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Abstract

Mobility on Demand services have disrupted the transportation landscape through smart-

phone enabled peer-to-peer business models, including the notable rise of ride-hailing plat-

forms. Demand responsive shared transport services, which extend the ride-hailing concept

by facilitating similar trips to be shared between unfamiliar users, have renewed the notion

of  exible and dynamic bus transit which was first seen in dial-a-ride public transit programs

of the 1990s. These shared services have been positioned between ride-hailing and conven-

tional public transit buses, most notably for the  exibilit y of routing and scheduling they

offer. The potential for these dynamic and  exible services to unlock a range of benefits

has been hypothesized in the literature, but quantifying the scale of this potential, as well

as unpacking its relationship to conventional public transit has remained largely theoretical

due to the small number of case-studies. In partnership with the BMW Group, this thesis

presents an agent-based simulation of these two services, drawing on real-world data from

the corporate mobility context of BMW Groups 40,000 employees in the Munich region. Fol-

lowing a benchmark simulation of demand responsive and conventional buses as they exist

today, the results of three scenarios that modify the temporal and spatial availability of the

services are presented. These scenarios frame the research in regards to operator cost and it’s

relationship to key service quality parameters including wait and travel time, while additional

analysis is used to provide a richer understanding of the comparison.



Abstrakt

Mobility on Demand-Dienstleistungen haben die Transportlandschaft in den letzten Jahren

weitgehend verändert. Smartphones ermöglichen Peer-to-Peer-Geschäftsmodelle, was zu einem

signifikanten Aufschwung von Mitfahrgelegenheitsplattformen geführt hat. Deren Konzepte

sind Nachfrage-basiert und schaffen gemeinsam genutzte Transportangebote von sich nicht

kennenden Nutzern. Dadurch geben sie dem Verständnis von  exiblem und dynamischem

Bustransport (das erstmals in den 1990ern im Rahmen von öffentlichen Dial-a-Ride-Programmen

verwendet wurde) eine neue Bedeutung. Die gemeinsam genutzten Transportdienstleistungen

können zwischen Mitfahrgelegenheitsangeboten und konventionellen öffentlichen Bussen po-

sitioniert werden und ermöglichen dabei eine  exible Routenplannung. Trotz der Diskussion

der Möglichkeiten dieser dynamischen und  exiblen Dienstleistungen in der Literatur wurde

bisher die Größe dieses Potenzials noch nicht genau quantifiziert, da die Anwendung dieser

Systeme auf den öffentlichen Busverkehr auf Grund einer geringen Anzahl von Fallstudien

bisher nur theoretisch erörtert wurde. In Zusammenarbeit mit der BMW Group stellt die vor-

liegende Arbeit eine Agenten-basierte Simulation dieser beiden Dienstleistungskonzepte vor.

Dabei basiert sie auf realen Daten von 40,000 BMW Angestellten in München, die im Rah-

men der Corporate Mobility erhoben wurden. Basierend auf einer Simulation von Nachfrage-

gesteuerten und konventionellen Bussen, wie sie zurzeit existieren, werden die Ergebnisse

von drei Szenarien, die in örtlicher und zeitlicher Verfügbarkeit variieren, verglichen. Diese

Szenarien werden in Hinblick auf Betreiberkosten und den Ein uss auf Qualitätskriterien wie

Warte- und Reisezeit ausgewertet, was einen Vergleich der einzelnen Analysen ermöglicht
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1 Introduction

The majority of this thesis is spent on the design and implementation of a simulation study 

on the relationship between demand responsive shared transport and existing conventional 

public transit buses. This work is largely technical in scope, but before diving in and by way 

of an introduction, I would like to begin with the personal connection.

In 2011 I was bicycle touring through a region of abandoned settlements from the Late 

Antiquity Byzantine period in the present day Middle East. One day I stumbled across a 

Roman road stretching north off of the small farming road I had been cycling on, and eager 

to find out if all roads really do in fact lead to Rome, I hopped off my bike and began 

exploring. There were zero people around, save a singular man watching his goats in the 

distance and out of the surreal calmness I found myself imagining the farmers and 

tradesmen, the commuters and freight movers. Walking farther along took me backwards in 

time as I passed two men negotiating parking rights for their horse carts on the side of the 

road, and overheard two others discussing congestion around the aqueduct.

My point is that while planes, t rains and automobiles (to borrow the title of a childhood classic) 

have brought the dimensions to a new level, I’m fascinated by the degree to which many 

aspects of the underlying experience of moving from A to B seem to be relatively constant. One 

example is the Marchetti Constant which emerged from an empirical study of commute times 

with the finding that regardless of transportation technology or era, humans spend on average 

about an hour a day moving to and from a primary activity (Marchetti 1994). This finding 

which has become known as the Marchetti constant, but which Marchetti himself credited to 

the transportation researcher Yacov Zahavi, was demonstrated across cities and civilizations, 

with examples as varied as ancient Greek and Roman towns, to African villages, to modern 

suburban America (Marchetti 1994; Zahavi and Ryan 1978). This principle has been used to 

help explain the macro trends in the way cities seem to grow in response to the available 

transportation supply, for example spreading out as transportation becomes faster. But it also 

hints at the intrinsic relationship we have with our daily travel activities that can be seen 

elsewhere. Consider the public discourse surrounding bike or electric scooter sharing platforms 

which have been equally hailed as pragmatic solutions, and demonized as a public nuisance 

littering the sidewalks. Transportation touches people in their daily lives, and whether it’s a 

Roman road 1500 years ago or a street in the centre of Munich today, we like to both fight and 

embrace change. Transportation in the 21st century
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Figure 1: Original photo of Roman road at Apamea, Syria.

has frequently been guided by goals like going faster and farther while maximizing individual

choice and comfort. Stemming from this however, new challenges echoing those from that

Roman road have come into focus. For example, the importance of transportation that viably

addresses environmental, economic and health externalities have come hand in hand with the

centrality of urban regions. And whether it’s connecting peripheral locations or providing

corporate mobility between office clusters, people are interested in the sharing potential of

new business models as well as in the capital Q Quality of their travel experience.

These topics are linked with developments shaping transportation at it’s intersection with

communications technologies. For example, so called ride hailing platforms have made an

attractive bid to the public, allowing users to virtually connect with a peer in their network

and track their ride in real time, with payment, navigation and communication handled

seamlessly in the background. Relatedly, services that allow ride hailing-like trips to be

shared between users with similar origins and destinations have been described in the context

of public transport 2.0 (more on this in chapter 2). And while autonomous vehicles including

those that  y between skyscraper rooftops may be entering the “trough of disillusionment” in

the technology hype cycle, highly functioning autonomous driving remains a very real area of

research and development at automotive companies the world over, which has the potential

to radically in uence the cost and function of what we currently call “driving”.

But following from Henry Ford’s statement if I had asked the people what they want, they

would have said faster horses, I often find myself back at the question of the potential of new
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mobility technologies to fundamentally address the challenges in the transportation sector

today, and at the same time, the degree to which they might create new and unseen chal-

lenges. These questions are certainly very large and I do not want to give the impression

that they will be answered in the course of this thesis, but at a high level they are part of

it’s motivation.

A little more concretely, this research responds to the idea that  exible ride sharing services

have the potential to disrupt traditional schedule-based bus platforms with services that are

more individual, more real-time and more dynamic by looking at trade offs between the two.

The idea that the experience of taking the bus can be improved by making it responsive to

user origins and destinations makes intuitive sense. It is also the hypothesis being tested by

several public transit providers who have launched pilots to test  exible transit, as well as a

body of recent scholarly literature which will be unpacked in the following chapter.

1.1 Partnership with BMW Mobilität München

Moreover, these questions are of practical relevance to BMW Group’s corporate mobility

department in Munich, Germany which is currently investigating ideas to innovate and im-

prove on their corporate mobility offering. BMW Group’s Mobilität München1 manages the

corporate mobility services available to employees in the Munich region. Corporate mobil-

ity refers to company-related travel during the workday, such as moving from one office to

another for meetings, manufacturing inspections and testing amongst other activities. With

nearly 40,000 employees in the Munich region, BMW Group has the size of a small city, and

therefore MM functions a little like the transportation provider. This includes:

� coordinating a  ee t of Fahrdienst vehicles (short to mid-term loan of a company vehicle

for business travel)

� the Pendelbus shuttle bus service which primary serves white-collar workers for travel

between the various office building clusters

� shared personal mobility offers including the Probike bikeshare, `X2City’ – an e-scooter

pilot project, and the internal `Urby’ MaaS app which integrates the mobility offerings

with trip and route planning in one app

� piloting new mobility services such as the MyShuttle demand responsive shared trans-

1 Mobilität München (MM) is an unofficial name that describes several BMW Group departments in operations,

research and technology that collaborate in corporate mobility
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port program which began in 2019

The goal of these services is ultimately to facilitate the internal function and networking effect

of the company. Therefore, using these transport options does not explicitly incur a financial

cost to the user – rather the corporate mobility offering is provided privately to employees. In

addition to providing an effective and reliable travel option, the direction of these corporate

mobility services is also motivated by broader goals such as reducing the ecological intensity

of the company, increasing the quality of travel and connectivity between BMW Group office

clusters to encourage networking synergies amongst knowledge workers, and to stay in step

with the technologically driven direction of the automobile industry at large.
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2 Literature Review

There is significant excitement surrounding Mobility on Demand services that has already

been touched on in chapter 1. This excitement centres on the emergence of what is essentially

a new mode choice that

“stand(s) between unsustainable, flexible and individual transport services offered

by private vehicles (e.g. cars) and sustainable, shared, but low-flexible traditional

public transport services (metro, tram and bus), with different degrees of sustain-

ability/shareability/flexibility according to the service” (Inturri et al. 2019, 2).

In other words, Mobility on Demand is being connected to the potential for redefining tra-

ditional trade-offs between service quality and convenience, or between cost and individual

 exibilit y - particularly in the space between conventional public transit (CPT) and private

automobile ownership. For some, this may be an opportunity to tackle negative externalities

of the transport sector including congestion, lost productivity and emissions (Merlin 2019;

The World Bank 2018), while others see Mobility on Demand services as a tool to bolster

public transport and keep in step with the ever evolving mobility space (Kim, Baek, and Lee

2018). At the same time the possibility to improve service for hard to connect or immobile

demographics has been highlighted, and in new business models such as premium chauffeur-

ing, school district transportation and corporate mobility are also being explored (Muñoz and

Cohen 2018). But where do these potential benefits stem from, and do we have an under-

standing of their capacity to generate operator, user or generalized benefits for transportation

systems?

This literature review sheds light on the topic by unpacking the state of the art, and organizing

it around these and other questions of debate in the wider discussion of Mobility on Demand

services. More than a summary of individual articles, the theme areas re ect the methodology

and simulation scenarios deployed later in this thesis. For example, after laying out the key

concepts and terms in 2.1, 2.2 frames many of the modelling decisions implemented later

in the scenario design, and 2.3 informs the DRST-scenarios that are designed to test the

service performance of tightly-knit demand areas versus connection to satellite locations. In

so doing, the literature review provides an overview of relevant topics surrounding Mobility

on Demand, focusing largely on simulation studies that use a relevant methodology.
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2.1 Mobility on Demand Key Terms

The disruption of communications technologies in the transportation sector has brought not

only an array of new mobility concepts, but a range of overlapping terms used to describe

them (Shaheen et al. 2017). These services can be considered new in that they: 1) emerged

roughly in parallel with the widespread proliferation of smart-phones; 2) that they are related

to the sharing economy (either of vehicles or trips); and 3) that they describe a transport

mode who’s characteristics do not necessarily fit into the classical hierarchy of “car trip”

or “public transit trip”. Mobility on demand2 has evolved as an umbrella term for these

mobility services, although it does not refer specifically to any one concept or technology and

rather is deployed as a catch-all (Alonso-Mora et al. 2017).

Of specific relevance to this thesis, “demand responsive transport” (DRT) has been used

as far back as two decades to describe user oriented public transportation that uses  exi-

ble routing and scheduling enabled by communications technologies (Atasoy et al. 2015).

While the origins of DRT are with early dial-a-ride programs (possibly the first fusion of

telecoms technology and CPT from the user interface side) , DRT has grown to encompass

all services which are designed to be shared, and which do not operate on fixed routes or

schedules (Atasoy, Ikeda, and Ben-Akiva 2016). This includes Uber Pool and Lyft Line for

example, products of the respective ride hailing platforms which enable dynamic sharing of

trips amongst unfamiliar users. But DRT actually excludes Uber and Lyft’s ride-hailing (or

ride-sourcing) services, which operate similar to smartphone enabled taxi hailing (Inturri et

al., 2019).

