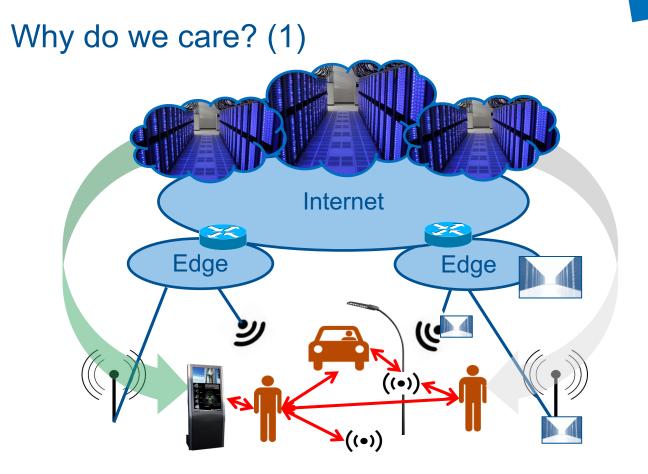


Connecting the (mobile) Dots: Mining User Mobility Patterns from Networks and Social Media

Jörg Ott Ljubica Kärkkäinen Leonardo Tonetto

www.cm.in.tum.de

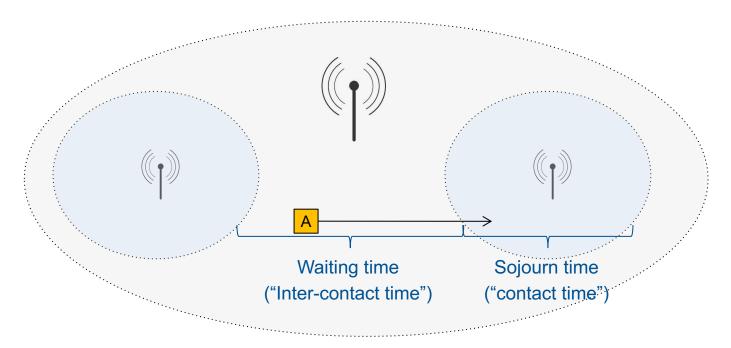
15 December 2017



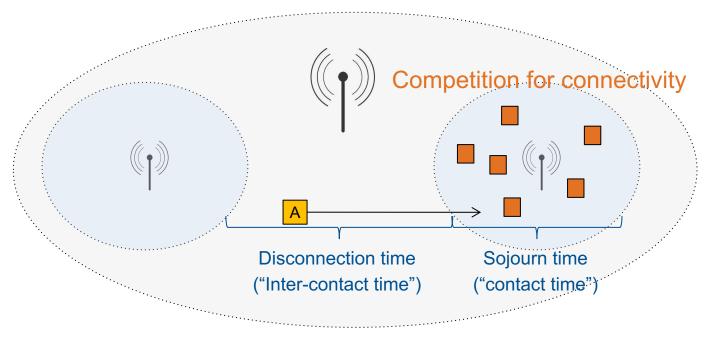
Why do we care? (2)

http://www.muenchen.de/leben/wlan-hotspot.html

Why do we care? (3)

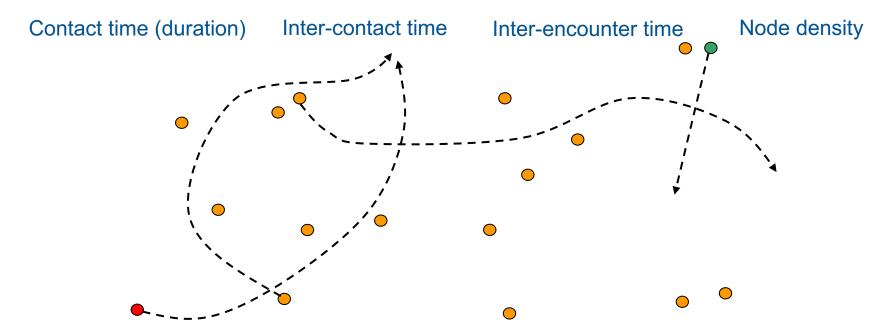


Why do we care? (3)



Network connectivity (Availability, data rate, disruptions)

Why do we care? (4)



Content spreading performance (infection rate, coverage, latency) © 2017 Jörg Ott Content delivery performance (delivery probability, latency)

