. However, the attractiveness of public transportation depends critically on 
its performance in terms of the accessibility it provides to link population to employment and activity 
opportunities. In practice, there is a lack of an effective means to measure the performance of public 
transit or the transit accessibility. 

INTRODUCTION 

DATA SOURCE 

The overall workflow for computing transit accessibility is shown in the figure below. After the bimodal 
network is constructed, connectivity (topology) relations among transit and road links is compiled using 
GIS software. In this application ESRI’s ArcGIS. This makes the bimodal network a graph in the sense of 
graph theory except that our network contains schedules in addition to the lengths of arcs in regular 
graphs. 

MAPPING TRAVEL BY TRANSIT 

Overall Workflow for Computing Transit Accessibility 

Discrepancies between transit stops/network and road network 

The (distorted) space-time prism footprint for travel by transit 
starting from a location in Los Angles (Max. time = 180 min) 

Maximum number of reachable retail employees for a 20-minute 
buffer by time of day in Central Los Angeles by Private Car 

Primary data sources used in generating accessibility measures:  
•  Transit schedule and route data from Los Angles County (LAC) MTA Trip Master Database, 2008 
•  SCAG road network based on Tele Atlas (Dynamap) 2000  
•   Disaggregated census block level data for 15 industries derived in a previous work using Census 
Transportation Planning Package (CTPP) and Dun & Bradstreet (D&B) employment data 
 
 
 
  

Construction of Bi-modal Network 

In this work, we develop an opportunity-based transit accessibility measure based on explicitly taking 
into account schedules in modeling travel by transit. This is accomplished by means of a compact data 
structure to incorporate schedule information into a Geographic Information System (GIS), and the 
development of an efficient schedule-based shortest path algorithm. The accessibility indicator is 
opportunity-based and considers the temporal availability of businesses. Our objective is to 
characterize regional accessibility by transit and compare it with automobile accessibility for planning 
and policy analysis.  

The study area in this research is the Southern California Association of Governments (SCAG)  region 
including over 203,000 census blocks. 

The 15 employment industry types used in our accessibility indicators are:  
a) Agriculture, forestry, fishing and hunting and mining; b) Construction; c) Manufacturing; d) 
Wholesale trade; e) Retail trade; f) Transportation and warehousing and utilities; g) Information; h) 
Finance, insurance, real estate and rental and leasing; i) Professional, scientific, management, 
administrative, and waste management services; j) Educational; k) Health; l) Arts, entertainment, 
recreation, accommodation and food services; m) Other services (except public administration); o) 
Public administration; p) Armed forces.  

Travel by transit is bi-modal in nature. Both the transit network and the pedestrian network define possible routes of a 
transit trip. Therefore, the first step for modeling transit travel is to develop an integrated network containing both 
transit and regular road links. In practice, the network for regular roads are often readily available in a Geographic 
Information System. The transit network (with schedules) seldom exists in GIS. Instead, they are often provided in 
tabular format in terms of the schedules and coordinates of transit stops or timed points. 
The first task to make the analysis work is to build a transit network from tabular data. It is typical in practice for transit 
authorities to publish schedules only for a subset of points of any given route called its “timed points”. They may or 
may not be actual stops. Therefore, the schedules for the rest of the stops in a route need to be inferred from the 
schedule-building program, e.g. based on their (linear referencing) distances to the immediate neighboring timed 
points. Once the schedules are generated, they are aggregated and stored as attributes of transit links. 
The next step is to merge transit network with the regular road network. This is required because the positions of 
transit stops from the transit database will not typically match the road network since they come from different 
sources. Discrepancies between the two networks are shown in the figure below; and they are removed using GIS 
functions. 

GeoTrans Lab, Department of Geography, University of California, Santa Barbara 

1.  Presented in this research is a framework and methodology for computing dynamic transit accessibility 
indicators. The new method uses information about activity opportunities available during a day and time-of-
day changing transit schedules 

2.  An efficient schedule-based shortest path algorithm is developed which made it possible to compute block-
level transit accessibility measures for the vast SCAG planning region (mega-region). 