Indeed, the terminology surrounding these MoD services can be tricky. Perhaps because

of this, a distinction between ride hailing (individual taxi-like trips), vehicle sharing

(non-ownership model for sharing vehicles as a resource, but not necessarily trips) and ride-

sharing (sharing vehicles and trips amongst unfamiliar users) has emerged in the literature

(Inturri et al. 2019). With this, DRT which has historically described services like dial-a-ride

public transport buses, has morphed into demand responsive shared transport (DRST).

This seems to emphasize its inclusion in the latter of these 3 groups - defining services where

trips themselves are being shared amongst unfamiliar passengers (Bischoff, Maciejewski, and

Nagel 2017). From this framework, DRST could theoretically be accessed by the user through

a Mobility as a Service (MaaS) platform and served by shared autonomous vehicles (SAVs)

2 used interchangeably with on-demand mobility in the literature
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Figure 2: Figure compares the relative use of select MoD keywords in the titles of peer-

reviewed literature. The consistient use of DRT/DRST over the past 15 years is highlighted,

as well as the more recent growth of concepts that emerged in parallel with the smartphone.

further blending the line between vehicle and ride sharing (Alonso-Mora et al. 2017; Liyanage

et al. 2019). Wider definitions of DRST have also been used to suggest that they “ can be

regarded as a tool to shift away from a culture where consumers own assets (cars), toward

the Mobility-as-a-Service (MaaS) culture, where consumers “share access to assets” (Inturri

et al. 2019, 2), hypothesizing that the knock-on benefits of DRST are about more than just

how we get from a to b, and in fact extend to the broader topic of sustainability and the

sharing economy. In juxtaposition to this however, one might rightly observe that DRST is

only really shared when the users actually share trips, not just because they can (Clewlow,

Mishra, and Kulieke 2017; Inturri et al. 2019). Therefore is a capacity 8 DRST van just

ride-hailing if it’s average occupancy is 1? We will return to this point in the discussion on

MyShuttle, the DRST service that is the focus of this thesis, however it is beyond the focus

for the moment.

In coming back to a working definition to be used in this thesis, demand responsive shared

transport or DRST is the most appropriate description of the type of service being simu-
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lated, so the reader can rest easy that it is the only term they need to remember for the

remainder. Again, vehicles in a DRST service are demand responsive in that they adapt

their route and scheduling in response to the demand, and shared in that trips can be shared

between otherwise unfamiliar agents, with the sharing algorithms being processed on the

back-end.

2.2 Relationship Between Fleet Size, Vehicle Capacity & Service Charac-

teristics

The trade-offs between  eet size, capacity and the level of service are amongst the most

investigated aspects of DRST to date - and the level of service that can be provided is

a major part of studies which try to project the replacement of entire  eets of cars with

DRST. Many of these studies are theoretical in that they look at individual aspects such as

comparing route-choice assignment algorithms (Maciejewski et al. 2017) or cost structure

(Bösch et al. 2018), while neglecting to look at how the whole DRST package comes together

with seemingly practical questions like willingness to share. Indeed at this stage in both

the development of DRST services and it’s associated literature, the focus has been limited

by the lack of large-scale DRST platforms currently in existence. Nonetheless, research

focusing on the theoretical replacement of large  ee ts, and often particularly taxi- eets, has

shown very promising results on the performance of DRST in regards to wait and travel

times while utilizing much smaller  eet compositions with varying capacities between existing

conventional autos up to mini-buses.

More specifically, a strong relationship between increasing  eet sizes and decreasing average

wait times has been established. In (Ben-Dor, Ben-Elia, and Benenson 2019a), which simu-

lates an SAV replacement of all vehicular traffic in the Tel-Aviv metro area, a  eet of 50,000

SAVs was able serve all demand whilst keeping average wait times within a bound of 1.5 times

the equivalent trip with an individual car assuming a modest time for parking search, and to

walk to and from the parked vehicle. This  eet size however resulted in a high rejection rate

of 6% due to spatial outliers which could not be served in the max wait time of 12 minutes.

Doubling the  eet size to 100,000 vehicles reduced wait and travel times marginally,3 and

brought the rejection rate down to 2% which was considered feasible to make the system

sufficiently attractive (Ben-Dor, Ben-Elia, and Benenson 2019a).

3 The author is generally referring to the population average in discussing the plural wait and travel times
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Similarly positive results are demonstrated in (Inturri et al. 2019) who develop a multi-agent

simulation for planning and designing new shared mobility services with a focus on estimating

demand and supply side variables that make DRST feasible. The model, which is based on

a Netlogo simulation in the Italian city of Ragusa, demonstrates that a  eet size 20% of the

replacement is able to meet 78% of all demand whilst reducing fares by 74% (Inturri et al.

2019). This scenario also seeks to increase efficiency in terms of VKT (exceeding to emissions

and use of road infrastructure), and therefore the results come with an increase in travel

times of 166% and indirect detours for some agents (Inturri et al. 2019).

This brings us to travel time which, while in uenced marginally by  eet size depending on

the context geography and demand, has been most heavily correlated with vehicle capacity.

This is related to the fewer and less extreme route deviations4 from less people in a single

vehicle (Inturri et al. 2019), although the relationship to route directness is closely linked

to routing algorithms (Bischoff, Maciejewski, and Nagel 2017). For example, a pioneering

study on DRST shows that a modified greedy algorithm5 to show that capacities of 6-8 could

serve demand more efficiently than single-use taxis (Gerrard 1974). More recently others

have struggled to utilize vehicle capacities of 4, with vehicles occupied by 2 request only 50%

of the time, and 3 request only 10% of operating time, leading to the conclusion that larger

vehicle occupies are not always utilized in cases where max time or deviation constraints are

applied (Bischoff 2017).

This brings the focus back to travel time and waiting constraints, as routing algorithms are

ultimately in uenced by the objective function and the max wait time and target travel

time. Indeed, the MATSim DVRP routing algorithm that is implemented in this thesis aims

to maximize vehicle workload, creating limitations on the degree of performance improvement

that can be achieved by increasing  eet size(Bischoff, Maciejewski, and Nagel 2017). The

details of this algorithm are discussed further in 6.1.1.

Travel time is sensitive to both capacity and routing algorithm, however it’s important to

highlight that decreased travel times as compared to the equivalent trip6 are not expected. In

other words, when individual DRST travel times are compared to their relevant individual car

4 Deviations are a measure of indirectness of the trip taken from passengers in reference to the most direct

possible route
5 A greedy algorithm makes the locally optimal decision at each stage instead of waiting for a computationally

intense fleet-wide solution
6 This comparison is usually taken versus a direct (non-shared) auto trip
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trip travel times (both as taxi trips, and as auto driver trips where small parking search and

access/egress times can be added), we do not expect absolute travel time savings. Rather,

research is trying to ascertain if relative travel time increases can be keep within reason while

leveraging the other benefits of shared transport, and therefore make sense within an overall

cost-benefit analysis. For example, the widely cited study by (Alonso-Mora et al. 2017)

proposes that a travel delay of 5min, comparable to retrieving a parked car, can be used to

make higher capacity vehicles more feasible. In their mathematical model for dynamic route

optimization comparing  eets of capacity 4 and capacity 10 in the New York City taxicab

data set, a  eet of 2,000 capacity 10 vehicles (15% of the taxi  eet) is able to serve 98%

of demand within a mean wait time of 2.8 minutes and a mean trip delay of 3.5 minutes

(Alonso-Mora et al. 2017).

By contrast, absolute travel time decreases can be anticipated when DRST is compared to

conventional public transit (CPT). In research on the potential of replacing 90 capacity buses

with 30 capacity mini-buses in Singapore, (Koh et al. 2018) find a reduction in travel times of

79% (7.7 to 5.3 minutes) without increasing wait times based on a  eet of 24. Holding these

parameters but reducing the  eet size to 21 brought the travel time down further to 68%,

although wait times then increased from 4 to 5.9 minutes, again highlighting the relationship

between  eet size and wait times (Koh et al. 2018).

2.2.1 Sharability

This complex relationship between  eet size, vehicle capacities and travel and wait times has

been framed by the metric of shareability. This is helpful because it tends to capture the key

element of a DRST service that describe whether it functions more like CPT or ride-hailing

(Liyanage et al. 2019), but also because it links DRST to broader performance measures like

sustainability and cost effectiveness (Bösch et al. 2018).

In general it is apparent that user costs decrease when sharing increases, and that this has an

inverse relationship to travel times due to the necessary additional route deviations. However,

the real question is if it is possible to achieve reasonably high levels of sharing without

unrealistically disadvantaging service quality, and if so, how should a high level of sharing be

bench marked?

(Bischoff, Maciejewski, and Nagel 2017) analyze the sharing potential of shared taxi’s and
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show that a routing algorithm that optimizes vehicle workload7 has strong sharing potential,

such as minimum vehicle occupancy of at least 2 for 50% of time that vehicles are travelling.

On the  ip side, this algorithm (which will be discussed further in 6.1.1) necessarily limits

the in uence of increasing  ee t size on improving service quality. This is because the extra

capacity is not assigned beyond some threshold, instead choosing to insert agents into vehicles

that are already underway (Bischoff, Maciejewski, and Nagel 2017). A similar study by (Leich

and Bischoff 2018) tested an over-supply of 1000 capacity 4 vehicles, finding that only 250

were ever in operation at the same time due to the tight constraints of this algorithm. While

this was an intentional oversupply of vehicles, it serves to highly the point that in some

contexts, the service quality of DRST can be limited by the degree of shareability.

In short, shareability can be taken as a metric that captures some of the trade-offs between

 eet size, vehicle capacity and average travel and wait times. While it is not a measure of

direct service quality, it can provide a useful catch-all metric for a broader interpretation of

service performance at the  eet scale. Additionally, the evidence highlights that it is not

only objective function of the routing algorithm that in uences sharability, but also on the

demand geography itself.

2.3 Geography of Service Area Trade-offs

Despite the challenge of comparing the spatial component of DRST service across different

service areas, there has been investigation of this relationship within individual service areas.

This research suggests that DRST is most strongly viable where there is enough density of

users and tightly knit origins and destinations - and that it may be significantly less viable

when these conditions are not true (Ben-Dor, Ben-Elia, and Benenson 2019b). This theme

has significant consequences for the broader discussion of how and where DRST should be

implemented given that in the centre of cities it will often be in the most direct competition

with CPT and active travel, as well as the extent to which DRST can compliment CPT.

One fascinating study which has emerged from the cluster of research in the Tel-Aviv Metropoli-

tan Area investigates the temporal and spatial patterns of future SAV services (Ben-Dor,

Ben-Elia, and Benenson 2019b). This simulation, which can be considered quite futuristic

for it’s full replacement of all vehicular traffic, demonstrates that a SAV  eet of 50,000 could

7 Meaning that it aims to maximize capacity and minimize the amount of empty or low passenger kilometres

driven within operational constraints
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serve the entire region (containing ˜45% of the country’s 8M population), amounting to a

decrease in congestion by 20%, although overall rejection rates remain high (Ben-Dor, Ben-

Elia, and Benenson 2019b). More interestingly, however, the rejection rate for core-periphery

trips approaches 20%, which is 4 times higher than the same indicator for core-core trips

(Ben-Dor, Ben-Elia, and Benenson 2019b).

This finding hints at an invisible border affecting trips between the core/inner areas to outer

areas. Internal travel, analyzed by comparing Rejections/(Rejections + Trips) of OD pairs,

can have very low rejection rate approaching 0% for the core,8 and an external area where

DRST also functions locally. But it is the trips between core and periphery that essentially

seem to break down (Ben-Dor, Ben-Elia, and Benenson 2019b). This finding remains true

even after doubling the  eet size to 100,000, which outlines the strong in uence of the de-

mand geography on performance (Ben-Dor, Ben-Elia, and Benenson 2019b). Further, simply

cutting out the 95th percentile of spatial outliers had the same effect on service performance

as doubling the  eet size (Ben-Dor, Ben-Elia, and Benenson 2019b). In the case of the Tel-

Aviv Metropolitan Area, these findings would seem to suggest that the deployment of DRST

(whether autonomously driven as in the study or not) must consider integration with other

modes such as CPT to account for core-periphery travel.

Service area optimization simulation is another way to approach this topic. Finding an ap-

propriate service area incorporates the cost/revenue potential component more directly, as

any DRST service is understood to have a preferred service area, particularly when consider-

ing operator-side profits. (Bischoff et al. 2018), while focusing on the Saturday evening peak

which is perceived to have the highest potential for shared rides, identify an optimal service

area including operator costs of ¿50/day per vehicle and ¿100/day per driver. To both the

objectives of reducing overall VKT and improving revenue, the service-area optimization con-

firms an area around the city-core plus a slight extension performed most optimally (Bischoff

et al. 2018).