Sample application areas

Assessing (cellular) Internet access performance

• Example: complementing cellular networks by Wi-Fi or others

Local content dissemination

• Example: neighborhood networks for content sharing without the cloud

Censorship-resistant information exchange

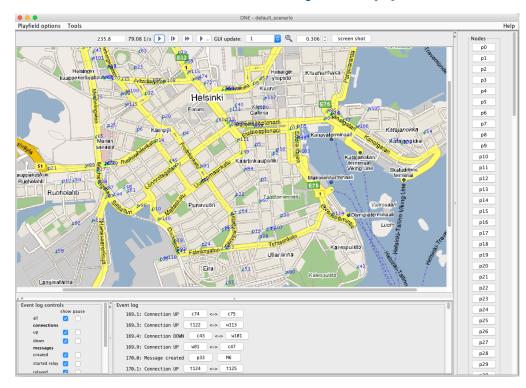
• Example: Firechat during the Hong Kong protests

Enabling communication in rural or remote areas

• Example: Interconnecting villages through "messengers"

. . .

The ONE Simulator: mobility & apps



http://akeranen.github.io/the-one/

Working Day Movement Model

Synthetic model for daily routines

- · Defines home, work places, favorite locations
 - Map-based movement with different regions
- · Considers social groups for evening activities

Multi-modal transportation

- Submodels for walking, cars, trams/buses
- Simple schedules for public transportation (can also support real schedules)

Activity models

- Shortest path routing from/to places
- Not much movement at home
- Random movement at work
- Evening activities
- Variable parameters for daily routines (wake time, workday length, etc.)

City Square Model

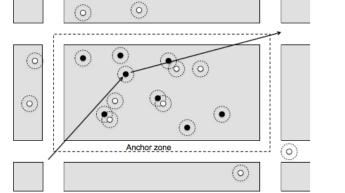
Observation-based model: web cams as sources

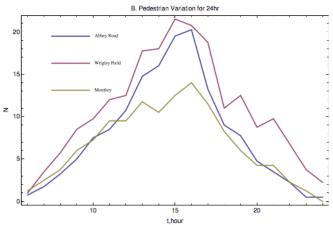
- Manual interpretation (no usable automated algorithms at the time)
- Shown to be automatable for vehicle density)

Computing arrival patterns and sojourn times

• Deriving a simple model with a few parameters

Application: content sharing in a square





More on mobility models

Trace-driven modeling and analysis

- for movement patterns
- for communication and interaction patterns
- · how these influence each other

Mobility modeling using traces from the network

Mobility modeling using traces from social media

Connecting the (mobile) Dots: Mining User Mobility Patterns from Networks and Social Media

Jörg Ott Ljubica Kärkkäinen Leonardo Tonetto

www.cm.in.tum.de

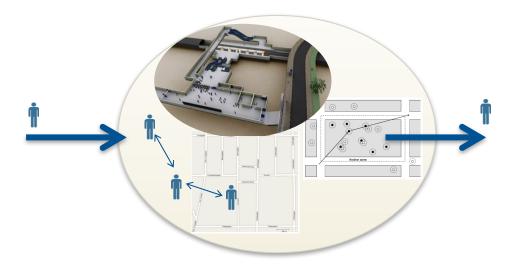
15 December 2017

Outline

- Analytic mobility models
- Mobility modeling from wireless network records
- Modeling user association patterns in a university campus network
- Ongoing work: Mobility prediction

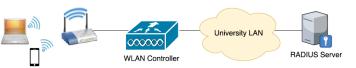
Analytic Mobility Modeling

- Queueing model for mobility of users and their interaction
- Black-box model for (small) urban areas: city square, subway stations, grid of streets, buildings
- Application: infrastructureless content sharing and ephemeral networks



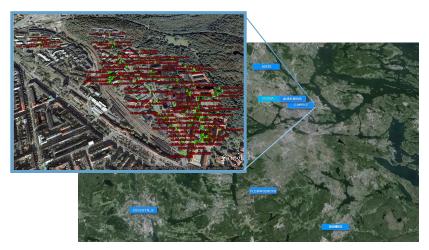
Trace-driven Mobility Modeling

- Objective: extract mobility traces from wireless network traces
- · Wireless network records: Eduroam association events
- Trace obtained from the authentication server



- Description:
 - Trace duration: 16 months (January 2014—April 2015)
 - 250-300K associations from 13-15K users per day
 - ~1000 access points, located in 54 buildings on 5 sites
 - Not really big data, but...

has some challenges!



