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Abstract 

The demand for air travel has grown steadily over the last few years and consequently increased 

the number of trips to the airport made by air travelers and airport employees. As a result, ground 

access to the airport has become an essential factor in airport attractiveness. This study intends 

to investigate the mode choice behavior of airport workers and airport passengers after the 

introduction of new railway connections to Munich Airport. 

The assessment of the effect of these transportation links will be based on the revealed 

preference surveys of passengers and employees of Munich Airport. Discrete choice models are 

estimated with R software to analyze the sensitivity of airport users to changes in the railway 

service. The research considers six transport modes – private car, rental car, car sharing, taxi, 

bus and train; later, they are merged into auto and transit alternatives. The estimation results 

confirm the assumption that the reduction of travel time and a number of transfers makes transit 

services more attractive for airport users. Gender, age, number of accompanying people and 

monthly household income also have an impact on mode choices of air passengers. 

The parameters determined for each model are applied to assess various scenarios involving 

railway projects in the area of Munich Airport and study their impact on the travel behavior of 

airport users. The spatial analysis defined areas affected by the modifications in the railway 

network proposed by each scenario and compared changes in transit shares. The findings of this 

research create a foundation for ground transportation planning in the area of Munich Airport that 

takes into account factors influencing travel behavior of air passengers and airport employees.  
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1. Introduction 

Munich Airport is the second-largest airport in Germany and plays an important role in the Munich 

region (Flughafen München GmbH, 2017). Increasing demand for air travel is represented by the 

steadily growing airport passenger turnover. The airport is no longer just a transportation node – it 

facilitates economic growth in the region, provides space for business and innovation activities, 

and simply serves as a recreational area. At this point, ground accessibility becomes one of the 

key factors in airport attractiveness for all its users and visitors. 

People use various means of transport to reach Munich Airport. According to the research made 

in 2017 by its authorities, 50% of departing passengers’ trips were made by taxis, private and 

rental cars (Flughafen München GmbH, 2017, p. 15). The passenger surveys conducted in other 

airports reveal an even higher proportion of trips made by car. In particular, their shares in 2005 

comprised 63%, 67%, 61% and 72% in Heathrow, Gatwick, London Stansted, and London Luton 

airports respectively (National Academies of Sciences, Engineering, and Medicine [NASEM], 

2008, p. 137). With the growing number of air travelers, the number of trips to Munich Airport will 

continue to rise. This can result in obstructed traffic, heavy road congestion during peak hours 

and an increasing level of emissions in the airport area.  

Similarly, airport employees use private vehicles as the major mode to access their workplace. In 

the overview of modal shares among workers of Frankfurt International and Hamburg Airports 

transit comprises only 15% (Leigh Fisher Associates, Coogan & MarketSense, 2000, p. 38). The 

peculiarities of work at the airport contribute to the low popularity of transit. The shifts are done 

also at night and early in the morning, including weekends and holidays, when the public transport 

service may be limited or absent. At the same time, the deficiency of public transport connections 

to the airport is one of the key factors that influence the decision of airport workers to use private 

vehicles (Leigh Fisher Associates et al., 2000, p. 21). Thus, it is important to improve ground 

access to the airport and support sustainable modes of transport not only from the passengers’ 

but also from the airport employees’ perspective.  

One of the ways to promote public transport access to the airport is the provision of rail 

connections. Birolini et al (2019, p. 122) stated in their work that a direct railway service to the 

airport is a competitive transport option, which will be capable of attracting a significant share of 

travelers. The authors also mentioned that the airport’s express train has a much higher potential 

to increase the use of the railway services than a simple extension of the existing regional 

commuter service (Birolini et al, 2019, p. 113). Moreover, Murakami (2016, p. 97) revealed the 
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relation between airports with rail links and economic development. His research demonstrates 

that cities around the world with a rail connection to the airport and with urban rail investments are 

respectively 22% and 14.7% more productive than those without any rail systems. This means 

that, in addition to improved transport connectivity of the airport, rail links can promote the 

economic development of a region. 

In the chosen study area a large-scale railway project Erdinger Ringschluss is scheduled to be 

executed until 2029, followed by another massive railway connection Walpertskirchener Spange. 

This study as well considers several other projects developed for the Munich Airport area to 

improve its rail connectivity with surrounding regions. NASEM (2008, p. 14) emphasized that 

changes in airport ground access systems (for instance, the establishment of a new rail link to the 

airport) are likely to have an outcome in the relative attractiveness of different modes, and thus in 

shares of travelers using each mode. That is why it is essential to be able to predict the travel 

behavior of airport passengers and their modal choices in response to changes in the range of 

existing options (NASEM, 2008, p. 14). Given these facts, this thesis aims to estimate the effect of 

new rail connections to Munich Airport on the travel behavior of airport workers and airport 

passengers. The resulting mode choice decisions will be predicted using a discrete choice model 

and compared with actual modal shares to evaluate the effects of these changes in the airport 

ground access. 

1.1. Outline of Paper 

This thesis is subdivided into eight chapters. An overview of the relevant literature that specifies 

the academic and research activity in the field of mode choice models for airport users is provided 

in Chapter 2. Chapter 3 describes the proposed methodology and specifies the research 

objective. In Chapter 4 various stages of the data collection, processing (Section 4.4) and analysis 

(Section 4.5) are presented. Chapter 5 explains the process of model estimation and Chapter 6 

focuses on the estimation results. In Chapter 7 various scenarios incorporating railway projects in 

the area of Munich Airport are tested. In the same chapter, the predicted modal shares of airport 

passengers and employees are compared to the base scenario and spatially analyzed. Finally, 

Chapter 8 completes the thesis with conclusions, limitations of this study and suggestions for 

future research. 
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2. Literature Review 

2.1. Four-Step Model 

With the help of transportation forecasting, the future need for transportation and the capabilities 

of the transport system can be evaluated. The forecasting models can determine the impact of 

modifications in the transport system. For example, a forecast can demonstrate the changes in a 

modal split of the region due to the construction of a new railway line or estimate its effect on the 

public transport ridership. Such predictions are widely used for transportation planning, traffic 

engineering studies, as well as the design of new transport infrastructure. 