Finally, (Koh et al. 2018) note in their comparison study of 90 capacity CPT buses that

implementing DRST in high demand corridors such as those found in their bus-feeder routes

that lead to a light rail station will most likely result in travel patterns that are very similar to

fixed routes anyway, suggesting that the added  exibilit y of DRST does not add much value.

While these studies alone are not enough to fully understand the issue, the trend suggests

8 Reasonable travel and wait time bounds are implied, although not explicitly provided in the paper
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that DRST has the most potential in the densest areas from the both the operations, revenue

and VKT reduction perspectives.

2.4 Mode Shift & Public Transit

The questions of how DRST stands to draw mode split from existing modes or inducing

demand, as well as the relationship to CPT is a complex one that has not been significantly

addressed in the literature. Evidence from the closely related world of ride-hailing which has

been around slightly longer and has reached larger scales of penetration might help answer

the first part of this question. For example, in a survey-based study of ride-hailing adoption

in major U.S. cities, the top two motivations for ride hailing were to avoid parking (37%)

and to avoid drinking and driving (33%) (Clewlow, Mishra, and Kulieke 2017). This would

seem to suggest that ride-hailing users are tightly linked with existing personal auto users,

however the same study found a 6% reduction in the use of bus-transit services and a 3%

reduction away from light-rail (Clewlow, Mishra, and Kulieke 2017). Indeed, there is likely to

be some mode-change from both directions, although the extent will likely vary by geography

and service just as mode splits themselves do. At the same time, it’s entirely possible that

DRST may induce new demand such elderly or physically-disadvantaged groups, or for young

people living in mobility starved locations (Shaheen et al. 2017).

For example, a year into a DRST public private partnership with ride-hailing giant Uber, the

town of Innisfill, Ontario raised fares on their public DRST service significantly - citing the

platforms overwhelming success and high levels of use that resulted in above-projected costs

for the city (Bliss 2019). Despite Innisfill’s focus on creating a public transit-like platform,

including discounted fares to community hubs and the local library, city officials specifically

mentioned the prevalence of a “youth bracket who were using Uber at $3 to go to Starbucks

(as an example), purchase a drink, then go back to school or meet their friends” (Bliss 2019)

as a key concern behind the fare hike. Leaving judgement about the value of this type of trip

aside, it provides a poignant example of the potential for DRST to induce demand.

The Innisfill program, which made international headlines in 2017 as an early examples of

replacing CPT services with DRST, has yet to provide any clear consensus. The program

consists of a partnership with Uber Canada to run DRST mini-buses with  at-fares to and

from a handful of key hubs in the town, with the remainder of the fare paid by the customer

(Uber 2019). On the one hand, the program, has been lauded by city officials for it’s  exibilit y,
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equability, and cost effectiveness in serving a spatially dispersed population (CBC 2018).

Users have also reported high levels of satisfaction, and the city has framed the program as

part of introducing data-driven and lean governance to their public works (Bliss 2019). The

decision to pursue the partnership followed a cost-benefit analysis prior to implementing the

town’s first bus line, which was projected to serve 17,000 riders annually and cost $270,000

CAD (Bliss 2019). While the initial comparison of the projected CPT service to the DRST

partnership that was ultimately chosen was attractive from both a service quality and cost

perspectives, the public subsidies for trips made in the Uber partnership have risen from

$150,000 CAD in 2017 to $640,000 in 2018 and are projected to reach $900,000 in 2019

(Bliss 2019). Some have also questioned the long-term viability of directly outsourcing public

services of this scale, as well as the politics surrounding the imposed fare caps, exceptions

and the balance between public subsidy and user-side payments per trip (Bliss 2019).

The Innisfill example at large leads to a broader debate about the future of public transit

in the face of technology enabled MoD services. In terms of simulation studies, it remains

unclear how this will play out, rather these studies add evidence to the key variables that

are likely to in uence the relationship between CPT and MoD, particularly cost and service

competitiveness. In their study on replacing CPT with SAVs in a suburban Berlin neigh-

bourhood (Leich and Bischoff 2018) found higher operating costs and only slight travel time

savings from the user. This study focused on the concept of replacing feeder buses to a light-

rail station, and the main limitation on the service are the added detours required by door

to door service (Leich and Bischoff 2018). The possible replacement of CPT with DRST has

also been looked at from the perspective of  exible routing (Koh et al. 2018), a case-study

of a small town in Germany (Viergutz and Schmidt 2019) and from the traveller preference

perspective in (Yan, Levine, and Zhao 2019) all of which find a mix of benefits for users and

operators, while highlighted the need for additional research.

2.5 Summary & Research Gap

This literature review has combed the state-of-the-art, organized evidence around three key

theme areas of relevance to the MM case-study and modelling decisions to be taken in the

remainder of this work. Some key metrics were only touched on here, and can be found

in a supplementary literature review table in the appendix. One clear message is that the

academic attention to DRST is still very much evolving, and has relied heavily on simulation

studies that lack real world data. Few studies bring all the aspects together, and rather tend
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to focus on assignment algorithms or vehicle capacities alone, while making assumptions

elsewhere such as keeping demand fixed or replacing 100% of all vehicles. The question of the

relationship between DRST and CPT replacement evidence remains somewhat unclear, with

the exact results around travel time or fare savings varying from one simulation to the next.

Some authors include (Leich and Bischoff 2018) specifically point out that investigation of

combination scenarios such as replacing low performing CPT lines and during the off-peak

are still missing. And finally there is essentially no evidence surrounding corporate mobility

studies, either in how mobility behaviour and demand may differ or in relation to the operator

objectives. All these factors culminate in a strong case for the research to proceed around

the relationship between DRST and CPT services.
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3 Research Objectives & Analysis Criteria

This research investigates the potential for DRST services to compliment CPT bus services.

Specifically, it focuses on the trade offs between the quality of service that can be provided

under varying scenarios, given the fixed operating costs embedded in the case-study. This

topic is framed by the following generalized research questions:

1. Can DRST provide the same quality of service as CPT buses within the same operator

costs?

2. (If yes), can the design of DRST services be used to reduce the operations cost of CPT

buses while maintaining the same quality of service?

3. (If no), how much does it cost for DRST to match the quality of service provided by

CPT buses?

3.1 Quality of Service

These research questions all refer to quality of service which needs to be defined. In line with

other simulation studies (see table @ref(tab:simulationLitReviewTable in the appendix) for

a tabular summary of performance metrics), quality of service is measured with several key

analysis criteria that help describe it’s quality from a user perspective. These metrics are

not exhaustive and do not describe elements such as comfort or safety. Rather they focus on

providing an intuitive reference that can be objectively compared across scenarios, and which

form the basis for more detailed analysis. In the context of this thesis, quality of service

refers to:

1. access, wait, in vehicle, and egress times which sum to total travel time

2. number of between pt line or multi-modal transfers

3. rejection rate

The inclusion of rejection rate in the case of DRST performance is of particular relevance, as

the routing assignment algorithms are themselves governed by functions that will keep the

provided service within bounding targets (primarily, a target and maximum wait time, as

well as a threshold for the acceptable detour that is allowed as compared to a direct trip).

Put simply, the routing algorithm is designed to handle excess requests by rejecting those

that cannot be served within these bounds, resulting in stabilized system performance but
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with potentially high rejection rates if the requested demand cannot be served. The function

of the assignment algorithm is described further in chapter 6.1.1.

Beyond the core research questions which connect costs and service quality, the research

will seek to understanding the spatial and temporal aspects of DRST and CPT service per-

formance. For example, how does the relationship between cost and quality change across

peak demand and off-peak times of the day, or between bus routes in areas with proportion-

ately high number of stops and demand versus those connecting more distant origins and

destinations. These secondary aspects of the research focus are incorporated both in the

research design in terms of the DRST scenarios that are tested, and are touched on in the

discussion.
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4 Simulation Design

The simulation design is rooted in comparing the key service quality indicators defined in

chapter 3.1 across multiple DRST scenarios. Firstly, a base-case scenario is used to model

the network, transport supply and mobility behaviour of the MM population - which is

calibrated and validated to the case-study data. While the base-case includes both a CPT

and DRST service, it is the service quality indicators from the base-case bus service that

provides a benchmark to compare against. Making use of the calibrated base-case simulation,

three DRST scenarios are then introduced, each of which changes the spatial and temporal

supply of CPT and DRST services in order to produce results that can be compared against

the base-case values.

Each of the DRST scenarios approaches the research question from a different angle that

blends ongoing debates in the literature while remaining grounded firmly in the cost structures

of the two services as will be outlined in chapter 5.4. These scenarios will become clearer in

the results and discussion section, but for now an overview is as follows:

� Base-Case: the CPT and DRST services are simulated as they exist currently, with

mode calibrated between the input and output mode splits, and with the model vali-

dated to traffic data leveraging the external Here Maps API and to internal bus pas-

senger count data for the CPT service.

� Scenario One (S1): off-peak replacement of CPT with DRST vehicles. In this

scenario CPT buses are run on their regular schedules until 15:00 and DRST service

is introduced from 14:30 to 18:00 which provides a small bumper between the two

services. While the demand for bus services varies by line, the assumption of 15:00

as the on/off peak divide was considered reasonable - particularly in response to the

observed demand peaks on lines 1 and 2 which carry the majority of passengers.

� Scenario Two (S2): CPT within clusters - DRST connecting satellites. In

this scenario both CPT and DRST services are run all day. However CPT buses are

restricted to lines 1-3 in the central campus that receives the most demand, while

lines 4-5 which connect to the Garching and Unterschleißheim clusters are removed.

Correspondingly, DRST services are introduced with a service area equivalent to lines

4-5 that have been removed.
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� Scenario Three (S3): DRST within clusters - CPT connecting satellites.

In this scenario both CPT and DRST services are run all day, however the opposite

service areas to S2 are implemented. CPT buses are restricted to lines 4-5 which connect

to the Garching and Unterschleißheim satellite clusters but which have relatively low

existing demand compared to the bus lines in S2, and a corresponding DRST service is

introduced with a service area equivalent to lines 1-3 service that has been removed.

Perhaps a simple way to remember this is that S1 is always about time, S2 uses DRST in

place of the 2 bus lines that would normally serve the 2 satellite locations, and S3 uses

DRST in place of the 3 CPT lines that would normally connect the 3 clusters within the

central campus area (that is Campus Freimann, the Central Campus around the FIZ and the

Werk/Hochhaus).

4.1 Study Area & Network

The study area is defined to encompass all relevant BMW Group office locations in the

Munich region, while attempting to minimize unnecessary network detail which can have a

major in uence on computation time. This area is characterized by several clusters:

� The central campus located near Am Hart U-bahn station and includes several of the

major design and engineering buildings plus the Werk manufacturing plant and the

Hochhaus global headquarters

� Campus Freimann, a recently expending office cluster directly to the east of the central

campus

� Garching located in the Hochbrucke business park

� Unterschleißheim where the autonomous driving campus as well as daughter company

Alpha City is located

All network elements are from Open Street Map data for Oberbayern (Maps 2019), clipped

and manipulated with the command line tool Osmosis and finally converted to MATSim-

readable XML inputs using the MATSim plugin developed for the JOSM editor (Nico Kühnel

and Michael Zilske 2019).

A notable modification to the network was made to a bridge that is currently under-repair on

the road St 2853 north of the A99 south of B471 as this link is forms an important part of the

connection between Unterschleißheim and the central campus. The current OSM network had
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(correctly) marked this link as temporarily closed in the OSM data, but the modelling decision

was made to include through-access. The final network uses several scales of resolution as

a described below, which help obtain a desirable level of detail around BMW Group office

locations, but leaving this level of network resolution out where it is not necessary:

� At the largest extent,9 all motorway, trunk and primary links were included. This was

intended to facilitate background agents from the entire region in making their way

onto the major arterial roads where we want to see traffic congestion interactions and

not unnecessarily force these agents onto smaller study area road links

� A medium resolution layer was included within a two kilometre dissolved buffer sur-

rounding all of the included BMW demand data origin-destinations, which includes all

secondary and tertiary links

� A high resolution layer was brought to the areas immediately surrounding the buildings

of the simulation origin and destination points as well as around all 26 Pendelbus stop

locations, which includes all residential, livingstreet, service and unclassified links

The high resolution aspect of the network is important for the case study as many of the small

OSM links surrounding BMW Group’s office clusters are classified as service or livingstreet

in the OSM data. This level of detail would likely not be the focus of a larger city-wide

model, but given the relatively refined study area and the potential for small changes in

access/egress times in the DRST scenarios depending on the availability of small links, the

high resolution links were included. That being said, the quality of data at this level was not

entirely consistent, for example overlooking access-rights issues to some laneways between

buildings. The final high-resolution component of the network re ects some hand-made edits

and testing on the network using the author’s local knowledge, with the assumption that MM

demand and vehicles have access to all service links within the campus area.