3.  An automated procedure for building large scale transit network from tabular transit data is developed. The 
same technology can be applied to other metropolitan areas/ regions. 

4.  The accessibility measure developed in this research can be used for the new generation of travel demand 
forecasting models that intend to use transit accessibility metrics as explanatory variables for activity-based 
models that are designed to be used in fine grained spatio-temporal simulation models. 

CONCLUSIONS 
The combined bi-modal network thus obtained contains routes for all transit modes in the LACMTA 
database and it consists of 1748 routes and 89980 stops. 

A key component of this research is a shortest time path algorithm that can take advantage of the 
schedule information stored in the augmented network. Considering the large number of origins and 
destinations and the need to compute routes for all pairs of them, we implemented the schedule-based 
shortest path algorithm reported in a previous paper (Lei and Church, 2010) by means of adapting an 
efficient open source C++ library for graph algorithms. 

The basic procedure is based on augmenting the well-known Dijkstra algorithm as follows: 
1. Set the label for the source node to zero and the labels for all other nodes to infinity. Mark all nodes as 
unvisited. 
2. Set the source node as the current node. 
3. For the current node, calculate a tentative label for each one of its neighboring nodes by adding the 
label of the current node and the cost to traverse the arc connecting the current node and the 
neighboring node. Update the label for the neighboring node if the tentative label for the neighbor is less 
than its current value. 
  3.1. If the link connecting the current node and a neighboring node is a regular road link, then the cost 
to traverse the link is the length of the link divided by the traveling/walking speed. 
  3.2. If the connection link is a transit link, then look up the array of departure times and find the earliest 
departure time after the arrival time at the current node. The arrival time at the current node is just the 
sum of the departure time for the entire trip plus its label. 
4. When all the neighbors of the current node are updated, mark the current node as visited (and its 
distance is now permanent). Mark the unvisited node with the lowest tentative distances as the current 
node repeat Step 3 until the set of unvisited nodes is empty. 
 

The opportunity-based measure of accessibility in this research is based on counting the number of 
opportunities that can be reached within pre-specified time limits. The opportunities are the number of 
employees in each census block for each of the 15 industry types and by four times of day: (a) AM 
peak (7 AM), (b) Midday (12 noon), (c) PM peak (5 PM) and (d) Nighttime (8 PM) 
In the current research we use three time buffer sizes: (1) 10-minutes buffer; (2) 20-minutes buffer and 
(3) 50-minutes buffer.  

The figures below shows transit accessibility indicators for the retail and education type and 20 minute 
time buffers for four periods in a day. For comparison, we also show automobile accessibility indicators 
computed for the same region. From these figures, we can see the difference of accessibility for 
different types of opportunity, different times of day as well as different modes of transportation. 

The isochronic map below shows the space-time prism of travel by transit, starting from a given location. 
The distorted shape of the space-time prism footprint which follows transit routes and stops 
distinguishes travel by transit from travel by other modes such as the automobile. Maximum number of reachable education employees for a 20-

minute buffer by time of day in Central Los Angeles by Private Car 

Maximum number of reachable retail employees for a 20-minute buffer by transit  
by time of day in Central Los Angeles. 

Midday AM Peak PM Peak Night Time 

Maximum number of reachable education employees for a 20-minute buffer by 
transit  by time of day in Central Los Angeles. 

Midday AM Peak PM Peak Night Time 

Night Time AM Peak AM Peak Night Time 

OPORTUNITY-BASED	ACCESSIBILITY
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Representing	Activity-travel	
Patterns	
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...
Start	of	day

Leave	for	
work

Arrive	at	
work

Temporal
fixity

...

Leave	
work

Arrive	back	
home

Temporal
fixity

End	of	day

Workers
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Representing	Activity-travel	
Patterns	
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Workers

...

Start	of	day
Leave	for	
work

Arrive	at	
work

Before	work	
period

Temporal
fixity

...