A traditional approach to transportation forecasts is a four-step model. This model is used to study 

various transport systems and to predict the behavior of its users. For the first time the model was 

applied to the full extent in 1955 for the Chicago Area Transportation Study travel forecasting 

(Weiner, 1997, p. 18). Rosenbaum and Koenig (1997, pp. 10-11) described the four steps of a 

travel demand model: 

1) Trip generation – in the beginning, a study area is divided into traffic zones, where a 

number of trips is generated and attracted by each zone. The calculation of generated and 

attracted trips in each zone is based on the information about households, the number of 

working places and the population of each zone; 

2) Trip distribution – the origin and destination of each trip are matched and the number of 

trips from and to each zone is calculated. Traditionally, this is done with the help of gravity, 

or spatial interaction model, travel time is used as an accessibility measure; 

3) Mode choice – in this step trips are split by transport mode, and as a result, it is possible to 

estimate modal shares. Mode choice models can also consider the travel cost, the relative 

travel time and the trip purpose; 

4) Trip assignment – in the final step the trips between origins and destinations are loaded in 

the transportation network. Traffic assignment defines the route that is chosen by each 

user to reach their destination points and is usually based on the assumption that 

individuals attempt to minimize their travel time. This process continues until all trips are 

loaded into the network. 
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Figure 1. Four-Step Model (adapted from Rosenbaum & Koenig, 1997, p. 11) 

Figure 1 is a schematic representation of the traditional four-step travel demand model. This 

research focuses on the third step of the estimation process – mode choice. NASEM highlighted 

in their review of airport ground access mode choice models that the possibility to predict mode 

choices of airport workers and air passengers is “a key analytical component of airport landside 

planning, as well as airport system planning” (2008, p. 11). 

There are two main approaches in modeling the travel behavior – aggregate and disaggregate. In 

the first case, the modeling is made for a group of individuals, clustered by their socio-economic 

attributes, while modeling the travel choices for each individual is known as a disaggregate 

approach (Koppelman & Bhat, 2006, p. 1). The essential advantages of the disaggregate 

approach over the aggregate approach were defined by Koppelman and Bhat (2006). According 

to the authors, this approach explains the choice of each individual in given conditions, and thus 

better reflects changes in choice behavior if attributes of individuals or alternatives are changed. 

The second advantage is the causal nature of the disaggregate approach that increases the 

likelihood of predicting in a different time and geographic context (Koppelman & Bhat, 2006, p. 2). 

Third, the author stated that aggregation results in a substantial loss in variability, thus having a 

lower level of model precision than with the disaggregate approach. Finally, Koppelman and Bhat 

(2006, p. 2) pointed out that the proper specifications of disaggregate models produce unbiased 

parameter estimates. Due to these advantages of the disaggregate approach, discrete choice 

models are extensively used in travel demand modeling. 
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2.2. Discrete Choice Models 

Discrete choice models explain decision-makers’ choices among a finite number of mutually 

exclusive alternatives (Train, 2009, p. 11). These models calculate the utility for each of the 

alternatives. According to NASEM (2008, p. 22), utility is a function of measurable (observable) 

characteristics of both the decision-maker (e.g. income, age, education) and the alternative (e.g. 

travel time, travel cost). It is assumed that the individual will always choose the alternative with the 

highest utility. 

However, it is not possible to perfectly model human behavior in the real world. The decision 

made by an individual does not only depend on certain characteristics of the alternative but also 

some unobservable parameters – a lack of information about another alternative, specific 

circumstances in the process of decision making (e.g. weather conditions, national holidays), 

personal preferences and perceptions, etc. Train (2009, p. 34) stated that these parameters are 

also included in the utility function and considered by the researcher as random. A decision-maker 

n has j alternatives and the utility U obtained from alternative j has two components – the known 

observable parameters V and the unknown part ε (Train, 2009, p. 34): 

𝑈!" = 𝑉!" + 𝜀!"                                                              (1) 

The random component ε in Equation 1 takes into account all unobserved variations in taste and 

preferences that influence a person’s decision. Train (2009, p. 34) noted that by assuming that 

each εnj is identically and independently distributed extreme value, the logit choice model is 

derived. Depending on the number of alternatives, there are binomial (with two alternatives) and 

multinomial (with three or more alternatives) logit models. 

The probability of choosing a certain alternative is always between 1 and 0 – the higher is the 

utility of the alternative, the more likely the individual is to choose it. A common mathematical form 

to express it is the logistic function that has been widely used for airport access mode choice 

studies (NASEM, 2008, p. 4). For a model that considers more than two alternatives the 

probability that the individual n chooses the alternative i equals: 

𝑃!" =
!!!"

!!!"!
                                                                 (2) 

where Vni represents observable variables related to alternative i and j is the number of 

alternatives (Train, 2009, p. 37). 
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The problem of logit models is the independence of irrelevant alternatives (IIA). Train (2009, 

p. 45) claims that for any two alternatives the ratio of logit probabilities does not depend on any 

other alternatives. This means that the relative chances of choosing one alternative over another 

are the same, regardless of other available alternatives and their attributes (Train, 2009, p. 45). 

But this IIA property is not applicable in all situations. Train (2009, p. 46) demonstrates it on the 

well-known example of the red-bus-blue-bus problem. A new alternative is introduced to a model 

with equal choice probabilities between a car and a blue bus (exactly like a blue bus, just in red 

color), so the choice probabilities will be equally distributed among alternatives (𝑃!"# = 𝑃!"#$!#% =

𝑃!"#$%& =
!
!
); however, in real life, the original probability of taking the bus would be split between 

the two buses (Train, 2009, p. 46). To overcome the IIA problem of the multinomial logit model, a 

nested logit (NL) model can be used. 

2.3. Nested Logit Model 

According to Train (2009, p. 77), the NL model is suitable when the most similar to each other 

alternatives faced by an individual can be subdivided into sets, called nests. A tree diagram below 

demonstrates an example of a nested structure for the decision maker’s mode choices.  

 
Figure 2.Tree Diagram of Mode Choice (adapted from Train, 2009, p. 83) 

In Figure 2 the alternatives were grouped into auto and transit nests. This division can be affected 

by vehicle ownership that in this case forms two transport subsets. Regardless of the chosen 

structure, the one pattern will be applicable for NL models: the IIA problem remains within each 

nest but not across nests (Train, 2009, p. 78). Caused by the similarity of the alternatives in one 

nest, the cross-elasticities between them will be higher than between nests – in this way, an 

increase in the travel cost for rail will have a bigger impact on transit modes as they are more 

correlated. With a nesting structure, the red-bus-blue-bus problem from MNL models is omitted. 
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For instance, if the bus alternative is removed from this sample structure, the probability of 

individual driving by rail increases more than the probability of a carpool or driving the car alone. 

According to Train (2009, p. 79), if alternatives are grouped into k nests (B1, B2, …, Bk), the utility 

that a person obtains from alternative j in nest Bk can be expressed by Equation 1. However, εnjs 

are correlated within nests, so for any two alternatives j and m in nest BK, εnj is correlated with εnm 

(Train, 2009, p. 79). 