9 This is made up of the Fürstenfeldbruck, Freising, Erding, Ebersberg, Dachau, Munich County, Starnberg and

Munich City administrative areas bordering which surround Munich
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Figure 3: Study area depecting select BMW Group office buildings, Pendelbus network,

demand data origin and destination points and MyShuttle pilot service area.



5 Data & Context Overview

The following section provides an overview of the MM data implemented in the thesis, while

specific details regarding data scrubbing and transformation are left to the methodology in

chapter 6.

5.1 Travel Demand

One of the primary data inputs is a series of origin-destination matrices that describe within

the workday corporate mobility trips of the case-study BMW Group population. These

demand data were captured in an internal corporate mobility travel survey conducted by

Mareike Sigloch of the BMW Group in July 2018 (Mareike Sigloch 2018). The survey, which

was sent electronically to 35,510 BMW Group employees, includes a section where respon-

dents recall their previous week’s daily travel patterns for the week of July 9th – 13th, 2018

including:

� each trip origin and destination (selected from a list of 29 BMW Group locations +

external partner/customer)

� time of departure (within one-hour time brackets during the day)

� travel mode (selected from one of 18 possible options or ‘other’)

The survey achieved a roughly 28% sample with 9,896 responses. Of the 18 mode choice

options recorded in the survey, the data was expanded and aggregated into 4 main travel

mode groups. While this data does not contain personal or demographic information that

could in any way be linked to an individual, this aggregation strategy was necessary to

satisfy data privacy restrictions set by the BMW Group that regulate the internal sharing of

potentially sensitive data.

In the detailed travel diary portion of the survey, respondents were asked to record every

direction of a trip.10 However in an earlier section they were also asked about the overall

number of trips they did, creating an opportunity to compare the total number of trips

that were reported individually in the diary and the personal sum of trips reported by each

respondent (overall). Of all responses:

� roughly

10 That is the segment of travel from origin to destination is reported as 1 individual trip, and the following

segment going from destination back to origin (or to another destination) is an additional trip record
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�

�

�

– Of these, and roughly

�

This comparison may indicate that the survey under reported trips, particularly in reference 

to the  with fewer trips in the diary and particularly those who didn’t 

report any trip. As the first survey of it’s kind for this population it is difficult to further 

assess this. However at the same time, the overall response rate which is considerably higher 

than many household travel surveys lends confidence. In any way, the data exploration 

process further confirmed the logical  ows  of different modes, and the data was generally 

considered a valid representation of MM demand.
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walk (50.12%)

autoDriver (20.78%)

pt (17.82%)

bike (11.28%)

Simulation Demand Data Input

Data: Corporate Mobility Travel Survey, Sigloch 2018

5.2 Pendelbus Service Automatic Passenger Count Data

MM has been running an internal, intra-campus bus service since the late 1980s named

Pendelbus. The service began with a single line connecting the central campus locations

around the Hochhaus and Werk, growing to it’s current extent of 5 lines with 12 buses of

capacities between 8 and 30 that serve the needs of inter-campus travel including connections

to the Garching and Unterschleißim satellite locations. While the service has responded to

changes in land-use (by adding additional stops) and to demand (by changing frequencies

and vehicle capacities), this evolution has been described as an adhoc approach, and largely

void of data-driven planning support.11

In 2018 automatic passenger count (APC) technology was installed on 2 buses, and later

extended to 6 buses across the 5 lines. The collection of this data is subcontracted to the

firm Irma On-Air which provides the raw, uncleaned passenger count information in real-

time. In the context of this thesis, this APC data was used to validate the results obtained

in the base-case simulation, and not directly as a demand input.

In order to simulate public transit in MATSim, an appropriate set of MATSim-specific inputs

11 This information is based on discussions with the Pendelbus coordination and operations team, chiefly
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which capture the characteristics of the transit supply are required. In the context of this

thesis, these were generated with a combination of manually editing the (incomplete) GTFS

files supplied by MM, and creating MATSim compatible xml outputs with the pt2matsim

package (Poletti [2016] 2017).

Figure 5: Simplified Pendelbus network map as implimented in the Urby app.
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Figure 7: Graphic displays the number of boarding and exiting counts per Pendelbus line and stop. Lines 1 and 2 function more like normal

bus lines even use of most stops, whereas lines 3-5 function more like shuttle connections with maximum 3 stops per line.
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5.3 MyShuttle Pilot Program

Data surrounding the operations of the MyShuttle pilot were available in high resolution from

the programs start in May 2019 until the time of writing, and provided a critical glimpse

to DRST response and usage that is incorporated in the model calibration. This data is

in the form of aggregated trip information available through a real-time mobility dashboard

provided back the back end service provider, door2door. The primary purpose for this data

is to provide a service benchmark on the performance and quality indicators that is driven by

a real world DRST operations. This included detailed information on the numbers, distances

and duration of trips, as well as  eet specific metrics like average wait times, average travel

times and pooling rate amongst others.

As a pilot program, MyShuttle faced many unknowns in regards to how it would be used, as

there were essentially no comparable travel options available to provide a reference. This is

visible in spikes in ridership and total occupied vehicle km’s driven which have risen in the

months of September and October following the slow month of August where many employees

were on vacation. A continued publicity campaign inside the company that aimed to promote

and inform employees about MyShuttle was also a likely helpful aspect.

As a general comment, a lack of awareness was seen as an early challenge in higher adoption

rates of MyShuttle. Secondly, it should also be noted that one of the conceptual goals

of the pilot was to provide connectivity between locations least well served by Pendelbus.

This meant that the MyShuttle service area was implemented to specifically limit MyShuttle

being in any direct competition with routes served by Pendelbus as depicted in the study

area map.

5.4 Pendelbus & MyShuttle Costs

While existing simulation studies (Alonso-Mora et al. 2017) model the  exible element of

DRST in regards to user costs, presenting  exible and scalable services depending on what

the customer is willing to pay, this approach does not fit the context of corporate mobility

where the customer, as an employee of the service provider, does not pay a monetary cost for

travelling. This creates a duality where the cost constraint comes at the level of the entire

service over the number of trips it is able to fulfill. The quality of the service in this context

then stands to in uence how much it is used, and therefore is an appropriate indicator in

balance to the system-wide operational costs.
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Incorporating a realistic cost structure is an important aspect of the research design, both in

emphasizing the connection to a non-theoretical case-study which is an existing gap in the

DRST literature, and in ensuring the relevance of the analysis to MM which is ultimately an

operational department. To this end, detailed costs for the operations of Pendelbus 1 and

MyShuttle 2 were made available.

vehicles

(day)
capacity

startTime

(min)

endTime

(min)

opTime

(hr)

km

(day)

km

(day/veh)

cost(¿)

(km)

cost(¿)

(hr)

cost(¿)

(veh/hr)

Line1 4 30 465 1080 10.25 560.5 140.12

Line2 3 30 465 1050 9.75 459.0 153.00

Line3 1 8 480 1020 9.00 185.6 185.60

Line4 2 19 450 1080 10.50 504.0 252.00

Line5 2 19 480 1050 9.50 494.0 247.00

Table 1: Summary of relevant Pendelbus costs

The Pendelbus data is available at the level of each of the 5 lines, from which a further

breakdown by vehicles per time unit can be calculated. The item-specific costs like driver-

compensation, insurance, maintenance or other overhead are therefore bundled inside this

value.12 Of particular relevance are driver specific costs which are generally put at 55-70%

of vehicle operating costs in Germany (Bösch et al. 2018). Therefore, a figure of ¿15/hr was

decided on as realistic in consultation with MM, which would put the driver-compensation

component of Pendelbus at the low end of this range.

The cost structure of Pendelbus is otherwise nondescript. Lines with more VKT cost more,

to the tune of roughly ¿ /hr, while line 3 with a smaller and lower capacity vehicle

has the lowest costs. When considering line cost over number of passenger trips however,

it’s interesting to note that lines 4 and 5 (the two long-range lines connecting the satellite

locations) provide a much lower cost-trips ratio which will come up again in the results.

In the MyShuttle cost data, item-specific costs were made available. Here we see explic-

itly that the driver-compensation component is well above that of Pendelbus, and it can

potentially increase further when VKT increases due to an addition ¿ /km driver com-

pensation.13 The current cost of MyShuttle drivers is considered well above average, with

12 The Pendelbus has been run on contract to bus operator Stanglymier since it’s inception with public bids for

each contract iteration
13 As an in-house pilot program, MyShuttle vehicles are driven by internal BMW Group employees who’s com-
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implications on the scenario design. This point is further addressed in the 6.

vehicles

(day)
capacity

startTime

(min)

endTime

(min)

opTime

(hr)

km

(day)

km

(day/veh)

cost(¿)

(km)

cost(¿)

(hr)

cost(¿)

(veh/hr)

Vehicle 1 3 480 1080 10 4 4

Vehicle 1 5 480 1080 10 4 4

Software

Operations

Driver

Table 2: Summary of relevant MyShuttle costs

Line 1 (€ )

Line 2 (€ )

Line 4  (€ )

Line 5  (€ )

Line 3 (€ )
Pendelbus Costs

Data: Pendelbus contract supplied by MM department.

pensation must have both a time and performance-based component
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Driver (€ )
Software (€ )

DRST Cap. 3 (€ )

DRST Cap. 5 (€ ) Operations (€ )

MyShuttle Costs

Data: MyShuttle pilot costs supplied by MM department.

5.4.1 Discounting

In order to compensate for the uncharacteristically high unit costs of MyShuttle that stem

from it’s inception as a pilot project and to make the results more generalizable to existing

and future contexts, the simulation implements cost discounting for the DRST portion of

costs. This process was the result of a collaborative consultation with the existing project

leaders within the MM department. Firstly, a significant portion of the MyShuttle costs are

made up of the software licencing for the back end dispatching tool provided by door2door.

The current cost of this service is for up to 5 vehicles. In the first cost assumption, the

software cost is kept constant regardless of  eet size which was kept the same for larger

 eets. Additionally, a future discounting of software costs of 15% was considered appropriate

as this technology can are likely to be lowered as the technology matures. The more significant

area of DRST discounting are driver costs which were discounted in line with average driver

cost in Germany. This amounted to a  at rate driver cost of ¿15.00/hr which is considered

a high average value for the cost of drivers in Germany (Bösch et al. 2018).
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6 Simulation Implementation

6.1 Transport Modelling with MATSim

MATSim is an “activity-based, extendable, multi-agent simulation framework” (Axhausen 

2019, 4), designed around the principles of transparency and collaboration. Through it’s 

modular design allowing contributions to be developed openly by anyone in the world, it’s 

strengths include both the  exibility  to adapt to a variety of available inputs, as well as 

sim-ulating a range of transportation scenarios including cutting-edge technologies. In short, 

it is a fundamentally agile open-source tool that has been implemented by researches and 

practitioners alike to help shed light on the pressing questions in transportation. These 

qualities together with the author’s desire to dive further into the world of computer 

programming made it a suitable choice for this thesis.

A MATSim run which commonly models a single day, consists of agents running around in

the network and available transport supply as they attempt to fulfill their daily activity plans

by travelling between locations. As agents interact with one another and the system over

many iterations, they adapt their behaviour in an attempt to maximize personal welfare,

and in so doing, a calibrated simulation can move toward convergence. This approach to

“co-evolutionary” simulation is based on different groups of agents testing varying strategies,

with each executed plan being scored, and with the best performing plans surveying in the

evolutionary process as the simulation runs through it’s iterations (Axhausen 2019). In

the scope of MATSim’s development, this has most often been implemented in the form of

modelling the chained activity tours of agents, but the developers note the opportunity to

use MATSim with “dummy” trips (Axhausen 2019) as is implemented in this thesis given

the available data.

6.1.1 DVRP Extension Algorithm

A key aspect of MATSim which made it a suitable choice for this thesis are the DVRP

(Dynamic Vehicle Routing Problem) (Maciejewski et al. 2017) and the Demand Responsive

Transport (Maciejewski 2016) contributions which allow MATSim to simulate DRST services.

During the simulation these contributions handle the optimization of active requests by inter-

jecting in the MOBSim, organizing vehicle routing, dispatching and  eet re-balancing, before

passing this optimization back to the controller. Additional functionality is included for the

control of special vehicle attribute files, service areas and operation times, and control over
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a host of other configurable parameters.

