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Why do we care? (1)

Edge Edge

Internet

© 2017 Jörg Ott 2



3© 2017 Jörg Ott

Why do we care? (2)

http://www.muenchen.de/leben/wlan-hotspot.html
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Why do we care? (3)

A

Sojourn time
(“contact time”)

Waiting time
(“Inter-contact time”)
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Why do we care? (3)

A

Sojourn time
(“contact time”)

Disconnection time
(“Inter-contact time”)

Competition for connectivity

Network connectivity
(Availability, data rate, disruptions)
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Why do we care? (4)

Contact time (duration) Inter-contact time Inter-encounter time Node density

Content spreading performance
(infection rate, coverage, latency)

Content delivery performance
(delivery probability, latency)



Assessing (cellular) Internet access performance
• Example: complementing cellular networks by Wi-Fi or others

Local content dissemination
• Example: neighborhood networks for content sharing without the cloud

Censorship-resistant information exchange
• Example: Firechat during the Hong Kong protests

Enabling communication in rural or remote areas
• Example: Interconnecting villages through “messengers”

…

7© 2017 Jörg Ott

Sample application areas
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The ONE Simulator: mobility & apps

http://akeranen.github.io/the-one/



Synthetic model for daily routines
• Defines home, work places, favorite locations
- Map-based movement with different regions

• Considers social groups for evening activities

Multi-modal transportation
• Submodels for walking, cars, trams/buses
• Simple schedules for public transportation

(can also support real schedules)

Activity models
• Shortest path routing from/to places
• Not much movement at home
• Random movement at work
• Evening activities
• Variable parameters for daily routines (wake time, workday length, etc.)
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Working Day Movement Model



Observation-based model: web cams as sources
• Manual interpretation (no usable automated algorithms at the time)
• Shown to be automatable for vehicle density)

Computing arrival patterns and sojourn times
• Deriving a simple model with a few parameters

Application: content sharing in a square
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City Square Model



Trace-driven modeling and analysis
• for movement patterns
• for communication and interaction patterns
• how these influence each other
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More on mobility models

Mobility modeling using traces from the network

Mobility modeling using traces from social media
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• Analytic mobility models

• Mobility modeling from wireless network records

• Modeling user association patterns in a university campus network

• Ongoing work: Mobility prediction
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Outline

Ljubica Kärkkäinen |   Big Data for Future Mobility Workshop | 15 December 2017



• Queueing model for mobility of users and their interaction

• Black-box model for (small) urban areas: city square, subway stations, grid of streets, buildings

• Application: infrastructureless content sharing and ephemeral networks
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Analytic Mobility Modeling

Ljubica Kärkkäinen |   Big Data for Future Mobility Workshop | 15 December 2017



• Objective: extract mobility traces from wireless network traces

• Wireless network records: Eduroam association events

• Trace obtained from the authentication server

• Description:
- Trace duration: 16 months (January 2014—April 2015)
- 250-300K associations from 13-15K users per day
- ~1000 access points, located in 54 buildings on 5 sites
- Not really big data, but…

has some challenges!
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Trace-driven Mobility Modeling
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• Objective: extract mobility traces from wireless network traces (location, duration of visiting time)

• Challenges: no accounting information, user devices are anonymized, access points labeling inconsistent, 
ping-pong effects, filtering short associations…

• Approach

- Data cleaning

- Capturing ground truth (warwalking, syslog)

- Deriving heuristics: utilizing wireless coverage map,
authentication state machine, infrastructure/device timers
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Trace-driven Mobility Modeling

Ljubica Kärkkäinen |   Big Data for Future Mobility Workshop | 15 December 2017

Access Point Time
KTHB-r1201-0915 121035
KTHB-r1209-0917 124228
KTHB-r1209-0917 124628
KTHB-r1209-0917 125257
KTHB-r1209-0917 133203
KTHB-r1201-0607 140333
HUS20-r4055-0307 141657
QHUS15-kApl4-0285 142252
KTHB-r4212-0894 143123
KTHB-r4212-0894 143824
KTHB-r4212-0894 144111



• Objective: extract mobility traces from wireless network traces (location, duration of visiting time)

• Challenges: no accounting information, user devices are anonymized, access points labeling inconsistent, 
ping-pong effects, filtering short associations…

• Approach

- Data cleaning

- Capturing ground truth (warwalking, syslog)

- Deriving heuristics: utilizing wireless coverage map,
authentication state machine, infrastructure/device timers
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Trace-driven Mobility Modeling

Ljubica Kärkkäinen |   Big Data for Future Mobility Workshop | 15 December 2017



• Analysis and modeling of users’ arrival patterns and visiting time at network access points

• Application: resource allocation, wireless protocol design, network dimensioning, abnormality detection

• Findings: Nonhomogeneous Poisson arrivals, two-stage hyper-exponential visiting time 

• Tractable (and simple!) models, but time-varying and location-specific
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Modeling User Association Patterns 



• Estimating achievable predictability of the user’s location based on entropy
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Ongoing Work: Mobility Prediction

Ljubica Kärkkäinen |   Big Data for Future Mobility Workshop | 15 December 2017
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What we found

l Increase of up to 2 km in daily displacements, persistent after 
the game

l Gamers visit new locations, close to their past trajectories
l Gamers play for up 20 days longer when playing often on 

cellular network



Background

l Pervasive Games

l Augmented Reality and Location Aware
l Virtual-world & Real-world
l Examples:

l Human Mobility

l Data driven modeling
l Understanding and prediction of users 

behavior
l Wireless network deployment, urban 

planning, ...



Our Datasets

l Twitter

l 8.7M tweets from 21500 users
l 15 countries (18 cities)
l 8900 gamers with "#pokemongo"
l Bot detection with Botometer* (~3.1%)
l Spatial granularity: Fine
l Time granularity: Coarse

l Carat

l 62.8M records 58000 users
l +100 countries
l 3392 gamers
l Info about phone status/behavior
l Spatial granularity: 1D
l Time granularity: Fine (1% battery change)

*  https://botometer.iuni.iu.edu/



Spatial Clustering: Local vs. Away



When was it trendy?



How each dataset was studied?

l Carat

l Displacements of consecutive records (Δr)
l Gaming sessions & installations

- Average 2.3 km per session

l Twitter

l Radius of Gyration (rg)
l Isotropy ratio
l Location visitation
l Displacements of consecutive records (Δr)



Combined Analysis (Carat & Twitter)

l Consistent scale between active days
- Twitter: 59.2 days
- Carat: 83.8 days

l Increase in daily mobility observed on Twitter
- Supporting the observation in Carat



Conclusion

l Flow of people → Flow of information
l Synthetic Models vs. Real-World Data
l Mobility might be affected by exterior factors (Mobile Games)