If the utility has to be calculated on the deeper level of the structure, the formula changes. Let us 

consider the tree diagram with a two-level nesting structure as an example, so the Bk nest will 

stand for “Transit” and the alternative j will stand for “Bus” in the k nest. Then the utility equation 

for the “Bus” alternative is: 

𝑈!" = 𝑊!" + 𝑌!" + 𝜀!"                                                        (3) 

where Wnk depends only on variables that describe nest k and Ynj depends on variables that 

describe the alternative j (Train, 2009, p. 82). The part named Ynj will be different for the “Rail” 

alternative in the “Transit” nest, while the Wnk part will remain the same for both the “Bus” and the 

“Rail” alternatives. However, for the nest “Auto” the Wnk component will be different.  

The probability of selecting the alternative i in nest Bk can be expressed as the product of two 

probabilities: 

𝑃!" = 𝑃!" !! ∙ 𝑃!!!                                                            (4) 

where Pni | Bk is the conditional probability of choosing the alternative i if nest Bk is chosen, and PnBk 

is the marginal probability of selecting an alternative in nest Bk (Train, 2009, p. 82). In this 

equation Pni | Bk can be expressed as: 

𝑃!" !! =
!
!!"
!!

!
!!"
!!!"!!

                                                             (5) 

where λk is the logsum coefficient (Train, 2009, p. 82). The values of this parameter denote how 

similar are the pairs of alternatives in the nest, where λk = 0 implies that pairs of alternatives in the 

nest are perfectly correlated and λk = 1 states that there is no correlation among mode pairs in the 

nest, so the NL model turns into the multinomial logit (MNL) model (Koppelman & Bhat, 2006, 

p. 163). 
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To express the marginal probability PnBk, Train (2009, p. 82) uses the following equation: 

𝑃!!! =
!!!"!!!!!"

!!!"!!!!!"!
!!!

                                                            (6) 

The author explains that the probability of choosing nest Bk depends on the expected utility that 

the individual obtains from the nest. This expected utility consists of Wnk – the utility that the 

person gets regardless of which alternative is chosen in the nest, and λkInk – an additional utility 

that the decision-maker n gets by being able to select the best alternative in nest Bk (Train, 2009, 

p. 83). 

Ink is the log of the denominator in conditional probability formula: 

𝐼!" = 𝑙𝑛 𝑒
!!"
!!!"!!                                                            (7) 

and represents the expected utility for the choice of alternatives within nest Bk and is the log of a 

sum of the nested utility exponents (Train, 2009, p. 83). 

Referring to the tree diagram that was taken as an example, the conditional probability that the 

decision-maker uses “Rail” if the nest “Transit” is chosen will be: 

𝑃!"#$ !"#$%&' =
!

!!𝑎!"
!!"#$%&'

!
!!"#$

!!"#$%&'!!
!!"#

!!"#$%&'

                                                    (8) 

and the marginal probability of choosing an alternative in the “Transit” nest will be: 

𝑃!"#$%&' =
!(!!"#$%&'!!!"#$%&'!!"#$%&')

!!!"#$!!(!!"#$%&'!!!"#$%&'!!"#$%&')
                                            (9) 

The tree diagram in Figure 2 considered as an example is one of many possible nested structures 

that can be created from four alternatives (carpool, drive-alone, bus, train). Different structures of 

NL models create different results and thus change model interpretation. The subsequent 

changes in travel forecast may be significant enough to influence decisions regarding 

transportation planning and capital investments. To select a suitable nesting structure, a 

combination of judgment about reasonable nesting structures and statistical hypothesis testing is 

needed (Koppelman & Bhat, 2006, p. 166). 
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2.4. Airport Mode Choice Models 

This study is initiated because at the moment there is a lack of insights into the current condition 

of ground access to Munich Airport and its influence on the travel mode choice behavior of airport 

users. Discrete choice models are widely used for travel demand modeling due to their ability to 

analyze the decision-making behavior of users who have to choose between mutually exclusive 

modes of transport. Such models are a powerful tool for forecasting the changes in travel 

behavior due to the modifications in mode attributes (new tariffs, faster connection, increased 

capacity), transportation network (new road or railway), or socioeconomic characteristics of an 

individual (increase in income, age changes). There are numerous examples of discrete choice 

models used in both air passenger and airport workers mode choice models. 

In his book, Train (2009, p. 71) provided an example of a successful implementation of a logit 

model for forecasting travel behavior of commuters after the launch of a new rail system in the 

San Francisco Bay area. Mode choice models were estimated on the commuters’ sample before 

the system launch and provided valuable information about factors that influence commuters’ 

decisions (Train, 2009, p. 71). After the Bay Area Rapid Transit system was open for service, the 

mode choices of the commuters were observed and the predicted share of new rail system users 

was compared with the observed share (Train, 2009, p. 71). Train (2009, p. 71) highlighted that 

the models’ prediction was good and far more precise than the forecasts that did not use discrete 

choice models. 

The discrete choice modeling was also used in the research for the new Athens International 

Airport. Psaraki and Abacoumkin (2002, p. 93) classified travelers in twelve types by 

characteristics that affected their modal choice – residence, trip purpose and destination. In the 

research they used a logit model to define ground access choices for each type of passenger at 

the existing airport. The resulting choice probabilities were applied to forecast the modal split for 

the new airport, so the proper planning of ground facilities could be done (Psaraki & Abacoumkin, 

2002).  

Birolini et al (2019) evaluated in their research a new direct rail connection to Milan-Bergamo 

Airport, considering five modes of transport (private car, drop-off, taxi, bus and train) and two 

market segments (business and non-business air travelers). The authors used a mixed 

multinomial logit model to study the behavior of outgoing passengers, to estimate their sensitivity 

to travel cost and travel time and to quantify access mode choice preferences of air passengers. 
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Later, Birolini et al (2019, p. 117) simulated the introduction of new rail service and used the 

estimated model coefficient to calculate the potential share of each transport alternative. 

Miyoshi and Rietveld (2014) used another type of discrete choice model to test the hypothetical 

carbon charge on car commuters that produce carbon dioxide emissions to access Manchester 

Airport. The authors researched the impact of this charge on travel behavior with the help of the 

two-level nested multinomial logit model, with one nest for car users (car alone, car with a 

passenger, passenger in a car and taxi) and another for alternative mode choices (bus, metro, 

walking and bicycle). The modal shares of commuters were calculated taking into account the 

travel time and travel cost and then were compared to the modal shares after the introduction of 

carbon charges (Miyoshi & Rietveld, 2014). The authors highlighted that there is a great effect of 

shifting from private to public transport on the overall damage costs of CO2. 