The stock routing objective implements an insertion heuristic that attempts to optimize the

work-time of the shared DRST vehicles (Bischoff, Maciejewski, and Nagel 2017). Simply put,

the objective function seeks to use vehicles as efficiently as possibly, therefore maximizing

the sharing potential of the service within the constraints “(i) the wait and travel duration

constraints are satisfied for both the new and already inserted requests, (ii) the vehicle time

window is satisfied”. (Bischoff, Maciejewski, and Nagel 2017, 2).

To make a small detour, the DVRP problem is described in the optimization research as an

NP-Hard (non-deterministic polynomial-time) extension of the classical travelling salesman

problem (Koh et al. 2018). In working terms, this means that the complexity of finding an

optimal solution within polynomial time increases exponentially as the size of the problem

rises. Bringing this back to the DVRP, as more agents, vehicles, possible routes, departure

times etc. are introduced, the solution to which vehicle should be assigned to pick up agent

Bob cannot be solved optimally within any realistic computational time. This is why the

branch of DVRP optimization research instead focuses on sub-optimal solutions to these

NP-hard optimizations that are light-weight enough to be implemented in real-time DRST

interfaces (Koh et al. 2018).

Understanding the optimization constraints of the DVRP is important in the context of the

implemented MATSim algorithm. Specifically, this insertion algorithm can be considered sub-

optimal in that it does not allow the reordering of stops or moving of requests between vehicles,

while the authors instead choose control performance by using tight maximum waiting time

and travel time constraints (Bischoff, Maciejewski, and Nagel 2017). These are an alpha

factor which essentially defines the detour factor allowed against a comparable direct trip,14

and the beta parameter which defines the target for the maximum wait time.15

Importantly, these contributions do not currently support pre-booking which is a limitation

on their ability to accurately capture true DRST service. Without prebooking, the agent

requests the trip exactly when the previous activity is completed (or more usefully, exactly

when the agent wants to depart and would depart if they were taking any other mode in the

14 This is defined as “the slope of the maxTravelTime estimation function (optimization constraint), i.e. max-

TravelTimeAlpha * estimated drt travel time + maxTravelTimeBeta” in the code
15 This is defined as the “shift of the maxTravelTime estimation function (optimization constraint), i.e. max-

TravelTimeAlpha * estimated drt travel time + maxTravelTimeBeta” in the code
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simulation).

6.2 Data Expansion

Calculating appropriate factors to expand the survey data required manipulating and merging

several different employee databases in order to build a singular reference for the employee

population at each location. The location database supplied the location of departments by

name during the survey period in July 2018, and the population database contained a more

detailed description of those department’s population by age group and access to a company

car (a Führungskräftedienstfahrzeug or FKD).

This process was completed collaboratively by the author (responsible for data manipula-

tion and the production of a final department “key” list of locations), and Mareike Sigloch

(responsible for the conditional logic behind the process, as well as determining determining

and applying the expansion factors.

The first part of this process was complicated by the availability of different resolutions of

population data depending on the department size, hierarchy and FKD availability as well

as changing department codes between the 2018 location and 2019 population databases.

Distinguishing between demographics with and without an FKD was desirable due to the fact

that a majority of upper management (many of whom are with FKD) may make significantly

more corporate mobility trips than others due to the nature of their jobs. Therefore capturing

this level of detail and assigning it to the correction location was considered a worthwhile

improvement on accuracy. At the same time, the population record came from self-reported

employee locations, and therefore may be inconsistent in cases where employees changed

location which supported the decision to assign departments to locations where the majority

of their population was recorded but not at a higher resolution. The accuracy of all these

variables was not verifiable, but was nonetheless considered a reliable reference point for the

expansion factors.

The process of coding the department hierarchies and automatically assigning them a loca-

tion based on their composition was accomplished in R. While a method was developed to

automatically assign departments with at least 50% of workers in the same location, and then

further subdivide and manage the spatially diverse departments at increments of 10% -16 the

locations were ultimately assigned with the simplest method of choosing the location with

16 This occurs when one department is represented at multiple different office locations
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the highest proportion of workers. This simplification was justified given the potential (and

un-verifiable) inaccuracy of the population records. This may have led to small office loca-

tions being under represented, however this factor was investigated and the overall in uence

was negligible. The final handing of this data and it’s application to the origin-destination

data was handled by Mareike Sigloch, with expansion factors between 2.1 and 16.9.

6.3 Improving Travel Time & Congestion Interactions

In order to create more realistic traffic conditions for the MM agents in the simulation, a

seemingly novel solution was developed. This included:

1. the simulation of additional background agents in order to load the network and emulate

traffic  o w dynamics across peak and off-peak times

2. modifying select network link free  o w speeds to achieve calibrated travel times for the

study population

These steps were an important aspect of improving the realism of the simulation, as the

MM demand itself was too small to adequately load the network. This was relevant for trips

on small residential roads between central BMW Group offices, and for the major highway

connections passing through the study area which are used for trips between the central

offices and Garching and Unterschleißheim.

A common MATSim approach to working with a sample of the total population is to imple-

ment network  o w and capacity adjustment factors which allow to scale the network supply

proportionately to the population size (Llorca and Moeckel 2019). This approach is imple-

mented in (Ben-Dor, Ben-Elia, and Benenson 2019a; Bischoff et al. 2018) who both use a

10% population and scale accordingly. However implementing  o w and capacity factors in the

MM case-study was unfeasible due to the comparatively small size of the MM population to

the overall study area. Therefore the required  o w and capacity factors would be too small,

creating issues for the number of vehicles that can fit into a link and resulting in unrealistic

bottlenecks.

6.3.1 Sampling of Background Agents

The first part of the implemented solution consisted of sampled the population of a much

wider area in the Munich region, and calibrating this sample against real-time values. The

background population data was provided by the TUM Chair of Modelling Spatial Mobility
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as a list of trips for the entire Munich region.

The simulation keeps all agents who start and end trips within a 1km buffer of the study

area (see figure 3).17 In order to capture through-traffic, a random 30% sample of trips which

either originate or destinate within the Landkries 8 area was added.18

With the background population and MM trips merged into a common MATSim plans file, the

two populations were ultimately handled as sub populations with explicitly defined strategies.

Unlike the MM strategy outlined in 6, the background traffic agents only optimize their

route choice (20%/iteration) with the remaining choosing from the best existing plans in the

evolutionary MATSim process.

6.3.2 Modifying Freeflow Speeds

With a sampled population for background traffic, the next step involved increasing the

proportion of background agents until realistic travel times for MM agents were reached.

However this approach was not sufficient to increase the travel times of MM agents.19 Specif-

ically, travel times between central location clusters remained stubbornly fast compared to

real-world expectations which was likely due to the modelling choice of including a higher

resolution network in areas around BMW Group office clusters (see 3), and the nature of the

queue-based mobsim which does not capture microscopic elements of car trips such as traffic

lights. Therefore, a direct trip in the simulation between the IT Zentrum and the Hochhaus

to take an example, was consistently under 5min in the simulation, while the real-world

expectation would be more like 9-14min.

To more accurately represent travel times for the MM agents in the simulation, the free o w

travel times of select network links were modified. This process was tested iteratively and

calibrated using an API query to HERE Technologies historic travel time database that

17 These 171,116 trips are assumed to be purely internal trips given a reasonably direct connection, although

technically this is not verified as the method does not estimate the trip routing
18 These 101,141 trips, a 30% sample of potential through-trips, is mostly loaded onto the Outer and Mittlerer

Rings thanks to the network sample which extends well beyond the study area into the respective Landkries

zones. It excludes trips that originate or destinate in any of the 4 quarters surrounding the study area to

avoid artificially forcing trips onto the network that did not pass through the study area, however it should

be noted that this was an approximation
19 samples up to 70% or 235,996 additional trips of the overall through-travel were tested, but samples above

50% resulted in resolvable congestion on motorways that did not clear within the simulation time, and did

not reliably influence the travel times on local roads
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has been developed in the MATSim Analysis vsp contribution (Axhausen 2019). The final

modification of network links within the study area reduced the free o w speed of residential

and service links by 25%, and primary and motorway links by between 10-15%.20

The final changes to the network free o w speeds were validated with the following re-

sults:

� The original OSM network (figure left) presented a Pearson’s r coefficient of 0.9464 and

a RMSE of 173.35

� The network with modified free o w speeds (figure right) improved on this with a Pear-

son’s r coefficient of 0.9762 and a RMSE of 81.34
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Figure 8: Comparsion of travel times on original OSM and modified networks.

6.4 Model Parameters

As recommended in the MATSim survival guide (Axhausen 2019), the model design changes

as few parameters as possible. Simulation runs of up to 500 were tested, but equilibrium was

reached by 100 which is inline with the experience of other MATSim simulations (Llorca and

20 For example primary 100 was reduced from 27.777 to 24.222 m/s, while primary 60 was reduced from 16.666

to 14.9994 m/s
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Moeckel 2019). Innovation was also turned off after 0.75 of each run, limiting agents to pick

from their 5 best performing plans from the first 75 iterations. Public transit, DRST and

auto are fully simulated in the network, while walk and bike are simulated via teleportation

with a beeline distance factor.

6.4.1 Strategy Settings

Two features defined the initial DRST scenario simulation setups which had to be addressed

to improve the model and obtain meaningful results on the service quality metrics. Firstly,

mode change was possible for all MM agents between all modes including private auto without

regards to vehicle ownership. This is not necessarily state-of-practice for other MATSim

simulations, where additional demographic variables such as “has license” can be used to

provide more refined mode change behaviour when these variables are available in the data.

While the base-case model was calibrated to the input mode choice and the costs of driving

are incorporated in each agent’s score, this still allowed for somewhat unrealistic mode switch

behaviour which became evident when the CPT supply was removed at 15:00 in S1.

Specifically, many agents who had previously held a pt plan for which no service was provided 

(either because the trip occurred after 15:00 in S1, or because it was outside the service area 

in S2 and S3) experimented with DRST services but simply switched to personal auto 

which had a better score. Modifying the parameter “fromAllModesToSpecifiedModes” as 

outlined in section 6.4 was used to overcome this issue, and had the effect of much more 

realistic levels of DRST service use. This modelling decision was reinforced when the base-

case was re-calibrated, as the magnitude of the mode-specific constants to calibrate to mode 

split where reduced.

Besides mode change, the additional strategy innovations MM agents make in the first 75

iterations are TimeAllocationMMutator (0.1) which allows the agent to mutate their depar-

ture time within 15 minutes, ReRoute (0.1) which allows the agent to experiment with new

routes, and ChangeExpBeta (0.8) which simply chooses the top performing plan held by the

agent in that iteration and is required to maintain some level of stability between iterations

so that not all agents are changing their behaviour all the time.
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6.4.2 DVRP Settings

Secondly, the initial DRST scenario setup featured high request rates but as well as high

rejection rates due to the DRST insertion algorithm which rejected all requests if they could

not be filled within the alpha and beta parameters. This resulted in lots of experimentation

during the first 75 iterations, and then seemingly few completed trips after the agents stopped

innovating in iterations 75-100. As a result of allowing rejections, the few trips scheduled to

DRST in the final iteration tended to be relatively few, long distance high occupancy trips

which satisfied the assignment algorithm constrains and resulted in high workload efficiency

of the  eet. In other words, instead of observing decreasing service quality, with rejections

on the algorithm will assign only within the service quality targets and the result will be

high rejection rates. Therefore turning rejections off was the suitable decision in order to

study the in uence of the cost/ eet size on our key quality indicators. This decision was

also supported by the fact that the CPT service we are comparing against essentially cannot

reject a user.

In an effort to further clarify the exact implications of the assignment algorithm on these

two circumstances, a discussion with several of the MATSim dvrp extension creators was

facilitated on GitHub where the following details were clarified:

� agents who would have been rejected in my first simulation setup with rejections will

now endure longer wait times (the desired output in order to compare wait time changes

across scenarios), however those already in a vehicle cannot be delayed beyond their

initial detour tolerance (Maciejewski and Bischoff 2019)

� rejections can still occur in the case of DRST vehicles becoming fully booked within

their scheduled operation time. This explains the rejection rate for the 2 DRST vehicles

in the base-case scenario, but in all DRST scenarios the rejection rate never rose above

0.01 (Maciejewski and Bischoff 2019)

In regards to the other relevant DVRP settings, the alpha and beta parameters were tested

between alpha 1.5 - 1.7 and beta 240s - 1600s range. However, since the focus of this research

is not the performance of the assignment algorithm, alpha 1.7 and beta 360s were ultimately

implemented across all simulations. This combination was informed by (Bischoff, Maciejew-

ski, and Nagel 2017) who extensively test alpha and beta performance of the MATSim DVRP

contribution. Additionally, a maxWalkDistance of 130m was required for the agents to reach
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the nearest link from their starting position in the model. This may seem unnecessary for

door to door operations, but it can be seen as a representation of the distance agents would

be walking inside large buildings to get to the nearest pickup location. The average access

and egress DRST times of a minute and a half were considered well within reason for door

to door service.

