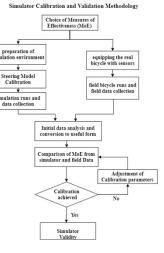
Lane Alignment (SUMO)

Change of Lane

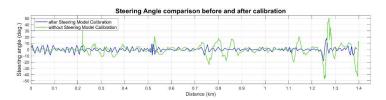

Master's Thesis of Abul Azeem

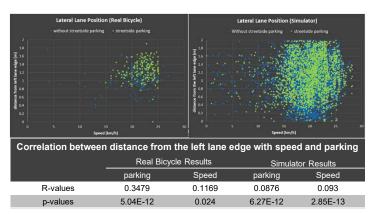
Mentoring:

Dr.-Ing. Heather Kaths (TUM) Seyed Abdollah Hosseini M.Sc. (TUM)

Objectives:

- \geq Literature Review
- Calibration and Validation Methodology Development
- Bicycle sensor selection and instrumentation
- Data collection from real bicycle and simulator
- Comparison of Real bicycle and simulator trajectories
- Improvement of two road environments (Urban Arterial & Signalized Intersection)
- Optimization of bicycle simulator

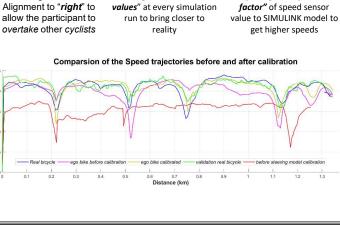



Selected Parameters to be Studied

- ⊳ Operational Speed (Measure of Effectiveness for Calibration)
- Þ Steering angle
- Lateral position of bicycle and impact of parked vehicles
- ⊳ Travel time

Steering Model Calibration

"Single Track Model" was Modified to use for a bicycle as vehicle. Omission of forces acting on cars to model bicycle Speed and lateral dynamics more realistically. Steering more responsive after Calibration.



Lateral distance from left lane edge

No strong impact of parked vehicles on the lane position. Means of both datasets (real bicycle & simulator) are statistically the same.

* Ego bike = Simulator bicycle

Calibration Parameters (adjustment)

Randomness (SUMO)

Using "Random seed

values" at every simulation

Speed Sensor Calibration

Adjusting "multiplication

Mean Trajectory Values for Real Bicycle and Simulator					
Parameter	Sample _ size _	Speed (km/h)		Travel Time (sec)	
		Mean	std. deviation	Mean	std. deviation
Simulator (No steering Calibration)	-	15.11	-	297.00	-
Real bicycle	18	21.11	0.693	217.34	8.336
Simulator before (speed) calibration	24	19.47	0.897	232.46	11.391
simulator after calibration	14	20.96	1.374	216.57	14.460
Real bicycle validation dataset	7	21.32	0.588	223.14	6.770
Speed difference between Real bicycle & Simulator		Travel time difference between Real bicycle & Simulator			
× 5% 0.7%	.7% 1.7% tion data	35% 30% 25% 20% 15% 10% 5% 0%	28% 7.0% Calibration data		3% 4.2% 2.9%
Before Steering Calibration After Steering Calibration					
After Steering & Speed Calibration	After S	teering & Speed Calibration			

Conclusions:

- ≻ There has been found a very weak but significant correlation between the distance of the real bicycle and simulator bike from the left lane edge and the presence of parked vehicle in parking lane.
- The steering of the bicycle highly affects the operational speeds. ≻
- > Introducing random seed to the simulation scenario gives high variability for the average trajectory speeds and travel times.

Recommendations:

- ۶ It is recommended for the future studies to get higher data sample size.
- In future studies participants of all age group and genders should be included > to better study the validity of the simulator for general behavioral studies.
- ۶ It is recommended to study the overtaking behavior of participants in future studies
- ≻ Using high frequency data logging techniques in future studies (CV cameras) could be used to study and calibrate acceleration and deceleration regions of trajectories.