Predicting for the adaptive transport system

...and other necessary ingredients for resilient urban mobility

Filipe Rodrigues / Francisco Pereira rodr@dtu.dk / camara@dtu.dk

Some "future mobility" visions...

Dynamic Public Transport Mobility as a Service (MaaS)

Dynamic pricing

Shared modes

Autonomous Mobility on Demand (AMoD)

Some "future mobility" visions...

And some possible nightmares...

And some possible nightmares...

The prediction-optimization pipeline

In non-recurrent conditions...

In non-recurrent conditions...

Wrong scheduling

Transport services of the (near!) future

Large events Incidents System breakdowns

No "future mobility" will be adaptive without VERY robust prediction capability...

...especially in non-recurrent conditions!

	Supply	Demand
Expectable	road works, closures, mega events	special events, demonstrations, holidays
Unexpectable		

	Supply	Demand
Expectable	road works, closures, mega events	special events, demonstrations, holidays
Unexpectable		crisis situations, unknown high fluctuations

Demand	Supply
--------	--------

special events,	road works,
demonstrations,	closures, mega
holidays	events
crisis situations,	incidents, weather,
crisis situations, unknown high	incidents, weather, crisis situations
crisis situations, unknown high fluctuations	incidents, weather, crisis situations
crisis situations, unknown high fluctuations	incidents, weather, crisis situations

Expectable

Unexpectable

	Supply	Demand
Expectable	road works, closures, mega events	special events, demonstrations, holidays
Unexpectable	incidents, weather, crisis situations	crisis situations, unknown high fluctuations

Expectable demand

Event information is usually online

- Event homepages
- Event listings
- Social media (e.g. twitter, facebook)
- News feeds

...

Lots of potential sources, but a lot in free form text

Accounting for event information

Foo Fighters

Music H Saturday August 26 2017 Add review

natural language processing

Machineinterpretable features

Accounting for event information

Bayesian additive model

Public transport arrivals in Singapore

Data:

- 5 months of smartcard data (bus, metro, light rail)
- 2 study areas
 - Singapore Indoor Stadium
 - Singapore Expo

An example

Public transport arrivals in Singapore

		Evaluation: event periods only			
Area	Model	RAE	CorrCoef	R^2	
	Linear Reg. (routine only)	66.817 (8.322)	0.783 (0.065)	0.457 (0.108)	
	Linear Reg. (routine + events)	55.493 (7.710)	0.864 (0.025)	0.627 (0.057)	
	GP (routine only)	62.069 (8.584)	0.801 (0.066)	0.409 (0.105)	
Stadium	GP (routine + events)	59.761 (9.876)	0.802 (0.080)	0.625 (0.056)	
	BAM-GP (truncated)	42.338 (6.172)	0.907 (0.022)	0.789 (0.034)	
	Linear Reg. (routine only)	82.999 (6.354)	0.537 (0.056)	0.323 (0.051)	
	Linear Reg. (routine + events)	81.029 (5.749)	0.620 (0.052)	0.370 (0.048)	
	GP (routine only)	56.473 (6.638)	0.843 (0.038)	0.698 (0.046)	
Expo	GP (routine + events)	54.743 (4.034)	0.798 (0.037)	0.576 (0.074)	
-	BAM-GP (truncated)	46.033 (4.569)	0.884 (0.032)	0.720 (0.077)	

RAE: relative absolute error CorrCoef: correlation coefficient R2: coefficient of determination

Exploiting the model's additive structure

Predicting taxi demand in event areas

Goal: Given the taxi demand in the last L days, predict taxi demand for the next day

Focus: special event areas

A deep learning approach

Recent work currently under review!

Predicting taxi demand in NYC

Data:

- All taxi trips from 2013 to 2016
- 2 study areas
 - Barclays Center
 - Terminal 5

Predicting taxi demand in NYC

Method	MAE	RMSE	MAPE
SVR L	$186.7 (\pm 0.0)$	$252.2~(\pm 0.0)$	$20.4 (\pm 0.0)$
SVR L+W	$185.3~(\pm 0.0)$	$251.6~(\pm 0.0)$	$20.2 (\pm 0.0)$
SVR L+W+E	$177.0~(\pm 0.0)$	$244.4~(\pm 0.0)$	19.1 (± 0.0)
GP L	$204.5~(\pm 0.0)$	$264.6~(\pm 0.0)$	22.5 (± 0.0)
GP L+W	$204.2~(\pm 0.0)$	$264.8~(\pm 0.0)$	22.5 (± 0.0)
GP L+W+E	$184.4 \ (\pm 0.0)$	$250.3~(\pm 0.0)$	$20.3 (\pm 0.0)$
DL-FC L	$181.4 (\pm 2.5)$	$250.0~(\pm 1.6)$	19.7 (± 0.3)
DL-FC L+W	$180.7~(\pm 2.1)$	$250.1 \ (\pm 1.3)$	19.6 (± 0.3)
DL-FC L+W+E	$168.1 \ (\pm 2.8)$	$242.7~(\pm 1.9)$	18.1 (± 0.3)
DL-FC L+W+E+T	158.1 (± 3.4)	$236.2~(\pm 2.3)$	16.8 (± 0.5)