NASEM (2008) provided a comprehensive review of eight airport ground access mode choice 

models. The study includes information about the data used for modeling, the structure of the 

model, its explanatory variables, the market (air passengers or airport workers) and its 

segmentation. Some of these models are reviewed in more detail below. 

Based on an air passenger survey conducted in the Boston Logan International Airport in 1993, 

two models with separate coefficients for business and non-business trips were created – NL for 

residents and MNL for visitors (NASEM, 2008, p. 109). The broad list of considered variables 

included the travel time (in-vehicle and out-of-vehicle), the access time to the public modes by 

car, the travel cost, the number of transfers, the residence, the number of luggage pieces, the air 

party size, the number of air trips in the last year and whether travel expenses were covered by 

the employer (NASEM, 2008, p. 109). The resulting model was a part of the regional 

transportation planning in the Boston metropolitan area and was used to predict car trips to and 

from Boston Logan International Airport (NASEM, 2008, p. 112). 

The Chicago Airport Express Ridership Forecasting study was conducted in 2004 to understand 

how air passengers might change their mode choice behavior after the opening of an express 

train connection between the Chicago city center and O’Hare International and Midway (NASEM, 

2008, p. 113). Based on the results of revealed preference and stated preference surveys, two NL 

models with nine transport modes were created for travelers on business and non-business 

journeys (NASEM, 2008, p. 114). The utility function included the total travel time with different 

weights for the access, transfer and waiting time, travel cost with separate coefficients for two 

traveler income groups and two dummy variables – the availability of baggage check-in at the 

downtown terminal and the use of an intermediate station (NASEM, 2008, p. 114). Several 
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scenarios were tested to forecast the ridership and the revenue for the Airport Express train, 

including different fares, the availability of a free shuttle and various travel time assumptions 

(NASEM, 2008, p. 119).  

Another airport access mode choice model described by NASEM (2008, p. 124) was developed in 

2001 to evaluate the effect of a new transport link between bus rapid transit and Oakland 

International Airport on ridership compared with an existing shuttle bus connection. The 

multinomial logit model considered not only air passenger trips (subdivided by trip purpose and 

residence) but also trips of the airport employees, and included six explanatory variables – the 

travel cost, the household income, the waiting time, the walking distance and travel times by bus, 

rail and car (NASEM, 2008, p. 125). 

The described above studies suggest that the topic of airport access mode choice models is well 

studied. They also provide evidence that discrete choice modeling is a suitable and appropriate 

method for the problem considered in this research. However, there is no general approach to 

model the alterations in the mode choice behavior of airport users after changes in the 

transportation system (e.g. new transport connections) or transport service (e.g. new tariff). The 

researchers use different model structures, market segmentation, transport modes and 

explanatory variables in models for certain regions and even for airports in the same area. This 

conclusion suggests that there are all preconditions to create separate mode choice models for air 

travelers and employees of Munich Airport. The estimation results of these models will identify the 

attributes that play a role in travel decisions of airport users. The insights of this research can be 

used to create ground access strategies and evaluate transportation projects that can motivate 

passengers and employees of Munich Airport to switch from private vehicles to more sustainable 

modes of transport. 
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3. Methodology and Aim of the Thesis 

Over the last couple of decades, there were numerous studies in the field of airport transport 

accessibility, described in detail in Section 2.4. Nevertheless, the ground access at every airport is 

unique because of the airport’s location, passenger volumes and their socio-economic 

characteristics and even the economic development of the country. Comprehensive research 

made by NASEM (2008) is questioning the transferability of airport ground access models due to 

their wide-ranging specifications. Although the behavior of airport users seems to be similar in 

different regions, “after taking into account differences in air passenger or airport employee 

characteristics and transportation system service levels, it appears unlikely that current airport 

access mode choice models do this correctly” (NASEM, 2008, p. 70). That is why the case of 

Munich Airport has to be addressed individually to increase the accuracy of forecasting. 

Another important aspect considered in this study is the travel behavior of airport employees. 

Most of the studies mentioned in Chapter 2 do not examine this group of travelers during the 

development of mode choice models. However, their trips can comprise a significant share of the 

trips to and from the airport. It is essential to model mode choices of airport employees since their 

trips are performed regularly and create a high demand for airport ground access services. 

Based on the previous findings and practices, this research aims to estimate the impact of various 

railway projects on the mode choice behavior of passengers and workers of Munich Airport. The 

objectives are to create a discrete choice model for a part of the Munich metropolitan area and to 

confirm the assumption that the improvement in the existing railway service will increase the 

attractiveness of railway connections to the airport. The designed models can be used for future 

surface transport strategies and planning procedures in the area of Munich Airport. In the 

furtherance of this goal, a methodology described in Figure 3 will be implemented. 
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Figure 3. Research Methodology 

A process map in Figure 3 distinguishes four main steps: Data Collection, Data Processing and 

Analysis, Model Estimation and Model Implementation. During the first step, three main data 

sources are involved:  

1. Traffic Planning Department of Munich Airport – provided results of passenger and 

employee surveys; 
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2. Assistant Professorship of Modeling Spatial Mobility – shared the attributes of a synthetic 

population, a map of traffic analysis zones and level of service for each transport mode; 

3. Geofabrik – a download server of Openstreetmap for geospatial data that was used for 

spatial analysis in this research. 

After the collection of necessary data, all information went through certain processing stages. 

First, irrelevant trip records are filtered out and the data are structured for further analysis and 

merged into bigger data frames if necessary. Later, the missing information about the travel cost 

is added to a dataset. Then, the airport passengers’ data are subdivided into four groups by 

residence and travel purpose to create a separate sub-model for each of them. The processed 

data is later analyzed by socio-economic and trip characteristics. 

In the following step datasets for passengers and employees are transformed into a shape 

suitable for statistical processing with R software. The models are iteratively estimated with mlogit 

package for R to develop a utility function with explanatory variables and coefficients that have the 

closest match to the input data. The output of each model is evaluated until the function that 

results in the highest goodness of fit is defined for each group of airport users. During this stage, 

the significance and plausibility of all explanatory variables in the selected models are confirmed.  

Finally, the models are implemented to predict the impact of various railway projects on the modal 

shares of employees and passengers of Munich Airport. Construction projects are subdivided into 

four scenarios and compared to the base scenario, the variances in modal shares are analyzed 

spatially and by groups of the airport users. With this approach, the railway projects that wield 

major influence on the travel behavior of Munich Airport users can be identified. 
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4. Data Collection 

To conduct travel forecasting, prior data collection is necessary. Modeling mode choice behavior 

can be based on the information obtained by conducting a revealed or stated preference survey. 

