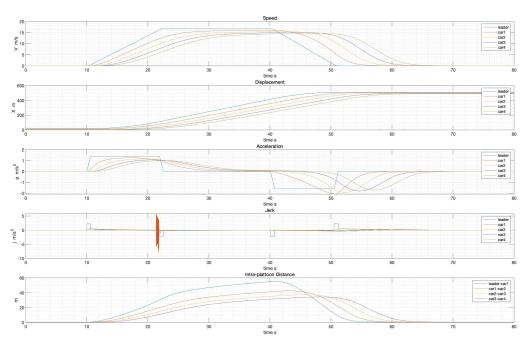

Collaborative Vehicle Control for the Autonomous Bus Platoons near Bus Stops

Master's Thesis of Yumeng Fang

Mentoring:

Dr.-Ing. Antonios TSKARESTOS M.Sc. Philipp STÜGER


External Mentoring: MSc. Xiaodong LIU (TUMCREATE)

There are four time components for bus operation near bus stops:

- 1. Deceleration time
- 2. Dwell time
 - Passenger activity time
 - Dead time
- 3. Acceleration time
- 4. Delay time

However, for autonomous bus platoons, the dead time is redefined. It includes:

- Time difference for all autonomous buses in the platoon starts to accelerate
- Time difference for all autonomous buses in the platoon reaches a full stop
- Time for buses opening and closing doors

The EIDM (Enhanced Intelligent Driver Model) is selected as the original model to do the enhancement since it is an "intelligent" model with a crash-free characteristic. Besides, it has more realistic behaviour than the IDM (Intelligent Driver Model) at a critical situation.

The picture on the right shows the simulation results of the EIDM under a scenario where there are two bus stops with 500 meters distance. The maximum acceleration, minimum deceleration and cruising speed are 1.4m/s^2 , -1.6m/s^2 and 60 km/h. The problems of this model are:

- 1. The following buses fail to meet the desired velocity v_0 .
- 2. The intra-platoon distance during cruising is continuously increasing and relativity large.
- 3. The following buses have a slow response to the lead bus.

Models	Time difference (start to accelerate)	Time difference (full stop)	Time of travelling 500m	Intra-platoon distance (cruising)		Intra-platoon distance (dwelling)	
Original EIDM	3.38 s	15.38 s	57.2 s	Continuously increasing		0.5m	
Improved				Mean	SD	Mean	SD
EIDM	1.15 s	2.89 s	45.54 s	9.36 m	0.0016	0.5 m	0
Zero-T				Mean	SD	Mean	SD
strategy	0.37 s	0.05 s	43.25 s	5.42 m	0.31	0.32 m	0.003
The				Mean	SD	Mean	SD
kinetic- based model	0 s	0 s	42.89 s	5 m	0	0.5 m	0

The master's thesis proposed three models to solve the problems mentioned above.

- 1. The improved EIDM
 - The easiest one to implement
 - · Owns smooth transition of the jerk
- 2. The Zero-T strategy
 - · Keep most of the advantages of the EIDM
 - Almost zero time difference for acceleration and approaching a full stop
- 3. The kinetic-based model
 - The intra-platoon distance at the cruising stage is controllable
 - Tailored to meet the requirements of autonomous bus platoon near bus stops
 - Technische Universität München Lehrstuhl für Verkehrstechnik Univ.-Prof. Dr.-Ing. Klaus Bogenberger