Work-based								
period

After-work	
period

Leave	work Arrive	back	home

Temporal
fixity

Home	to	work	
commute

Work	to	home	
commute

End	of	day

...

...



…

Representing	Activity-travel	
Patterns	
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Workers

Leave home
for non-work activities

Home-Stay	Duration Work-Stay	DurationHome-Stay	Duration

Home-Work	
Commute

...

3	a.m.	on
day	d

Leave	home	
for	non-work	activities

Arrive	back	home Leave	for	work Arrive	at	work Leave	work

Before-Work	Tour

Temporal
fixity

...

Work-Based								
Tour

After	Work	Tour

Arrive	back	at	work Leave	work Arrive	back	home Arrive	back	home

Temporal
fixity

Home-Stay	DurationHome-Stay	DurationWork-Stay	Duration

Work-Home	
Commute

S1 S2

S3 S4 S5 S6

3	a.m.	on
day	d+1



Representing	Activity-travel	
Patterns	

29

Workers

• Start	and	end	times	of	the	work	activity

• For	the	Work-Home	and	Home-Work	commutes:

– Mode(s)

– Number	of	stops

– Duration

• Number	of	tours

– Before	work,	based	at	work,	and	after	work



…

Representing	Activity-travel	
Patterns	
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• For	each	tour:
• Mode(s)
• Number	of	stops
• Duration
• Home-stay	duration	before	tour
• Work-stay	duration	before	tour

• For	each	stop:
• Activity	type
• Activity	duration
• Travel	time	to	activity
• Location	of	activity
• Mode	to	the	location

Workers



Representing	Activity-travel	
Patterns	
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Non-Workers

Morning	Home- Stay	Duration

3	a.m.	on	day	
d

Departure	for	First	Stop	
(S1)

First	Return-Home	Episode

Home-Stay	Duration	before	
2nd Tour

Departure	for	Third	Stop	(S3)

S1 S2

1st Tour	

3	a.m.	on	day	
d+1

Last	Home-
Stay	Duration

(M-1)th Return-Home	
Episode

Departure	for	
(K-1)th Stop	(SK-1)

Mth Return-Home	Episode

Home-Stay	Duration	before	
Mth	Tour

SK-1 SK

Mth Tour	



Representing	Activity-travel	
Patterns	
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Non-Workers
• Number	of	tours	during	the	day
• For	each	tour:

– Mode(s)
– Number	of	stops
– Duration
– Home-stay	duration	before	tour

• For	each	stop:
– Activity	type
– Activity	duration
– Travel	time	to	activity
– Location	of	activity
– Mode	to	the	location



Representing	Activity-travel	
Patterns	
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11:00	am	12:00	Noon

11	pm	to	12	Midnight 7:00	to	8:00	am

Presence	of	Persons	at	
Places	by	Type	of	Activity
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Volume	on	
Network

1:00	AM



Volume	on	
Network

2:00	AM



3:00	AM



4:00	AM



5:00	AM



6:00	AM



7:00	AM



8:00	AM



9:00	AM



10:00	AM



11:00	AM



12:00	PM



1:00	PM



2:00	PM



3:00	PM



4:00	PM



5:00	PM



6:00	PM



7:00	PM



8:00	PM



9:00	PM



10:00	PM



11:00	PM



12:00	AM



Output/Deliverables	
(typical	travel	model	KPI	summary)
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Emissions	and	Fuel	
Consumption

Model 1 Model	2

Organic	Gases	(g/mile) 0.943 0.926
CO	(g/mile) 9.498 9.348
NOx (g/mile) 1.929 1.955
CO2	(g/mile) 561.340 543.545
Gasoline	(gallons/mile) 0.051 0.050
Gasoline	(mile/	gallons) 19.377 20.203
Diesel	(gallons/mile) 0.102 0.101
Diesel	(mile	/gallons) 9.833 9.893
Organic	Gases	(g/person-day) 22.291 21.333
CO	(g/person-day) 224.553 215.388
NOx (g/person-day) 45.606 45.050
CO2	(g/person-day) 13271.790 12524.452
Vehicle	Km	Travel/person-day 23.643 23.042