The stated preference survey is used to examine choices that individuals will make among 

hypothetical alternatives. For example, the survey might describe a set of future public transport 

connections to the city center and ask an interviewee to choose one of the alternatives.  

In contrast, the revealed preference survey collects the data about actual choices that were made 

by individuals. In terms of mode choice modeling, the information obtained from the survey will 

describe the actual trip and its attributes – the origin, destination, trip purpose, travel time and 

mode of transport used. Additionally, it can also include information about decision-makers that is 

believed to affect their choices (such as age, gender, income, education, occupation, etc.). There 

are numerous examples of revealed preference surveys applied in other travel behavior 

researches. For instance, Birolini et al (2019) used the results of the survey conducted in Milan-

Bergamo Airport to evaluate the new rail service. To understand the mode choices made by 

commuters, Miyoshi and Rietveld (2014) used the data from a revealed preference survey of 

Manchester Airport staff. Finally, Psaraki and Abacoumkin (2002) studied access modal split with 

the help of a passenger survey conducted in the existing Athens Airport. 

This study uses two revealed preference surveys, conducted by the Traffic Planning Department 

of Munich Airport in 2018. The first one is a sample of almost 20,000 departing passengers and 

provides individual characteristics of each traveler, together with the mode that was used to reach 

the airport. The second one is a mode choice survey of around 3,000 Munich airport workers and 

contains information about the transport means used by employees to commute to their 

workplace. 

Another data that is used for model estimation is the synthetic population provided by the 

research group Modeling Spatial Mobility (MSM) led by Prof. Dr. Rolf Moeckel at the Technical 

University of Munich (https://www.msm.bgu.tum.de) free of charge. Moeckel and Moreno (2018) 

developed an algorithm that generated around 4.5 million individuals for the greater Munich 

metropolitan area. The attributes of the synthetic population created in their research are applied 

in this study since no other information on the personal level is available due to privacy reasons. 

The detailed overview of data used in this research is provided further in Sections 4.1-4.3 and 

Section 4.4 explains how different datasets were merged and processed before model estimation. 
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4.1. Synthetic Population 

The development of the synthetic population was done in the study area that covered the cities of 

Munich, Augsburg, Landshut, Ingolstadt and Rosenheim, together with their suburbs (Moeckel & 

Moreno, 2018, p. 4). This area contains a population of 4.5 million persons, 2.1 million households 

and 444 municipalities (Moeckel & Moreno, 2018, p. 4). Later, Moeckel and Moreno (2018) 

divided municipalities into traffic analysis zones (TAZs) using a gradual raster-based zone 

system. The resulting 4,953 TAZs are used for further analysis and define the study area of this 

research since the personal attributes essential for further modeling are only available for this 

territory. Figure 4 demonstrates the map of counties and cities in Bavaria (in color) divided into 

TAZs, with a red line delineating the study area. 

 
Figure 4. Study Area With TAZs. Adapted from data provided by MSM 
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The attributes of the synthetic population generated during the research of Moeckel and Moreno 

(2018) were provided in CSV format. The file contains 4,424,760 records with demographic 

characteristics of each individual. The variables relevant for this study and their description are 

listed in Table 1. Additionally, the MSM research group provided the aggregated travel times and 

the number of transfers for car, bus and train from each postal code zone in the study area. 

Table 1. Relevant Synthetic Population Data  

Variable Description 

Household ID Identification number of individual’s household 

Age Age of the individual in years 

Gender Male / female 

Occupation Toddler / student / employed / unemployed / retiree 

Income The annual income of an individual in Euro 

Home zone Number of TAZ where individual lives 

4.2. Mode Choice Survey of Munich Airport Workers 

In 2018, the Traffic Planning Department of Munich Airport examined what transport modes the 

employees of Munich airport and subsidiaries use to arrive at their workplace. The survey defines 

the current transport choices of the workers and their modal preferences. For the estimation of the 

model, only two variables extracted from the survey results are used: the postal code of the 

worker’s permanent residence and the chosen transport mode. The modes mentioned by 

employees include private car (used as driver or passenger), train, bus, motorbike and bicycle. 

Additionally, the total number of workers in each postal code area was provided. 

4.3. Passenger Survey of Munich Airport  

The same year Munich Airport carried out an investigation and questioned almost 20,000 

departing passengers. The survey contains personal attributes of passengers, information about 

their flight (such as travel purpose, destination country, whether the flight is outward or return) and 

the characteristics of their trip to the airport. Table 2 provides the variables chosen for modeling, 

together with the detailed description. 
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Table 2. Relevant Data From the Passenger Survey 

Variable Description 

Origin Postal code of travel origin 

Residence The trip to the airport starts from the place of residence 

Travel purpose Business / private 

Trip length Duration of a trip in days 

Age Age of the individual in years 

Gender Male / female 

Companion Number of accompanying persons in the trip to the airport terminal 

Income group 

1. under 500 € 
2. 500 – 1,000 € 
3. 1,000 – 1,500 € 
4. 1,500 – 2,000 € 
5. 2,000 – 2,500 € 
6. 2,500 – 3,000 € 
7. 3,000 – 3,500 € 
8. 3,500 – 4,000 € 
9. 4,000 € and more 

Mode Mode of transport used to arrive at the airport 

There are seven modes of transport in the passenger survey – private car, rental car, car sharing, 

taxi, shared taxi, bus and train. The taxi and shared taxi are later merged into taxi mode. 

4.4. Data Processing 

The subsequent procedure in the research is the preparation of data for the modeling process. 

The survey results are represented in the form of a table, where each record corresponds to the 

individual’s response. During the data processing, the records that meet one of these conditions 

are eliminated: 

• The transport mode is not specified; 

• The transport mode used for the trip is bicycle or motorbike (in airport workers survey); 

• The study area does not cover the postal code of the individual’s permanent residence. 

When the irrelevant records are filtered out from the surveys, two data frames are created with 

2,736 trip records of the airport employees and 13,858 trip records of the airport passengers. As 

the next step, the data frames have to be completed with variables that are essential to 

understand the transport choices.  
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4.4.1. Transfers, travel time and travel cost 

The distances, number of transfers and travel time for each TAZ are provided by the MSM 

research group. These variables are available for three modes (private car, bus and train) and are 

aggregated by postal codes. In the passenger survey, the travel time and distances for rental car, 

car sharing, taxi and shared taxi are the same as for the private car. The number of transfers for 

the mentioned above modes is set to zero. The resulting variables are matched with the 

corresponding postal code in each data frame record. If there is no connection by public transport 

from a certain postal code area, the travel time is specified as 10,000 minutes. This is done 

minimize the utility of such transport connections, so the individual is not likely to choose this 

route to the airport.  