6.4.3 Public Transit Extension

The final area of model input was the public transit contribution, where a search radius of

400m was selected as appropriate in reference to the CPT frequency and stop spacing (Nielsen

and Lange 2007). This was important, as the transit walk is routed with a non-network

beeline distance factor that ignores the high proportion of bridge/underpasses in the central

campus area that create long walking detours in the real world but which are otherwise be

overlooked by the model. The global score parameter for waitingPt was made slightly more

negative from -6.0 (default) to -8.0. This had a small in uence on the attractiveness of CPT,

and was justified due to the uncompleted nature of the simulated transport service (average

# transfers 0.02) as compared to the city-wide services often simulated in MATSim.

6.5 Calibration to Mode Split

The final mode specific constants, and the calibrated are below.

walk bike pt drst auto

mode specific constant 2.235 0.395 -2.615 -2.150 0.000

input mode split (percent) 50.120 11.280 17.820 NA 20.780

calibrated modesplit (percent) 51.399 12.079 17.729 0.157 18.637

change (percent) 1.279 0.799 -0.091 0.157 -2.143

Table 3: Model calibration displaying final mode specific constants of calibrated model as

well as input and output change.

6.6 Validation of Automatic Passenger Count Data

The automatic passenger count (APC) data described in 5.2 was made available for model

validation. While this was the only internal data available to validate the Pendelbus network
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and was a considering a seemingly attractive option for validation, the data exploration

process revealed the following possible limitations:

Sampling:

� buses (and their counters) run on different lines between days of the week and sometimes

within a day such as bus #2765, making organizing data difficult

� this made obtaining a large sample size difficult, as the lack of obvious patterns required

significant human input and checking. Ultimately a single week sample (like the demand

input data) was selected

Counter accuracy:

� the records contain many counts that do not match real stops, and in some cases occur

in suspicious locations such as the middle of a major intersection or Autobahn The

author’s best guess is that some of these may be due to passengers moving too near to

the counting censor at the door mid-trip creating false positives, although this was not

verified
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� negative occupancy following terminus stops. This appeared to happen every time the

bus waits for departure at a stop more than a 5 minutes which always happens at the

end of some lines (e.g. Line 1 at Hochhaus (Dostlerstraße)). The author’s best guess is

that the APC counter has not re-established a GPS signal in time following the vehicle

being turned off, or more simply, that passengers get on the bus when it is turned

off and waiting for departure at these terminus stations resulting in missed alighting

counts, although these were not verified

Scaling of APC record to whole  eet:

� as outlined in (Hammerle, Haynes, and McNeil 2005), advanced statistical methods are

generally preferred when scaling APC data records from the sample of a  eet of public

transit vehicles to the whole. These methods were outside the scope of this thesis, so

the process used here was to multiply records by the number of buses running on each

line Time period inconsistency:

� APC data were only implemented on one functional bus line in the week of July 2018

corresponding to the demand input data, and of this the Monday data was missing as

the vehicle with the counter appeared to be out of use that day
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� therefore, the validation data implemented here was taken from the corresponding week

of July 8-12th, 2019 which also had 5 normal working days

Despite these limitations on the quality and relevance of the APC validation data, the val-

idation of bus passenger count data with the corresponding model output shows a general

correlation as described below. This was tested at two spatial resolutions (bus lines, and bus

stops) per hour. Validation results confirmed:

� Stop Level: a Pearson’s r correlation of 0.8640 and a RMSE of 7.65

� Line Level: a Pearson’s r correlation of 0.8865 and a RMSE of 18.15

The correlation between ground-truth APC and modelled data visualized in figure 10 highly 

the way the APC data was expanded. Specifically, by multiplying the observed records by 

the number of buses on that line, we are magnifying the error - or said another way, we have 

the same number of samples for each line which carry a different number of passengers. This 

helps explain the greater correlation between lines 3-5, and the deviation observed in the 

peak demand times on lines 1-2 which have the highest volumes.
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Figure 11: Comparison of APC (purple colour) and model (yellow colour) data outputs by line per stop per hour.
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7 Results & Discussion

As outlined in chapter 4, the three DRST scenarios (S1, S2 & S2) investigate the spatial and

temporal relationship between demand responsive shared transport and conventional public

transit services. Specifically we recall that scenario S1 is about off-peak times, S2 uses DRST

in place of the 2 bus lines that would normally serve the 2 satellite locations, and S3 uses

DRST in place of the 3 CPT lines that would normally connect the 3 clusters within the

central campus area. A graphical overview of these service areas is provided in 12, and a

summary of the three scenarios from an operator perspective is provided in 4.

With a refreshed overview of the scenarios, the remainder of this section is organized around

the research questions defined in chapter 3.1. This begins with the relationship between

cost and service quality between scenarios with an equal cost. Keep in mind that in the

context of corporate mobility, cost exclusively refers to operator cost, and is for all intensive

purposes synonymous with  eet size. This analysis is then expanded on in the second section

which explores the same scenarios at varying cost levels as a response to the second and third

research questions.

Base-Case
Scenario One:

off-peak DRST service

Scenario Two:

CPT in clusters -

DRST to satellites

Scenario Three:

DRST in clusters -

CPT to satellites

Vehicles 2 13 26 39 5 10 15 8 16 24

Capacity 3 & 5 6 seats 6 seats 6 seats 6 seats 6 seats 6 seats 6 seats 6 seats 6 seats

VKT 104 451 498 489 1250 1125 1137 2058 2846 2838

Empty VKT 72 89 42 69 241 139 126 243 368 356

Empty Ratio 0.69 0.2 0.08 0.14 0.19 0.12 0.11 0.12 0.13 0.13

Rides 13 47 65 61 126 123 127 997 1565 1625

Table 4: DRST service overview of select scenarios from a  eet operations perspective.

45



Figure 12: Comparison of DRST and CPT service areas across scenarios S1 (left), S2 (centre) and S3 (right). A single DRST vehicle track is

highlighted in organge, while the available CPT netwok is highlighted in blue.
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7.1 Analysis of Service Quality & Cost

The the first element of the research concerns the quality/cost relationship between CPT and

DRST services which is made explicit in the question can DRST provide the same quality of

service as CPT buses within the same operator costs? Therefore this aspect of the research

is exclusive to the simulated scenarios where the total cost of the combined CPT and DRST

services does not exceed the initial case-study cost of ¿5,096 per day or approximately ¿500

per operating hour. For example, S1-13 which has 13 DRST vehicles corresponds to the total

cost of the CPT system, which is being entirely replaced during the off-peak period. Similarly

in S2 and S3, the respective DRST  eet sizes of 5 and 8 correspond to the equivalent cost of

the CPT service area they are covering.
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Figure 13: Figure highlights the travel time components of all equal cost scenarios and their

corresponding base-case pt values are alsop provided as a reference - for example service of

CPT bus lines 4-5 provides the benchmark for DRST service area in S2 which is replacing it.

7.1.1 Comparison Across Equal Cost Scenarios

Figure 13 highlights this core analysis, comparing the service quality metrics of average access,

wait, in vehicle, and egress times with the base-case CPT values. However, comparing the
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DRST scenarios directly to the base-case is only appropriate in S1 when the entire CPT  eet

is replaced. By contrast in S2 and S3, the DRST travel times should be compared with the

CPT services they are replacing. Failing to make this distinction would distort the results,

as the average travel times on lines 4-5 are significantly longer than on lines 1-3, a variation

that is masked in the combined lines 1-5 average of the entire base-case.

S1 Equal Cost Scenario The S1-13 off-peak scenario experienced a 123.6% increase in

overall travel time, rising from 18:28 to 22:50 which was observed across 47 trips. This increase

was mostly made up of in-vehicle time as well as slightly longer wait times as depicted in 13.

The largest concentration of DRST  ows in this scenario was between FIZ and the Garching

Campus with 11 and 9 trips respectively, accounting for nearly half of all trips. This resulted

in a kind of corridor, with agents being collected or dropped within nearby offices at either

end in FIZ or Garching. Finally, the vehicle occupancy (depicted in figure 17 in the appendix)

found a maximum of 3 passengers between 17:00-17:30, remaining between 1-2 passengers the

rest of the time. The primary expression then of S1 was a tendency towards long-distance

trips that could reach the highest demand within a concentrated area at each end, and with

vehicle occupancies falling well below the total occupancy of 6.

To unpack this result, it is necessary to recall both MATSim’s evolutionary process in regards

to mode choice, and the objective function of the dvrp assignment algorithm that governs

requests. Under the evolutionary MATSim process, agents test out new modes randomly

throughout the first 75 iterations, scoring performance against the previously executed plans.

In these iterations, the 13 vehicles in this scenario served 200 trips on average (4 times the

volume served in the final iteration) reaching a maximum of 403 trips in one early iteration.

However particularly wait and in vehicle times remained high in these 75 innovation iterations,

resulting in a drop to the 47 trips which occurred in each of the last 25 iterations.

This drop is explained by the poor performance of the off-peak DRST service relative to

the available alternatives. Specifically, agents making short trips between the various central

campus locations were likely to have a higher performing plan with an alternative mode

such as walk, bike or car (with car only available to agents who began with an autoDriver

trip). Meanwhile, these alternative modes were not viable alternatives in the long distance

trips,21 which helps explain the drop in the total number of trips between the innovation and

non-innovation iterations, as well as the concentration of the remaining 1/4 of trips as long

21 That is to say their score would not have realistically outperformed DRST due to the distances involved
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distance, between cluster journeys.
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Additionally, the dvrp assignment algorithm demonstrated a bias towards these long distance,

between cluster trips due to 1) their strong potential for low detour rates which averaged 1.26

for the first 75 iterations (peaking as high as 1.6) and then stabilized near 1.0 (representing

almost no detour); and 2) their high potential for maximizing high occupancy VKT and

low empty VKT rates. These characteristics essentially encapsulate the objective function of

the assignment algorithm which focuses on maximizing vehicle workload over providing the

maximum service quality as discussed in chapter 6.1.1.

In summary, the spatial drag of spatially dispersed and low volume demand in S1 highlighted

the DRST service’s inability to effectively provide a matching quality of service. This is

highlighted in poor performance amongst many requests in the first 75 iterations that result

in only about 1/4 of those trips being chosen as the best option after the mode innovation

period has been turned off. At the same time, the tendency towards long distance journeys

between satellite clusters appears to be both a function of the dvrp assignment algorithm

which maximizes the efficient use of vehicles over service quality, as well as the creation of

conditions where the relative attractiveness of the DRST service is greater (and therefore

chosen) for agents in distant locations due to their lack of viable alternatives, more so than
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the high quality service itself.

This points to a broader critique of the research design, that by removing the CPT services

during the off-peak that did exist when the real demand behaviour was recorded, coupled with

few viable alternatives for long trips22 the DRST service is forced to respond to demand that

may not actually have existed without a CPT service. To further investigate these conditions,

future research would need to focus on both experimentation with the governing alpha and

beta parameter constrains as well as implementing an alternative DRST assignment algorithm

that places more emphasis on maximizing service quality over vehicle workload.

At the same time, the proportion of long-distance trips in S1-13 draws into question the the

comparison against the base-case-pt average across lines 1-5. Since the entire CPT system

is being replaced after 15:00 this remains the appropriate metric to compare service quality

against, however in comparison to the travel times of similarly long distance trips on lines

4-5 alone, the results do improve somewhat.

22 there is no “no travel” option and only agents who began with an autoDriver mode can switch to car
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Figure 14: Comparison of DRST and CPT average total travel time (shown in seconds) for S1 (left), S2 (centre) and S3 (right).



S2 Equal Cost Scenario The S2-5 CPT within clusters - DRST connecting satellites

scenario saw a significant decrease in overall travel time of 63.5% from 36:28 to 23:10 which

was observed across 126 trips, and the scenario that most strongly demonstrates the potential

for DRST serves to enhance CPT in the context of this thesis. This decrease was mostly

concentrated in reduced access and egress times, which in the relevant CPT comparison for

lines 4-5 were notably high due to the fewer stops (only 1 in the case of the FIZ connection

to the central campus) which many agents are accessing by foot.

In fact the spatial results of S2 reinforce what was seen in S1 in regards to the concentration

of trips between satellite and central campus, although in scenario S2, this is made explicit

through the service area. However in contrast to S1-13, the results demonstrate the impor-

tance of a certain threshold level of demand. Tracking this demand through the simulation

iterations, far fewer requests were made throughout the innovation period, growing linearly

from around 20 to 126 of the final iteration which was the maximum observed. Because of

the ability to serve these trips more effectively, fewer agents had poor performing scores and

as well as very low rejection rates, which resulted in the more minimal drop off. Therefore,

what we see in S2-5 is the potential of combining both a defined service area that greatly

minimizes the spatial drag on the system, together with higher overall rates of demand that

allow the DRST assignment algorithm to function more optimally due to the service running

all day and not only in the off-peak period.