Output
• For	each	person	daily	schedule	of	
activities	and	trips	in	tours
• For	each	household	joint	and	joint	
activities	with	other	members
• For	each	car	a	report	on	how	it	was	
used
• Sensitivity	to	policies	at	all	levels	
(car	ownership,	daily	pattern	of	
activity	and	travel,	tour	level,	
duration	of	activities,	destinations,	
mode	to	each	destination)

61



We	want	exact	location	from	the	destination	
choice(McKenzie’s	Dissertation)

62

• Many potential contextual clues are available to improve the quality of location services. Examples
include weather information, mode of transportation, previously visited location, user preferences,
and so forth. Many of them, however, are not available outside of commercial data silos, are di�cult
to mine, require di↵erent index schemes, or substantially increase the complexity of (pre-)computing
candidate places. While time is readily available with every position fix and we provide signatures for
each hour of the week, some use cases require pre-computed results. By computing information gain,
we show that the temporal signatures vary greatly with respect to their indicativeness. Consequently,
a few selected time-frames can already improve place estimation.

• Finally, we present an outlook on user-location distortion models. Our current work uses default
behavior to compute the temporal probability of POI categories for di↵erent times. People (and
places), however, do not always follow such established patterns. For instance, there might be an
event at a location that would be closed otherwise. By enriching the default mode with a dynamic
real-time model, we can adjust for such circumstances. We discuss the role of Instagram photos and
Tweets to determine trending areas in real-time. We propose an inverse-distance weighed method to
alter the user’s query location, pulling it closer to areas of high online-social networking popularity.

Stepping back from the research contributions for a moment, let us explore a real-world scenario depicting
the problem. This scenario will act as running example throughout the paper. Figure 3 shows a query
location (red pin) and a number of nearby POI. A standard distance-based approach would simply calculate
the distance between each POI and the query location and return a ranked set of distances allowing the user
to make the assumption that she is currently at the closest POI. In referencing the temporal signatures for
the di↵erent POI types, we find a visit probability value for each category of POI at any given hour of the
day on any day of the week.

Figure 3: Coordinates from user’s device (red pin) and nearby POI (blue markers).
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Table 1 shows the categories associated with each POI in Figure 3, the geographic distance to the query
location, as well as the temporal probabilities for those POI types at both 10 AM on Monday and 11 PM on
Saturday. As one can see, the popularity of nearby POI change significantly between the two times. Rather
than assuming that there is an equal likelihood of a user visiting a POI, irrespective of time, it follows that
temporal probability should be included in determining the most likely place.

Marker Category Distance (m) Monday 10AM
(10�3)

Saturday 11PM
(10�3)

A Bakery 39.2 6.28 4.08
B Nightclub 41.4 0.26 44.16
C Nightclub 69.9 0.26 44.16
D American Restaurant 62.7 1.61 9.50
E Bakery 73.7 6.28 4.08
F Fast Food 65.0 4.80 5.78
G Apparel Store 85.8 2.51 1.09
H Ice Cream Shop 82.6 0.84 15.88
I Movie Theater 94.2 1.44 11.00
J Pub 88.9 0.53 22.66
K Cosmetics Shop 60.9 3.87 1.57
L Diner 70.0 5.49 7.56
M Italian Restaurant 45.7 1.42 7.96
N Furniture / Home Store 114.9 4.79 5.01
O Grocery Store 147.8 4.53 1.38
P BBQ Joint 82.3 0.43 9.35
Q Burrito Place 88.1 0.54 3.16
R Italian Restaurant 93.6 1.42 7.96

Table 1: POI Categories shown on Figure 3 with distance to device location and temporal probabilities on Monday
10 AM and Saturday 11 PM.