Travel cost for public transport 

Both surveys for passengers and workers do not contain the travel cost for all origin-destination 

pairs. There is no platform or service that allows gathering this information automatically, so it was 

decided to collect this data manually. Due to the considerable number of records that have to be 

processed, the travel cost was aggregated at the county and city level. In fact, the travel cost is 

not uniform since the public transport fares vary depending on distance, time of the day, travel 

party size and age of the individual; also, some people have season tickets or special fares. 

Altogether, the study area covers five cities (Ingolstadt, München, Landshut, Rosenheim and 

Augsburg) and 24 counties (Aichach-Friedberg, Augsburg, Bad Tölz-Wolfratshausen, Dachau, 

Dillingen, Dingolfing-Landau, Donau-Ries, Ebersberg, Eichstätt, Erding, Freising, 

Fürstenfeldbruck, Kelheim, Landsberg am Lech, Landshut, Miesbach, Mühldorf am Inn, München, 

Neuburg-Schrobenhausen, Neumarkt, Pfaffenhofen an der Ilm, Rosenheim, Starnberg, Weilheim-

Schongau).  

The fares for the long-distance railway trips are collected from the Deutsche Bahn AG (DB) 

website and for the short-distance trips from the Münchner Verkehrs- und Tarifverbund (MVV) 

website. Since ticket prices on the DB website can change depending on the time of the day, day 

of the week and the time interval before the planned trip, for more consistent results it was 

decided to collect all data at once under the following conditions: 

• The trip is planned one month in advance; 

• The trip will be made during the off-peak hours in a workday; 

• Among the trips with the same duration and number of transfers, the trip with the lowest 
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fixed fare is chosen. 

Taking into consideration that the surveys were conducted in 2018, the costs for short-distance 

trips correspond to the MVV tariffs in the fourth quarter of 2018, before the entry into force of the 

new tariffs related to the completion of the Neufahrn rail link on December 9th, 2018 and the MVV 

tariff reform on December 15th, 2019.  

The available bus connections to the airport were checked through the route planner of Google 

Maps, the costs were obtained from the Flixbus, Lufthansa Express Bus, Ingolstädter 

Verkehrsgesellschaft and MVV websites. For the area covered by MVV, tariffs from the fourth 

quarter of 2018 are applied. During the data collection, the same conditions as for the train ticket 

fares were applied. It must be noted that 10 counties and one city do not have a bus connection 

even to the city of Munich, so the 1,000 Euros fare was applied to minimize the utility of traveling 

by bus from these areas. 

Travel cost for private car 

The travel cost for cars is subdivided into two parts. The first one represents compulsory costs 

that are based on the average fuel consumption per kilometer and petrol prices. According to the 

German online portal for statistics Statista, cars with petrol engines used on average 7.8 liters of 

petrol per 100 kilometers in 2018 (Ahlswede, 2020). The same source mentions the average 

annual price for a liter of premium gasoline: 145.6 cents (Hohmann, 2020). Thus, fixed costs of 

0.015 Euro per kilometer are included for modes like private car, rental car, car sharing, taxi and 

shared taxi. 

The second part takes into account additional costs that can be time-related (such as payments 

for parking, car rental and car sharing services) or distance-related (taxi rates). For travelers that 

drive to the airport by car, these costs are a parking charge. The passenger survey distinguishes 

five types of car users: 

1) Car passengers; 

2) Parked at the airport terminal; 

3) Parked in other parking spaces; 

4) Parked in an unspecified location; 

5) Parked in the airport surrounding. 

The parking fee is neglected for people that were brought to the airport and for the airport 

workers. For other Munich Airport passengers, there are two types of parking tariffs – terminal and 
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budget (Flughafen München GmbH, 2020, p. 1). Terminal parking lots are located right in 

between Terminal 1 and Terminal 2, so the departure gates are within walking distance. In 

contrast, budget parking spaces are positioned outside the airport, and passengers have to use 

S-Bahn (suburban rail) or bus transfer to reach the terminals. However, the fee for this parking 

area is lower. The parking rates in different areas of Munich Airport are provided in Table 3. 

Table 3. Parking Rates at Munich Airport 

Duration of parking Budget parking rate Terminal parking rate 

1 day 26 € 36 € 

2 days 36 € 72 € 

3 days 46 € 108 € 

4 days 56 € 144 € 

5 days 68 € 175 € 

6 days 76 € 187 € 

7 days 87 € 199 € 

8 - 13 days 26 € per day + 5 € 36 € per day + 15 € 

14 days 122 € 299 € 

15-21 days 26 € per day + 5 € 36 € per day + 15 € 

22 days 162 € 419 € 

Every next day + 5 € + 10 € 
Note. Reprinted from “Parken am Flughafen München”, by Flughafen München GmbH, 2020, p. 1, Munich: Author. 

Copyright 2020 by Flughafen München GmbH 

The price for travelers that did not specify their parking location is calculated according to the 

budget tariff, assuming that individuals tried to pay less. For those who are not willing to park at 

the airport premises, there are numerous parking areas nearby. It was decided to choose the one 

with the highest number of reviews on the website for parking space comparison (Ravenhorst, 

n.d.). It turned out to be Pfiffing Parken located in Schweig, five kilometers away from Munich 

Airport (Oslislo, 2018). With all that said, three parking tariffs (terminal, budget, outside the airport) 

are calculated based on the duration of the passenger’s trip – the number of days abroad defines 

the parking time and the corresponding price.  

Travel cost for car sharing and car rental 

The varying costs for car sharing are calculated based on the tariffs of SHARE NOW. It is the 

oldest and most significant car sharing service provider in the market that in 2019 united two other 

companies – car2go and DriveNow (SHARE NOW GmbH, 2019). Since the rental price per 
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minute varies from 20 to 36 cents, the average of 28 cents is taken, together with an additional 

13.99 Euros fee for dropping off the car at Munich Airport (SHARE NOW GmbH, n.d.). 

Car rental costs are usually calculated per day. The well-known German car rental company Sixt 

SE is one of the Munich Airport contractors and taken as a reference. The prices for their services 

are obtained from the Munich Airport car rental webpage (Sixt). The average fee per day is 

calculated among 20 different sedan models (as this is the most common vehicle type) excluding 

outliers in the price range. It results in 105 Euros and since the rental period is unknown, the 

rental costs are considered for one full day only. 