Trace-driven Mobility Modeling

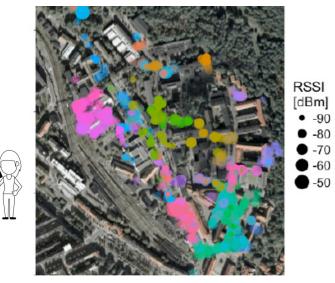
- Objective: extract mobility traces from wireless network traces (location, duration of visiting time)
- Challenges: no accounting information, user devices are anonymized, access points labeling inconsistent, ping-pong effects, filtering short associations...

- Approach
 - Data cleaning
 - Capturing ground truth (warwalking, syslog)
 - Deriving heuristics: utilizing wireless coverage map, authentication state machine, infrastructure/device timers

Access Point	Time	
KTHB-r1201-0915	121035	
KTHB-r1209-0917	124228	A A A A A A A A A A A A A A A A A A A
KTHB-r1209-0917	124628	
KTHB-r1209-0917	125257	
KTHB-r1209-0917	133203	
KTHB-r1201-0607	140333	
HUS20-r4055-0307	141657	
QHUS15-kApl4-0285	142252	
KTHB-r4212-0894	143123	
KTHB-r4212-0894	143824	
KTHB-r4212-0894	144111	
ers		
	TH	

Trace-driven Mobility Modeling

- <u>Objective</u>: extract mobility traces from wireless network traces (location, duration of visiting time)
- Challenges: no accounting information, user devices are anonymized, access points labeling inconsistent, ping-pong effects, filtering short associations...
- Approach
 - Data cleaning
 - Capturing ground truth (warwalking, syslog)
 - Deriving heuristics: utilizing wireless coverage map, authentication state machine, infrastructure/device timers



Inter-arrival times

Modeling User Association Patterns

- Analysis and modeling of users' arrival patterns and visiting time at network access points
- Application: resource allocation, wireless protocol design, network dimensioning, abnormality detection
- Findings: Nonhomogeneous Poisson arrivals, two-stage hyper-exponential visiting time

AP20

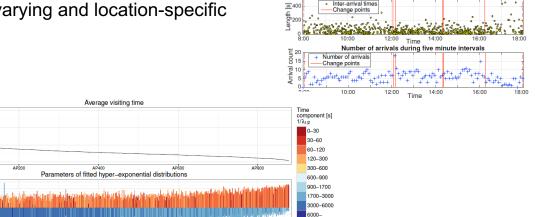
• Tractable (and simple!) models, but time-varying and location-specific

6000

time [s]

j<u>≣</u> 2000

CCDF



AP800

AP60

Access points

10⁴

10³

Fitting visiting time (Library AP)

AP Empirical visiting time

S statistic=

10¹

AP Fitted hyper-exponential

0 047 n-value = 0 088

10² Visiting time [s]

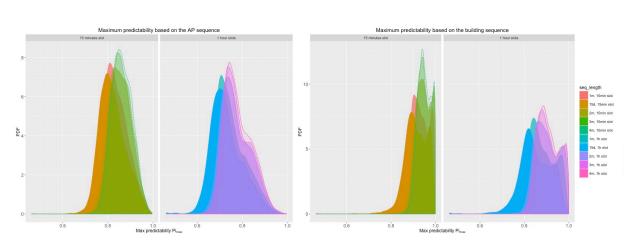
10

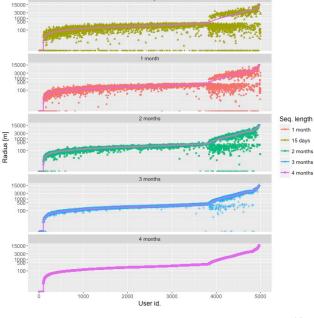
10-2

10-3

Ongoing Work: Mobility Prediction

• Estimating achievable predictability of the user's location based on entropy





15 days

Radius of gyration

Connecting the (mobile) Dots: Mining User Mobility Patterns from Networks and Social Media