The remainder of the paper is structured as follows. In Section 3 we introduce our temporal signatures-
based location-distortion model, the extracted temporal signatures, and the used data. Next, Section 4
discusses the tested functions and their weights. In Section 5 we evaluate our proposed method. We present
an outlook on dealing with real-time information in Section 6. In Section 7, we contrast our work to related
research and discuss relevant findings. Finally, Section 8 o↵ers conclusions and directions for future work.

3. Temporal Signatures-based Location-distortion Model

In this Section, we discuss the distortion models, the temporal signatures they use, and the data from
which they were derived.

3.1. Distortion Models

The majority of current geolocation services take a position fix as input and return a set of ascending
distance-ranked POI based on the geographic coordinates of those POI. Given a robust set of category-
defining temporal probabilities gathered from location-based social networking check-ins, this paper o↵ers
a model for increasing the accuracy of the distance-based approach through the inclusion of a temporal
component. Di↵erent types of POI show fluctuations in visit probabilities throughout the day. Based on
check-in behavior, these fluctuations reflect increases and decreases in POI type popularity. We leverage
these probabilities to enhance distance-based geolocation approaches. To do so, we propose an analogy to
scale distortion in cartography and distort space by a factor of the temporal probability. That is, we pull
or push POI in the users vicinity depending on their type’s visiting likelihood during a particular time of
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Figure 6: Hourly temporal signatures for four POI categories.

Band Hour Information Gain Band Hour Information Gain
143 Friday 11pm 0.772 101 Thursday 3am 0.112
59 Monday 11am 0.750 150 Saturday 6 am 0.097
107 Thursday 11am 0.744 124 Friday 4am 0.093
60 Monday 12pm 0.725 26 Monday 2am 0.082
35 Sunday 11am 0.712 27 Monday 3am 0.079
161 Saturday 5pm 0.695 125 Friday 5am 0.063
88 Wednesday 4pm 0.693 28 Monday 4am 0.052
167 Saturday 11pm 0.69 100 Thursday 4am 0.046
142 Friday 10pm 0.688 149 Saturday 5am 0.045
131 Friday 11am 0.687 29 Monday 5am 0.034

Table 2: The 10 overall most indicative hours according to their information gain and the 10 least indicative hours.

�(bt) = H(D)�
mX

j=v

| Dj |
| D | ⇥H(Dj) (2)

4. Distortion Functions and Weights

In this section we discuss the concrete distortion functions that realize the models presented above as
well as the parametrization of these functions.

4.1. Spatiotemporal Distortion Functions

In order to combine the temporal signatures with the existing spatial distance-based ranking, we introduce
a new ranking distance attribute (dt) for each POI. This attribute is a distortion of the existing geospatial
distance (between the POI and the query coordinates) by a factor of the temporal probability. To determine
the value of this new distance attribute, two variables need exploration; the function by which time and
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Marker Actual
Dist.(m)

Distorted
Dist.(m)

A 39.2 25.8
B 41.4 71.4
C 69.9 99.9
D 62.7 79.8
E 73.7 60.3
F 65.0 59.5
G 85.8 95.6
H 82.6 106.7
I 94.2 112.8
J 88.9 116.1
K 60.9 61.1
L 70.0 60.6
M 45.7 64.5
N 114.9 109.5
O 147.8 143.9
P 82.3 110.5
Q 88.1 115.2
R 93.6 112.4

Figure 8: Nearby POI locations (dark blue markers) adjusted by temporal probability at 10AM on Monday. Original POI
locations visible as light blue markers. Three example locations (A, B, M) are shown in red, indicating pushed further away
and green, indicating pulled closer to the assumed user location.

distance from the query coordinates, HereNow (number of Foursquare users currently checked in to the
POI), and TotalCheckins (total number of all-time check-ins to a specific POI).