Travel cost for taxi and shared taxi 

In contrast to the mentioned costs, the taxi tariffs are based on the distance traveled. In Munich 

city, the price includes a minimum fare of 3.70 Euros, an order fee of 1.40 Euro and the price per 

kilometer – 2 Euros for distances up to five kilometers, 1.80 Euro for 5-10 kilometers range and 

1.70 Euro for trips over 10 kilometers (Taxi Munich, 2008). Since no rates for the shared taxi 

services were found, this mode is treated as taxis and the travel cost is calculated accordingly. 

4.4.2. Personal attributes of the airport workers 

The data provided by the Traffic Planning Department of Munich Airport does not contain personal 

attributes of airport workers due to privacy reasons. It was decided to combine the results of the 

mode choice survey of the airport workers with the synthetic population data using R software. 

The following methodology was applied: 

1) The total number of airport workers is summarized by postal code; 

2) The travel time to the airport is added to each of the postal codes; 

3) TAZs from the synthetic population are overlapped with the postal code areas in Bavaria 

using QGIS software; 

4) TAZs are matched with each postal code to define the number of workers in every TAZ; 

5) The employed people are extracted from the synthetic population, their number in each 

TAZ equals the number of airport workers living there; 

6) The annual income of every person is recalculated to the total monthly household income; 

7) Personal attributes of the employed people from the synthetic population are added to the 

survey results by pairing the TAZs. 

As a result, 24,884 records with individual characteristics of airport workers and the travel time of 
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their home-based-work trips were created. However, during the model estimation process, this 

approach resulted in a low significance of personal attributes such as age, gender and household 

income. The explanation behind it is a disadvantage of the matching procedure – the only 

parameter that could join the personal attributes from the synthetic population with the results of 

the airport workers survey was the TAZ identification number. Consequently, the chance that 

personal characteristics added to each employee do not correspond to reality is very high. For 

further research, it was decided to use only the findings derived from the airport workers survey 

and to estimate the model for airport workers based on the mode-specific variables only. Another 

attempt was made to estimate air passenger models with the synthetic population data, however, 

the number of relevant records with trips ending at the airport was insufficient. 

4.5. Data Analysis 

Content removed due to data usage restrictions  
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5. Model Estimation 

The models applied in this research are specified before the estimation process. This stage 

includes denoting the choice set, selecting explanatory variables and determining the model 

structure. As described in Section 4.5, the choice set for airport passengers includes private car, 

car sharing, rental car, taxi, bus and train while the choice set for employees is limited to three 

modes – private car, bus and train. The model for passengers of Munich Airport will be split into 

four sub-models: two for residents traveling for business (BR) or leisure (LR) purpose and two for 

visitors that have a business (BV) or private trip (LV). 

5.1. Variables and Correlations 

Table 4 provides an overview of the variables used during model estimation. The marks in the last 

two columns indicate which variables are considered in Air Passenger Models (APMs) and the 

Airport Employee Model (AEM). Note that the value of dummy variables could only be 0 or 1; 

usually, 1 stands for the presence of an attribute and 0 for the absence. For instance, if the 

person is living in the study area, the dummy variable takes on the value of 1 and 0 otherwise. 

Table 4. Variables Considered in Model Estimation  

Variable Type of variable APM AEM 

Individual-specific 

Residence Dummy ✔  

Travel purpose Dummy ✔  

Age Discrete ✔  

Gender Dummy ✔  

Number of accompanying people  Discrete ✔  

Monthly household income Discrete ✔  

Trip-specific 

Travel time Continuous ✔ ✔ 

Travel cost Continuous ✔ ✔ 

Number of transfers Continuous ✔ ✔ 

Travel distance Continuous ✔ ✔ 
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The correlation between the explanatory variables is checked before model estimation, as the 

discrete choice models can include only exogenous variables. The correlation matrices for the 

variables in APMs and AEM are shown in Figure 5 and Figure 6 respectively. Both were created 

with the help of the R package corrplot. The transfers for automotive vehicles, as well as the car 

rental costs, are excluded from the list of variables since their values are constant and a 

correlation can't be calculated. 

 
Figure 5. Correlation Matrix for APMs 

All individual-specific variables in Figure 5 have low correlation coefficients. At the same time, 

there is a very strong correlation between distance, travel time and travel cost for all modes of 

transport. This is explained by the distance-related nature of costs that was discussed in 

Section 4.4.1, and the same principle is applied in the structure of public transport costs – people 

traveling over short distances pay a lower tariff. A high correlation is also present between the 
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travel time and the number of transfers for bus and train. There is a minimal relation between the 

car travel cost and the distance since costs include a parking fee paid by the traveler.  

The same relation between distance, travel time and travel cost is observed in the correlation 

matrix for variables of the airport employee model. The costs of a trip by bus, train and car are 

directly proportional to the duration of the trip and the distance traveled, longer trips by public 

transport have a higher number of transfers. 

 
Figure 6. Correlation Matrix for the AEM 

5.2. Utility Function 

Once the choice sets and explanatory variables are defined for both models, the utility functions 

can be formulated. They are represented in the form of linear equations with different 

combinations of explanatory variables for every group of airport users. The utility function for each 

alternative consists of the known observable parameters V and the unknown part ε: 

𝑈!"! = 𝑉!"! + 𝜀!"!                                                         (10) 
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where 𝑈!"!  is the utility of j alternative (private car, car sharing, rental car, taxi, bus or train) for a 

decision-maker n that is traveling for p purpose (business, non-business and work). The 

observable part of the utility contains individual-specific and trip-specific variables: 

𝑉!"! = 𝑉!"#!$!#%&'! + 𝑉!"#$!                                                  (11) 

In the AEM only trip-specific variables are included since there are no personal attributes of 

airport workers available. The observable part consists of explanatory variables 𝑥!  that are 

multiplied by parameters 𝛽! defined in the stage of model estimation: 

𝑉!"#$! = 𝛽!!! ∙ 𝑥!!! + 𝛽!!! ∙ 𝑥!!! +. . .+𝛽!"! ∙ 𝑥!"!                                  (12) 

Additionally, every mode has an alternative-specific constant 𝛽!, which addresses mode attributes 

that are not explained by the other variables. The resulting utility function of alternative j for an 

individual n traveling for p purpose is: 

𝑈!"! = 𝛽!!! + 𝑉!"#!$!#%&'! + 𝑉!"#$! + 𝜀!"!                                      (13) 

The private car is chosen as the base alternative for both models and thus its alternative-specific 

constant 𝛽! is set to 0.  