Jörg Ott Ljubica Kärkkäinen Leonardo Tonetto

www.cm.in.tum.de

15 December 2017

Pervasive Games and Human Mobility

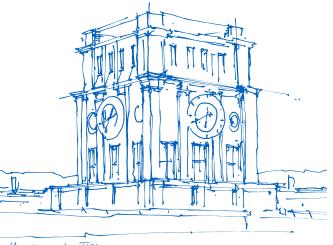
Leonardo Tonetto

Technical University of Munich

Department of Computer Science

Chair of Connected Mobility

Munich, 15. December 2017



Uhrenturm der TVM

What we found

- Increase of up to 2 km in daily displacements, persistent after the game
- Gamers visit new locations, close to their past trajectories
- Gamers play for up 20 days longer when playing often on cellular network

Background

Pervasive Games

- Augmented Reality and Location Aware
- Virtual-world & Real-world
- Examples:

Human Mobility

- Data driven modeling
- Understanding and prediction of users
 behavior
- Wireless network deployment, urban planning, ...

Our Datasets

• Twitter

- 8.7M tweets from 21500 users
- 15 countries (18 cities)
- 8900 gamers with "#pokemongo"
- Bot detection with Botometer* (~3.1%)
- Spatial granularity: Fine
- Time granularity: Coarse

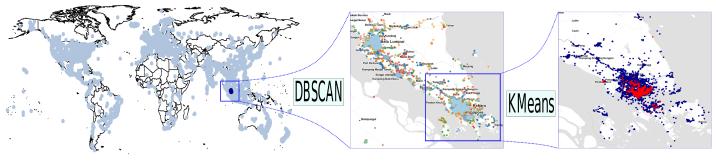
Carat

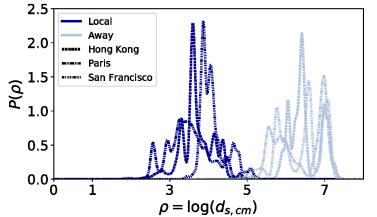
- 62.8M records 58000 users
- +100 countries
- 3392 gamers
- Info about phone status/behavior
- Spatial granularity: 1D
- Time granularity: Fine (1% battery change)

* https://botometer.iuni.iu.edu/

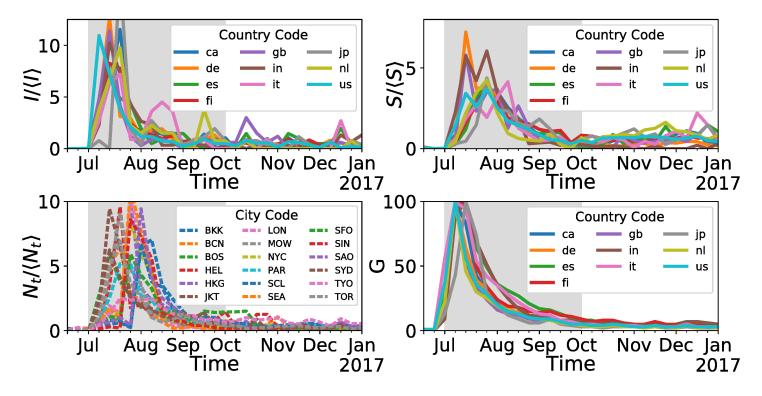
ТШ

Spatial Clustering: Local vs. Away





When was it trendy?

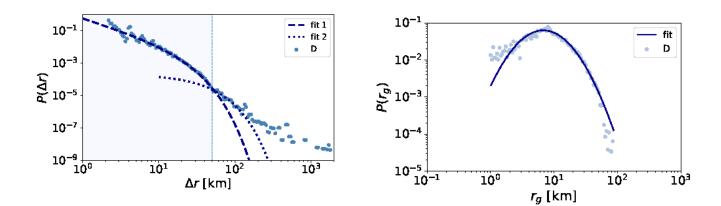


How each dataset was studied?

- Carat
- Displacements of consecutive records (Δr)
- Gaming sessions & installations
 - Average 2.3 km per session

• Twitter

- Radius of Gyration (r_g)
- Isotropy ratio
- <u>Location</u> visitation
- Displacements of consecutive records (Δr)



Combined Analysis (Carat & Twitter)

- Consistent scale between active days
 - Twitter: 59.2 days
 - Carat: 83.8 days
- Increase in daily mobility observed on Twitter
 - Supporting the observation in Carat

Conclusion

- Flow of people \rightarrow Flow of information
- Synthetic Models vs. Real-World Data
- Mobility might be affected by exterior factors (Mobile Games)