L = time-series lags only

- W = weather
- E = event information
- T = event text

MAE: mean absolute error RMSE: root mean sq. error MAPE: mean absolute percentage error

	Supply	Demand
Expo	road works, closures, mega events	special events, demonstrations, holidays
Unex	incidents, weather, crisis situations	crisis situations, unknown high fluctuations

Expectable

Unexpectable

Unexpectable demand

Step 1: anomaly detection

Markou, I., Rodrigues, F. and Pereira, F.C., 2017. Use of Taxi-Trip Data in Analysis of Demand Patterns for Detection and Explanation of Anomalies. Transportation Research Record: Journal of the Transportation Research Board

Step 2: propagating information

Correlated models

Preliminary results

Demand	Supply
--------	--------

road works,
closures, mega
events
incidents, weather,
crisis situations

Expectable

Unexpectable

Unexpectable supply

Step 1: anomaly detection

Running application in Denmark

Step 2: robust prediction

Step 2: robust prediction

Accounting for uncertainty

Why should we care?

• We use prediction models to make decisions!

Accounting for uncertainty

Heteroscedastic models

- Observation noise is non-constant (e.g. time-dependent)
- Jointly model signal mean and variance

Accounting for uncertainty

Heteroscedastic Gaussian processes (GPs)

- GP models the mean of the signal
- Another GP models the variance of the signal

Recent work currently under review!

Google data

Aggregated speeds as measured by mobile devices

Heteroscedastic

More accurate predictions and more precise confidence intervals!

Properly handling uncertainty

More **uncertain** during night periods

More **confident** during day periods

Some results

Evaluation of the prediction means

MAE: mean absolute error RAE: relative absolute error R2: coeff. of determination

		Eval: all periods		Eva	l: day peri	ods	
ID	Method	MAE	RAE	R^2	MAE	RAE	R^2
	ARIMA	2.845	40.830	0.718	1.780	33.467	0.878
1	GP	2.639	38.180	0.765	1.767	33.210	0.884
T	HGP	2.396	34.368	0.778	1.467	27.576	0.913
	FC-HGP	2.296	33.114	0.779	1.270	23.880	0.934
	ARIMA	2.933	43.471	0.717	1.812	36.219	0.863
	GP	2.595	38.463	0.770	1.637	32.724	0.886
4	HGP	2.294	34.008	0.770	1.283	25.636	0.921
	FC-HGP	2.272	33.678	0.783	1.202	24.019	0.933
	ARIMA	2.748	39.560	0.732	1.712	32.823	0.885
F	GP	2.555	36.764	0.779	1.662	31.829	0.895
0	HGP	2.342	33.696	0.791	1.423	27.235	0.918
	FC-HGP	2.254	32.423	0.785	1.229	23.522	0.938

ī.

Some results

Evaluation of the prediction intervals

NLPD: negative log predictive density ICP: interval coverage percentage MIL: mean interval length

Place ID	lace ID Method I		ICP	MIL
	ARIMA	0.796	0.949	18.257
1	\mathbf{GP}	0.679	0.961	18.193
1	HGP	0.453	0.950	14.987
	FC-HGP	0.040	0.959	11.540
	ARIMA	0.783	0.942	18.017
1	GP	0.728	0.960	18.114
4	HGP	0.658	0.929	11.899
	FC-HGP	0.019	0.957	11.100
	ARIMA	0.766	0.946	17.458
F	GP	0.646	0.959	17.293
5	HGP	0.418	0.953	14.514
	FC-HGP	0.024	0.958	11.176

Bus travel time prediction

We can exploit the network structure and spatio-temporal correlations to get robust joint prediction models!

Robust bus travel time prediction

Deep learning architecture

Recent work currently under review!

Movia data

- Real-time AVL-system
- 1,2M travel time observations
- 4A bus line in Copenhagen
- May to October 2017

Results

Model	Time ahead	RMSE (min)	MAE (min)	MAPE $(\%)$
Historical average		4.35	3.23	6.51~%
Current model	t + 1 (15 min)	4.92	3.90	8.05~%
	t+2~(30~min)	4.91	3.46	6.82~%
	t+3~(45~min)	5.47	4.15	8.68~%
Pure LSTM	t + 1 (15 min)	3.48	2.48	5.02~%
	t+2~(30~min)	3.56	2.51	5.08~%
	t+3~(45~min)	3.68	2.62	5.34~%
Google Traffic	t + 1 (15 min)	3.67	2.96	6.32~%
ConvLSTM	$t + 1 \; (15 \; min)$	2.66	1.99	4.19~%
	t+2~(30~min)	2.89	2.11	4.44~%
	t + 3 (45 min)	3.11	2.27	4.75~%

RMSE: root mean squared error

MAE: mean absolute error

MAPE: mean absolute percentage error

Summary

- Accounting for the effect of external factors
 E.g. events, weather, etc.
- Anomaly detection
- Properly handling uncertainty
 - Account for observation noise
 - Produce confidence intervals for predictions
- Robust joint prediction models
 - Exploit spatio-temporal correlations

Predicting for the adaptive transport system

...and other necessary ingredients for resilient urban mobility

Filipe Rodrigues / Francisco Pereira rodr@dtu.dk / camara@dtu.dk