Additionally, a separate query was made to the Foursquare Venues API with the Intent parameter set to
Checkin. According to the Foursquare documentation Browse takes a distance-only approach to querying
the gazetteer returning a set of nearby POI ordered by distance from query location, shortest to longest. The
Checkin approach is not full explained in the documentation and simply states that the returned set of POI
are ordered based on where a typical user is likely to check-in to at the provided latitude and longitude at
the current moment in time. This option is most likely based on the company’s internal popularity counts.
In addition to the Intent parameter, each query was executed with additional parameters that specified a
radius of 100 meters and minimum of 20 and maximum of 30 nearby POI. This limited bias due to a lack
of nearby places.

Provided the set of nearby POI returned for each of the 1,663 queried user locations, the distance-only
method can be compared against our new temporal signatures enhanced method. Since the actual POI
to which the user checked in is known, it is possible to calculate a number of di↵erent measures for each
approach. Table 4 presents the di↵erence between these two methods across MRR, SRR, nDCG and First
positions measures. The table shows that the inclusion of the temporal signatures model with a weight of
2.8, substantially outperforms the distance only method over all measures. In fact, the mean reciprocal rank
(MRR) values rise from 0.359 to 0.453, an increase of 26.34% and the nDCG values increase by 21.96%.

Method MRR SRR nDCG First Pos.
Distance Only 0.359 443.8 0.583 211
Temporally Adjusted 0.453 793.5 0.711 423

Table 4: Comparing the results of the Distance Only method to our method which includes temporal signatures.

Ranking the POI based purely on TotalCheckins produces a MRR of 0.678. Such a large discrepancy
in numbers between distance-only and TotalCheckins method is an important reminder of how biased the
Foursquare data and its users are, i.e., a very high percentage of the total user base predictably visits a
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The	bakery	wins	(point	A)
Spatial	allocation	assignment	probability	can	be	done	with	a	variety	of	other	methods
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2.1.1 Temporal Bands

The temporal bands are derived from 3,640,893 check-ins to 938,031 venues from 421
Foursquare categories in Los Angeles, New York City, Chicago, and New Orleans.
These check-ins have been collected for 4 months starting October 1st, 2013. Con-
sequently, we cannot use them to understand seasonal effects but focus on the 168
hours of the week. The temporal resolution of the data is 2 hours, i.e., while we have
hourly check-in times, the duration of check-ins is unknown and users are automati-
cally checked out after 2 hours. In our work, we are neither interested in the particular
venues, check-ins, nor users,8 but in studying the temporal default behavior of users
towards types of POI. In other words, we are interested in the fact that bars are visited
in the evenings and especially during weekends, while universities are mostly visited
during the workdays between 7am-5pm. Figure 2, depicts 168 bands that jointly form
the temporal signature for four POI types. The data represents probability values for
check-ins to the given type (by hour bins), i.e., the 168 bands sum up to 1. Despite
the large sample, we had to remove outliers as some of the POI types, e.g., Molecular
Gastronomy Restaurant, have fewer venues than others. We used 4 standard deviations
from the mean as cutoff. While we have not used these temporal bands before, we ap-
plied a coarser and more limited temporal signature to predict types for untagged POI
successful (Ye et al., 2011). Thus, we expect the temporal bands to play a major role
in the derivation of the POI taxonomy.

Figure 2: The weekly temporal bands for selected POI types by hour.

2.1.2 Thematic Bands

A representative subset of the venues (274,404) from the 421 Foursquare categories
(POI types) have been used to derive another, yet very different set of bands that will
jointly form the thematic signature; cf. (Tanasescu et al., 2013). We collected all
user-contributed tips for those venues, stemmed all words, generated venue-specific
documents out of them, grouped these documents by POI type, and then used Latent

8Even more, due to API restrictions these data should not be stored for more than 24 hours.
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McKenzie’s	Dissertation	on	Temporal	Signatures







•18	million	synthetic	people,	their	households,	and	cars
•Millions	of	business	establishments
•All	networks	for	cars,	buses,	metro,	railways
•Complete	enumeration	of	opportunities	and	destination	

choices

•Imagine	combinations	of	data	we	can	test	using	a	
simulator	like	this	as	a	test	bed!

Big	data	in	this	case
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