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Scenario  CAVsPR  HDVsPR Introduction and Background
= el = Urban congestion, exacerbated by population growth and limited
infrastructure, cannot be solved by road expansion alone, as
0% 100 Braess et al., [2005] reveals it may worsen network performance.
= Current navigation systems use User Equilibrium (UE) routing,
2 10% 90 % L LT . .
minimizing individual travel costs but leading to suboptimal network
3 20% 0% efficiency; System Optimum (SO) routing improves overall
performance but imposes higher costs on some users [Angelelli et
4 50 % 50% al, 2020]
= Connected and autonomous vehicles (CAVs) enable new
3 80% 20% possibilities for balancing individual and collective benefits,
= — = approaching SO traffic states through V2l and V2V communication.
: : = This research explores how varying CAV penetration rates (PR)
Fig 1.1 Network Topology: Nodes and Directed Links Tt 1. Sl S AV B MG R affect traffic flow using a microscopic simulation platform, aiming to

optimize urban traffic systems and inform future planning.

Methodology and Case Study

= The DualterateMix tool developed by [Behzad et al., 2023] was
used to iteratively optimize routes for a multiclass trip assignment
involving CAVs and HDVs.

= CAV routing and driving behavior followed the SO principle, while
HDVs adhered to UE principle.

= Python scripts were developed to generate network files, operate
SUMO via TraCl, log vehicle parameters during simulation.
Calculate key performance metrics.

= The synthetic network (Fig. 1.1) consists of 36 nodes, 136 links,
and 19,200 trips simulated over a 3-hour period.

= Six scenarios (Tab. 1.1) with CAV penetration rates of 0%, 10%,
20%, 50%, 80%, and 100% were simulated for CAV rerouting
probabilities (CAVRePr) of 0.5 and 1.0.

Fig 2: Simulation platform (SUMO) visualizing dynamic vehicle movements within the network
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= Total travel time (Fig. 3.1) improved by 88% and 91% at 50% CAV
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penetration rates for CAVRePr values of 0.5 and 1.0, respectively.
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= Average travel time (Fig. 3.3) decreased from 3821 seconds and
4775 seconds (scenario 1) to 263 seconds and 269 seconds
(scenario 6) for CAVRePr values of 0.5 and 1.0, respectively.
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Fig 3.1: Total Travel Time vs Scenarios Fig 3.2: Total Travel Distance vs Scenarios = Total tra_veled distance (Flg 32) improved by 10.7% and 18.9%
R —— — it st e i (Scenano 4) and 10.7% and 17.0% (Scenano 6) for CAVRePr
o = values of 0.5 and 1.0, respectively.
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= Average travel distance (Fig. 3.4) decreased from 3.9 km to 3.2 km
‘ in both CAVRePr cases.

H H »= Implementing policies that increase CAV PR can significantly
D reduce congestion, shorten commute times, and lower emissions.

Scenarios

Fig 3.3: Boxplot Average TT vs Scenarios Fig 3.4: Boxplot Average
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