At the same time there is one element of this scenario that makes the comparison to lines 

4-5 alone unfair and therefore warrants an additional critique of the research design. Impor-

tantly, in the base-case scenario, the agents being served on lines 4-5 are not originating 

exclusively from it’s terminus station at the FIZ, but by contrast are making (mostly) walk 

access and egress trips to and from the high density of demand points within a close proximity 

of the FIZ. This is the primary explanation for the high average access and egress times for 

these lines which are the largest contrast to the S2-5 DRST service.

This highlights that the DRST service in S2 does not benefit from the full range of  exibilit y 

afforded in S1 to DRST services in S1, as their service area is limited to the 5 demand locations 

in the satellite clusters and one in the central campus at the FIZ. In terms of the scenario 

design, this boils down to the fact that the S2 service area covers the technical service area 

of the CPT lines it is replacing, but not the demand area for agents that may be taking this 

line. Therefore, while the result is very positive, the direct comparison
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to lines 4-5 with their large access and egress times does not perfectly compare apples and 

apples. On the one hand, expanding this service area is expected to reduce service quality 

(although how significantly is not clear), particularly given the small  eet size of 5 capacity 6 

vehicles. On the other hand, the potential to reach more locations in the DRST service is a 

real world benefit inherent in that service over CPT that is not fully captured in the 

framing of service quality, and therefore can be considered to contain additional value even 

in the face of incurring slightly longer in vehicle or wait times.

In summary to S2, it is the absolute levels of demand together with the tightly defined 

service area that seem to be the key to the improvements in service quality. Diving further 

into the the dynamics between service area and service quality presents an additional possible 

direction for future research, for example allowing all agents to make DRST requests in all 

service areas, while forcing them to access/egress to within the study area. In a way this is 

represented in S2 via the max walk of 130m, but in the case of S2 this only made the 1 nearest 

demand location to the FIZ available. This technical limitation is an inherent aspect of the 

dvrp extension which only allows agents to request a ride if they are within 130m of the service 

area. Agents in the simulation however are not smart enough to realized they could take the 

existing CPT service, walk or bike into the service area and then request a ride which is a 

technical limitation of the MATSim dvrp contribution. Nonetheless, within the established 

research design S2 remained the only scenario that demonstrated the potential to provide 

an operator cost savings without sacrificing service quality in response to the second 

research question.

S3 Equal Cost Scenario In the final of the equal cost scenarios, the overall travel time 

increased by 132.9% from 15:10 to 20:10 compared to the relevant base-case which was ob-

served across 997 trips within the central campus area. This increase was almost entirely 

concentrated in longer in-vehicle times, which is consistent with other simulation studies 

with regard to the relationship between  eet  size and wait time. Like S2, the innovation 

phase of the 100 total simulation iterations saw linear growth in the number of trips from 

about 350 in the first iteration, reaching a peak near 1100 before dropping down to the final 

997, and therefore these agents were served well within the service quality bounds and 

rejection rate remained extremely low throughout.

S3 is notable as the only scenario which comes close to matching the base-case in the number

of trips made as will be discussed in the next section, however the equal cost  eet size of 8 was
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not sufficient to keep waiting times within the range of the corresponding base-case

Interpreting the base-case-pt values for access/egress and wait does require some additional

discussion. On the one hand, comparatively short CPT access and egress values are a feature

of the case study where 16 of 21 Pendelbus stops are located within a 100m radius of a

demand origin/destination point. This draws from the nature of the corporate mobility bus

network, which is designed around the specific and known demand it is serving. This value

however is not entirely representative of the real world situation and needs to be interpreted

accordingly. On the other hand, the wait time of base-case public transit agents may be

under-represented in the simulation, where the simulation dispatcher handles agents making

transit connections by routing them from their location with exactly the right amount of

time according to the public transit schedule. Therefore the mean CPT wait time of under

3 minutes for all lines, and about 2 minutes on lines 1-3 only re ects delays to the buses

resulting from network congestion, agents experimenting with altering their departure time

as a strategy and from buses “waiting for departure” with agents on board which was enabled

in the simulation to re ect the real behaviour of Pendelbus drivers.

Switching over to the DRST service, a current limitation of the MATSim dvrp contribution

is the lack of so-called pre-booking. In reality a major benefit of DRST service is the ability

to communicate with the vehicle and track it’s progress in real time - affording the user the

ability to avoid or greatly reduce waiting time by aligning their activities to the vehicle arrival.

However without prebooking, agents in the model currently make their DRST request at the

moment they want to realize the trip and then begin waiting for the vehicle. True behaviour

likely falls somewhere between the two extremes, with some agents (particularly considering

large multi-story office buildings where the user may have a long walk to the DRST pickup)

still arriving too early, and others waiting until they see the DRST vehicle outside their

window.

In summary, the analysis of equal cost scenarios shows the most promising results in scenario

S2 where access and egress times are significantly reduced. This is in line with expectations

set out in the literature, as the 5 vehicles are able to provide a high service quality due to

the relatively low absolute levels of demand.

Finally, S3 is notable for coming close to matching the relevant in vehicle travel time (9:16

as compared to 7:52), but across a significantly higher numbers of absolute trips at 997
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compared to 126, but only 3 extra vehicles in the  eet  (see the Appendix for the complete 

list of key indicator outputs). With the afforded  eet  size of 8 in S3, and despite the tight 

knit geography, wait time was the primary drag on service quality. Given the relationship 

between  eet  size and wait times laid out in chapter 2.2, S3 will be a scenario to watch when 

the  eet  size is increased as is discussed next.

7.1.2 Comparison Across Varying Cost Scenarios

The previous section looked at service quality across scenarios of equal cost in order to address

the first aspect of the research. Additionally, detailed descriptions of each scenario helped

understand what was happening inside the model and to explain the results in more depth.

This section looks at the second and third aspects of the research which asked can the design

of DRST services be used to reduce the operations cost of CPT buses while maintaining the

same quality of service and how much does it cost for DRST to match the quality of service

provided by CPT buses.

The equal-cost comparison already sheds light on this, outlining that under the scenario de-

signs tested, only S2 demonstrated potential to reduce operations cost while matching service

quality. Nonetheless, a range of  eet sizes including those under the maximum available cost

per scenario were simulated. Figure 15 shows these results, with 5 simulated DRST  eet

sizes per scenario - one of which is under the maximum available cost. As in the previous

section, each scenario needs to be evaluated against it’s corresponding base-case-pt value as

opposed to the system wide average. In line with expectations, a decrease in average wait

time is observed across all scenarios as  eet size increases, although this is most clearly seen

in S3, where a  eet size of 24 capacity 6 vehicles (3 times the equal cost scenario of 8) is also

able to match the relevant base-case-pt quality. Otherwise, in vehicle travel times remain

fairly constant across all scenarios which is the logical expression of the distances travelled.

These are also impacted by the detour factors which are lower in S1 and S2 at 1.07 and 1.28

respectively, and higher in S3 at 1.99. However the relatively shorter distances involved in

S3 mean these detours remained less severe in terms of overall distance and therefore did not

translate into longer in-vehicle times.

This point can be linked back to the literature review, specifically that the largest potential 

in uence  on in-vehicle travel time is vehicle capacity. Here we would generally expect 

smaller capacity vehicles to reduce deviations and improve service quality. This point is 

most relevant
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Figure 15: Figure highlights the change in service quality as  eet  size is changed across 

scenarios. The corresponding base-case-pt values for each scenario are also provided as a 

reference.

to scenario S3 which is the only scenario that approaches the max occupancy as seen in figure

19 in the appendix. However this parameter is of marginal relevance to scenarios S1 and S2,

where the tight bounding parameters of the assignment algorithm and absolute volume of

requests, resulted in vehicle occupancies that rarely approached the maximum of 6.

Comment on Access & Egress The uniformity of access and egress times across all 

scenarios seems to be a result of the relatively few possible combinations of routing to and 

from demand locations, and the fact that agents will be routed with a beeline distance as 

opposed to in the network for the access and egress portion of the trip. In the case of the 

Pendelbus network, the distances in the simulation are fixed for all demand pairs resulting 

in low variance, while for the dvrp extension, the agent is always routed to the middle of

the nearest link they can reach within their maxWalkDistance of 130m, which again results 

in the same link being chosen for each demand location. If the demand had been dis-

aggregated
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into polygon areas instead of a single point, we would likely have observed greater variation,

with different links being chosen based on the agents exact start or end position. However

it was determined that implementing this level of detail would have added limited value to

the simulation results overall. Nonetheless, the access/egress context is interesting because

it highlights the tight alignment of origins and destinations relative to the CPT bus stops in

the corporate mobility context. Particularly within the central campus area, the tight spatial

alignment produced access and egress results that were very favourable for the CPT agents

on these lines, and this made it hard for the door to door DRST service in S3 to match that

aspect of the service quality. By contrast in S2, it was the access/egress where the largest

benefit was seen for DRST services, specifically in regards to long access/egress trips to the

single terminus station of lines 4-5 in the central campus.

Comment on Flow Volumes Although beyond the core research question, table 5 high-

lights that the absolute number of DRST trips made in scenarios S1 and S2 did not increase

meaningfully with  eet size, peaking at about 65 and 130 trips respectively. Therefore the

in uence of small number of trips were not meaningfully observed on the overall mode split,

and for example, the reduction of absolute number of trips in S1 as the  eet size increases

might be explained by the random variation in mode innovation across scenario runs23

By contrast, the number of DRST trips in scenario S3 more than doubled when the  eet size

was increased from 4 to 8 vehicles, and continued to rise exponentially levelling off after a

 eet size of 16. At the largest S3  eet size of 32, the total number of trips reaches 1660,

which approaches the number of trips made in the overall CPT network in the base-case. On

the one hand, this is re ectiv e of the significantly higher demand between locations in the

central campus, and on the other it may indicate that trips that the deployment of DRST

service in S3 drew users from other modes.

Comparing the final mode split of scenario S3-16 (the  eet  size at which S3 exceeded the 

service quality of the base-case CPT) indicates an increase of 9.08% DRST mode share, 

alongside a -14.17% decrease to CPT. The remaining change in mode share was with bike 

which gained 3.83%, walk which gained 2% and auto driver which decreased -0.74%. In 

other words, following the replacement of CPT by DRST, those agents who had taken CPT 

in the S1 service area mostly switched to DRST, but of those who didn’t the majority chose 

to bike or walk.

23 The absolute number of trips in S1 drops from 65 to 61 to 58 as fleet size increases
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Figure 16: Comparison of DRST and CPT average total travel time (shown in seconds) for S1 (left), S2 (centre) and S3 (right).



In summary to the varying cost section, the findings of scenario S2 are significant as the 

only scenario that was able to offer an absolute operator cost benefit, although it must be 

stressed that this is related to the relatively low volume of absolute trips in that scenario. In 

scenario S1, it was not possible to match the average system-wide performance even with a 

 eet  size of 52, however as discussed previously, this is related to the fact that the average 

base-case-pt-1-5 in vehicle time is brought down by the high volume of short-distance trips. 

