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Figure 1. Research Architecture

Theoretical Background

Planning and building new cycling infrastructure requires the
presence of cycling volume data and uptrend in it. To have a
reliable database with all-day cycling traffic counts or an average
daily volume of cyclists for the desired area it is necessary to set
up automatic counting facilities or do counting manually. To reduce
the manual workload and costs of traffic counters’ installation, a
method of extrapolation of short-term bicycle counts based on
machine learning models can be implemented.

The city of Munich has a database with cycling traffic counts for
recent years measured by six permanent bicycle traffic
measurement stations and additional cycling counts measured
manually. The city of Munich developed an extrapolation method
that uses manual counting data and provides results that could be
improved using other machine learning methods and additional
meteorological data shown in this work.
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Figure 2. RF and XGBoost feature importance comparison

Methodology

This study explored different machine learning models and their
combinations as shown in Figure 1, as well as different input data
structures to extrapolate short-term bicycle traffic counts taking
weather conditions into account and getting the most accurate
output. A comprehensive literature review was done that showed
the current activities in this field. Three types of input data were
prepared for feeding the models. The features included morning
peak hours counts, evening peak hours counts, meteorological
data, year, and day of the week data while the target data had an
average daily volume of cyclists. Two feature reduction techniques
were applied and tested: Random Forest and Principal Component
Analysis (PCA). Besides the use of additional weather data, a
single-location case study was conducted where the best-
performed models were used to predict bicycle traffic on a dataset
containing only one location.
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Figure 3. Scatter plots of the actual and predicted DBT for training
(1) and testing (2) datasets of the Random Forest (RF) model

Key Findings

Some models had similar accuracy but some of them perform
better. It was important what kind of input data to use for model
training to have the most precise result and not overfit the model.
Based on available data the most important variables for all
models are the evening peak hours counts from 16:00 to 19:00.
The morning peak hours counts and the meteorological data were
less important for a good prediction result (Figure 2). The best-
performed models were Random Forest with an accuracy of 91%
and Extreme Gradient Boosting with 86% accuracy which differs a
lot from the results of the initial method used by the city of Munich
(Figure 3). Models performed better when training on a single-
location dataset and more precise weather data but that leads to
overfitting. There is a high potential for exploring data from other
cities since these models performed well on the current data. Also,
more advanced deep learning models can be tried out, as well as
the determination of the smallest amount of the input data that will
be needed to produce sufficient prediction results.
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