When S1 is compared against the base-case-pt-4-5, it matches service quality at the equal 

cost  eet  size of 13 and exceeded quality at a  eet  of 26. Finally scenario S3 is notable as 

the only scenario that matches the level of service of CPT at scale, a finding that is also 

highlighted by the much higher occupancy rates.
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Scenario Service
Daily

Cost (¿)

Fleet

Size

Completed

Trips

Access Time

(mean)

Wait Time

(mean)

Wait Time

(p95)

In Vehicle

Time(mean)

Egress Time

(mean)

Total Travel

Time (mean)

Transfer

Rate

Rejection

Rate

base-case-pt-1-5 pt 5097 12 1759 188.30 164.59 576.10 565.54 189.74 1108.17 0.03 0.00

base-case-pt-1-3 pt 3141 8 1474 158.59 122.61 352.35 472.59 158.65 912.44 0.01 0.00

base-case-pt-4-5 pt 1956 4 237 390.18 352.42 1052.60 1060.22 386.47 2189.30 0.00 0.00

base-case drst 840 2 13 103.08 261.77 505.00 283.54 92.92 741.31 0.03 0.00

s1 drst 713 6 34 111.31 345.38 1001.50 873.68 107.66 1438.03 0.00 0.00

s1 drst 1545 13 47 113.92 291.04 601.40 854.45 110.64 1370.04 0.00 0.00

s1 drst 3090 26 65 110.89 217.62 593.70 791.78 106.77 1227.06 0.00 0.00

s1 drst 4636 39 61 112.23 227.03 523.60 798.02 109.01 1246.29 0.00 0.00

s1 drst 6181 52 58 110.35 184.72 459.60 819.53 106.54 1221.14 0.00 0.00

s2 drst 792 2 101 130.90 530.14 1364.30 932.70 128.76 1722.50 0.00 0.01

s2 drst 1981 5 126 127.31 225.75 634.20 912.94 123.81 1389.81 0.00 0.00

s2 drst 3962 10 123 127.43 193.18 506.60 920.28 123.61 1364.50 0.00 0.00

s2 drst 5943 15 127 126.05 189.93 505.00 882.10 126.37 1324.45 0.00 0.00

s2 drst 7924 20 120 128.99 177.34 495.75 891.77 125.78 1323.88 0.00 0.00

s3 drst 1585 4 378 98.66 561.93 1195.00 560.59 95.20 1316.38 0.00 0.00

s3 drst 3170 8 997 98.51 462.75 1072.00 555.74 94.74 1211.74 0.00 0.00

s3 drst 4754 12 1456 100.04 327.50 747.60 487.46 95.32 1010.32 0.00 0.00

s3 drst 6339 16 1565 100.81 223.26 487.00 482.52 96.06 902.65 0.00 0.00

s3 drst 9509 24 1625 101.31 196.81 411.70 475.51 97.92 871.55 0.00 0.00

Table 5: Table of simulation outputs for all scenarios and all key performance metrics. All time indicators are given in minutes. Scenarios of

Equal costs are bolded.



7.2 Limitations

The limitations of this work can be seen from the perspective of both the simulation itself,

and the broader approach to understanding the research topic.

7.2.1 Simulation

In the simulation side itself, there were important technical aspects that could be improved.

For example while the network modifications were a pragmatic solution to the problem of

incorporating background traffic dynamics, a more elegant solution remains the complete

simulation of all agents without the selective editing of network elements which limits the

research reproducibility. Additionally, the evolutionary mode choice scoring function of MAT-

Sim falls short of the sophistication of full multi-nominal logit models which needs to be taken

into consideration when interpreting the results, and is part of why mode choice was less of

a focus in the results section (Axhausen 2019). This limitation was most prevalent in sce-

nario S1, where the entirely random function of experimenting with a DRST mode even in

contexts where it was not practical seemed to negatively affect the final ridership values after

innovation was turned off. It’s possible that running the simulation for 500 or 1000 iterations

may have overcome this, but such an implementation was not practically possible.

Additionally, MATSim is designed around the concept of simulating agents in their full range

of activity tours which was not possible due to data restrictions. As discussed in the method-

ology, the data necessitated the implementation of single direction trips, instead of multiple

trips being connected to a single agent. The MATSim manual notes that this “loses some

of its expressiveness, but the basic concepts, including route and even departure time adap-

tation, still work in exactly the same way” (Axhausen 2019, 24). Where this simplification

may have been most significant in regards to the real mobility behaviour of the case study

is in trip chaining, such as users taking their own vehicle to the last meeting of the work

day, allowing them to then continue directly home afterwards. Capturing these interactions

is fully supported in MATSim, but their implementation in this thesis was a limitation of the

available data.

While the incorporation of the real-world MyShuttle pilot data improved the simulation and

particularly helped link it to the corporate mobility context, the size of the pilot DRST

service was also a limitation in calibrating the base-case. Specifically, calibration of the

mode constant was made against the average ridership experienced by MyShuttle across the
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months of July-August-September which amounted to 7-9 trips with DRST per day. During

calibration, it was difficult to move this number around with the mode specific constant,

likely because the demand between the locations of the MyShuttle pilot area was limited to

only 51 trips.24 Of these 51 trips, 28 were autoDriver; 7 were autoPassenger; 1 was pt25

and the remaining 14 were walk trips which occur between the two Garching locations. The

point is both the potential demand and requested demand were proportionally very low which

may have had a disproportionate effect on the sensitivity of the DRST calibration constant.

The simulation proceeded with the best possible calibration to the observed MyShuttle pilot

ridership data, but with additional time it would be desirable to perform sensitivity analysis

on the DRST mode specific constant to understand it’s sensitivity when the DRST service is

scaled.

7.2.2 Research Design

Firstly, it is necessary to note that two of the research design service quality criteria of 

transfer rate and rejection rate ultimately did not lead to meaningful results. Transfer rates 

remained extremely low in the base-case at just 0.03 which may be a function of the real 

mobility behaviour, although there is no available data to compare to better understand 

this. While agents had the capability to engage in multi-modal trips in the simulation setup,

(for example taking DRST for a leg and then switching to CPT), the scenario design did 

not focus on these interactions. This is particularly relevant to the access/egress times to 

CPT lines 4-5 in S2, where almost all agents were making long access/egress trips by walk 

on the central campus side of these lines. As all MATSim defaults were kept with regard to 

the negative score of transfers, it’s possible that the simulation over-penalized transfers, 

although again the true transfer rate of the population is not well understood. The point 

on the rejection rate criteria was thoroughly discussed in the methodology and does not so 

much justify a limitation as a necessary modelling compromise in order to get meaningful 

results. In all DRST scenarios the rejection rate remained at 0% in the final iteration (with 

the sole exception of scenario S2-2 which is logical given the small  eet  sizes as discussed 

in chapter 6.1.1). This means neither CPT or DRST are rejecting users which is the most 

relevant comparison, but it also sets this simulation apart from the majority of simulations 

covered in the literature review who do allow small rejection rates of 2-6%.

24 These were between “UNT MIC”, “UNT TAK”, “UNT ADC”, “GAR M”, “GAR BC”
25 This could be a real MVG public transit trip or a 2-legged Pendelbus trip via FIZ
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In regards to the cost comparison aspect, the projected discounting of DRST did introduce 

some uncertainty as well. Elements of the DRST cost were verifiable such as the heavy in-

vestment in on-the- y  vehicle assignment software which is echoed by (Viergutz and Schmidt 

2019). But it is important to note, particularly from the case-study operator cost perspective, 

that the simulated  eet  sizes correspond to the discounted DRST costs as opposed to those 

observed in the case-study pilot. Fortunately as the case-study corporate mobility context 

is only concerned with operator costs which scaled linearly with  eet  size, the results can be 

transposed to different operator budgets quite easily. This means that for for example, the 

S2-2 scenario with  eet  size 2 which is calculated with the discounted DRST service costs 

is roughly equivalent to the equal cost  eet  size 5 scenario under the non-discounted pilot 

MyShuttle cost structure. Additionally, the operator costs per kilometre were included as 

static costs in the DRST cost structure, meaning additional kilometres driven in the DRST 

scenarios were not re ected  in higher operator costs.

Finally, there was a general limitation in the ability to quantify the true quality of DRST.

For example, there was no metric used to evaluate the role of  exibilit y in booking the

transportation option, or the ability to reach locations that were not served by the CPT

service. An additional direction for this could be a metric that counts the number of locations

reached with the DRST service over the CPT service, although this was not explored here.

Additionally, the results highlighted the potential limit of essentially forcing all trips to take

place that existed in the input demand data. This is a limitation because in reality the users

may have chosen not to travel at all, a point which may be stronger in the corporate mobility

context.

63



8 Conclusion

The simulation study presented in this thesis demonstrates a holistic approach to the topic, 

focusing on a specific core research area in the question of travel time components, while 

also striving to remain in the realm of analysis that is operationally relevant and actionable. 

The key findings which are analyzed at varying operator cost, and across temporally and 

spatially diverse service schemes, echo the narrative of similar simulation studies - and the 

hypothesis that DRST services may indeed be able to enhance or compliment CPT has 

gained evidence. In particular, the importance of spatial clustering and a minimum 

threshold level of demand are emphasized throughout the analysis, although the broader 

implications of this finding for transport systems at large remains an open question. 

Interesting observations that may be unique to corporate mobility also emerged, such as the 

potential for operator-side benefits in long-distance, low-demand contexts - a finding which 

would most likely not hold in other cases where user-costs apply. Similarly the seemingly 

efficient design of the CPT system when it only has to serve a selection of known demand 

locations emerged as a potential strength of CPT in the corporate mobility context.

The methodology developed in this thesis creates ample opportunity for future work that is 

actionable from both the BMW side of the thesis partnership and for research more broadly. 

A large volume of simulation results have already been created, of which the research-

defined analysis only scratched the surface. Deepening this could include in-vestigation of 

travel distances and emissions, the role of parking which was not represented in the 

simulation, and sharing potential of DRST. Additionally, the simulation platform as it 

stands now provides the opportunity to implement hybrid scenarios such as off-peak and 

between satellite service, or indeed to test completely removing CPT services and supplying 

DRST for the entire demand with multiple  eet  sizes and capacities.

Indeed one can imagine a scenario where it is not the side-by-side spatial and temporal com-

parison of two different services that is being evaluated, but rather the spatial and temporal 

integration of a single service that combines the benefits of fixed-schedule operations and 

the  exibility  of DRST, with vehicles themselves shifting roles dynamically. Whether or not 

such services will emerge in a future mobility landscape remains to be seen, however 

simulation studies like this one provide a starting point for discussion. Perhaps most 

importantly, future work should strive to connect to the demand responsive shared 

transport topic at the scale of human behaviour, including our reactions to the changing 

mobility landscape, as
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understanding both the system and the human side of the equation remains paramount.
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citation context key terms methodology veh cap fleet size findings wait (min) tt (min) KPIs

(Alonso-

Mora et al.

2017)

dynamic route

optimization;

tradeoffs fleet size,

capacity, wait time

NYC taxi

dataset

integer linear program w

passenger assignment and fleet

rebalancing

2 - 10 2,000; 3,000 2,000 veh cap 10 or 3,000 cap 4

serve 98p demand

2:30 -3:30 (over

base)

max delay

compared

to directly

taking a

taxi

(Ben-Dor,

Ben-Elia,

and

Benenson

2019)

simulate SAV

scenarios

SAVs;

MATSim;

Tel-Aviv

n = 0.1 pop, door to door,

random initial position, no

dynamic repositioning; tmax

1.5 times longer than prt

equlivent, max wait 12min

4 50,000 -

150,000

Fleet size 50K rejection rate 0.6p,

100K reduces to 0.2p, and 150K

does not signficantly improve over

100K. Outer ring most

disadvantaged

- - rejections

(Koh et al.

2018)

dynamic CPT routing MoD; DBR;

R;

Singapore

bus lines planning

optimization model for

first-last mile integration

30; 21-24 68-79p decrease tt depending on

fleet size; wait increases

4:00 to 5:50 79p

reduction

(7:45 to

5:20)

wait; tt

(Leich et al.

2018)

autonomous taxi’s

replacing buses

SAVs;

MATSim;

Berlin

door-to-door; rejection ¡ 5p;

mode choice fixed; no

pre-booking

1;4;8;12;20 120; 150;

200

higher operating costs, slight tt

savings compared to CPT; cap ¿ 8

rarely used

14:50 (pt)

+ 6:00(drt)

9:00 wait; tt; op

costs;

rejections

(Spieser et

al. 2014)

design of automated

mobility-on-demand

SMoD;

SAVs;

Singapore

mathmatical financial model;

replace all personal transport

with SAVs, find min fleet to

keep baseline performance; no

PT;

NA 1/3

base-case

demand met fleet size 1/3 of

current. AMoD service cost half of

current in Singapore and US. In in

Singapore due o sharing vehicle

ownership and in US due to

reduced time parking activites and

higher quality of service.

- - wait

(Viergutz

and

Schmidt

2019)

demand responsive

vs. CPT in Colditz,

Germany

CPT;

MATSim

4p CPT users; focus

door-to-door vs. stop; tmax

30min to compare to CPT

headways;

CPT 20;

DRST 4-10

5; 10 operator - poor door 2 door

performance - gained 9 riders but

54 more trip legs, much higher

VKT; user - CPT wait and TT 2x

stop-based DRST

2:44 (stop-

based); 3:22

(door2door)

2:52 (stop-

based); 3:51

(door2door)

fleet size,

cap, VKT,

rides,

agents,

p.empty

Note:

p in this table refers to percent. Similarly abbreviations for vehicle capacity (Veh Cap) wait time (wait) and travel time (tt) are also used

Table 6: Detailed literature review details



Figure 17: DRST occupancy in scenario S1. Graphic is an original MATSim dvrp output.
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Figure 18: DRST occupancy in scenario S2. Graphic is an original MATSim dvrp output.
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Figure 19: DRST occupancy in scenario S3. Graphic is an original MATSim dvrp output.
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Figure 20: Figures provide a further visualization of the relationship between cost, average

wait time and average total travel time.
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