5.3. Model Estimation with R Software 

R is a programming tool used for statistical processing and graphical visualization of data. The 

mlogit package for R was developed by Yves Croissan to estimate the multinomial logit models 

with the individual- and/or alternative-specific variables (n.d., p. 1). According to the author, the 

package also allows extending the standard MNL model to nested, heteroscedastic, or random 

parameter models. 

Prior model estimation the datasets for passengers and employees are converted into a suitable 

shape. The mlogit function has two types of the data format: wide and long. The long shape is 

used, if each row of a data frame represents one alternative (mode) for each observation and 

wide shape is applied if each row is a choice (Croissant, n.d., p. 3). In this thesis, the wide data 

format is used, with separate columns for mode- and individual-specific variables.  

After reshaping the data, the mlogit formula is used for the estimation of the MNL or the NL 

model. The author describes three parts of the formula (2019, p. 17): 
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1. The alternative-specific variables with a generic coefficient (e.g. travel cost); 

2. The individual-specific variables (e.g. age, income, gender, size of a household, etc.); 

3. The alternative-specific variables with alternative specific coefficients (e.g. travel time). 

In the models for airport passengers and employees, the travel cost is considered as the generic 

parameter – it makes no difference to a traveler whether 10 Euros are spent for a bus or train 

ticket. The travel times are included in the third part of the formula under the assumption that 

changes in travel time are perceived differently in every mode of transport.  

Model estimation is an iterative process aimed at the development of function with explanatory 

variables and coefficients that have the closest match to the input data. The model estimation 

results were improved using the following approaches: 

• Merging alternatives into clusters;   

• Gradually addition of variables, starting from trip-specific to individual-specific ones; 

• Transformation of selected variables using quadratic polynomial function, logarithmic and 

quadratic forms of variables, intercept removal; 

• Comparison of the output after introducing a variable with alternative-specific or generic 

coefficients. 

The MNL and NL models for airport passengers and workers were created with the help of R 

software. Various combinations and forms of explanatory variables were tested. The statistical 

validity of every model was assessed using log-likelihood function value and McFadden R2. The 

next sections describe the consecutive process of the model estimation aimed at the development 

of the model with the highest predictive performance. 

5.4. Multinomial Logit Model 

At first, each model was estimated with the six and three modes of transport for the airport’s 

passengers and employees respectively. However, the outcome revealed very low maximum 

likelihood values, since there are modes with very few observations. Based on the mode 

characteristics, the alternatives were merged into different combinations of clusters until the 

highest predictive performance of the model was achieved. Table 5 provides a comparison of two 

models for airport employees. While the utility equation remains the same, two merging 

approaches were tested. In the first one, the model is estimated with bus and train as separate 

modes, while the second one has only auto and transit groups.  
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Table 5. Comparison of the AEM with Three and Two Modes 

AEM with 3 modes AEM with 2 modes 

Mode Parameter Estimate Significance Mode Parameter Estimate Significance 

Bus Intercept -1.70157 *** Transit Intercept -0.747848 *** 

Train Intercept -1.33983 *** Auto Total travel time -4.902949 *** 

Car Total travel time -4.24663 *** Transit Total travel time -1.756742 *** 

Bus Total travel time -1.69311 ***     

Train Total travel time -1.52012 ***    *** 

 Log-likelihood -1487.6  Log-likelihood -1118.5  

 McFadden’s R2 0.12682  McFadden’s R2 0.20418  

Note. Significance code: *** 99.9% significance level, ** 99% significance level, * 95% significance level 

When the values of log-likelihood and McFadden’s R2 are compared, the model performance 

improves with the lower number of alternative groups. As a result, it was decided to make further 

estimations of APMs and the AEM with auto and transit mode clusters only. Since the number of 

alternatives is reduced to two, the MNL model turns into a binomial logit model. The estimation 

results for models with three modes that have the best fit to the input data can be found in 

Appendix A for each group of passengers. 

After defining the alternative groups, the structure of the model has to be determined. Figure 5 

and Figure 6 in Section 5.1 reveal a strong correlation between the number of transfers and the 

travel time – therefore, these variables cannot be introduced into the model simultaneously. To 

overcome this limitation, the value of time and transfer penalties are involved in the estimation 

process. 

5.4.1. Transfer Penalty 

The number of transfers is one of the attributes that represent the level of service offered by each 

mode. It is important to include this variable into the models since the reduction in the number of 

transfers or provision of direct connections is one of the transit service improvement indicators 

that will be used to evaluate the new railway connections in Chapter 7. Moreover, transfers play 

an essential role in modal choices of airport passengers – they increase the likelihood of a missed 

connection and make a trip more complex for travelers that are not familiar with the public 

transport network.   
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Transfers have a certain disutility for the traveler and are comparable to the out-of-vehicle waiting 

time. It was decided to include the number of transfers into the model by converting this variable 

into time with the help of transfer penalties. The review of the relevant literature reveals different 

values of the equivalent in-vehicle minutes (EIVM) for every transfer, represented in Table 6. 

Table 6. Transfer Penalties in Other Studies  

Study Country Transfer penalty 

Garcia-Martinez, A., Cascajo, R., Jara-Diaz, 
S. R., Chowdhury, S., & Monzon, A. (2018). 
Transfer penalties in multimodal public 
transport networks 

Spain 

1 transfer  15.2 EIVM 

2 transfers  17.7 EIVM 

Toronto Transit Commission. (2008, April). 
Service Improvements for 2008 Canada Each transfer 10 EIVM 

Since the values in the first study are available for a maximum of two transfers, the values for the 

higher number of transfers were calculated by estimating the percentage difference between 

EIVM for one and two transfers. The time penalty for each transfer was sequentially increased by 

15% (e.g. penalty for 5 transfers equals penalty for 4 transfers * 1.15). 

Later, the transfer penalty values obtained in the Spanish research resulted in a better fitness of 

APMs and the AEM during the estimation process. Therefore, these penalties were used to 

transform the number of transfers into EIVM and create a new variable – the total travel time, 

which is the sum of the travel time and the transfer penalty. In the case of direct connections, 

travel time equals the total travel time. The measures of models’ fit (represented by log-likelihood 

and McFadden’s R2) with different values of transfer penalties are compared in Appendix B. The 

values used in the Spanish and Canadian researches are referred to as “progressive” and 

“uniform” respectively. 

5.4.2. Value of Time 

Value of time (VOT) is a factor that reflects the individual’s willingness to pay for the time saving. 

Since both the travel time and cost are important factors in the evaluation of the airport ground 

access improvement, the VOT is used to estimate the travel time as monetary costs. There are 

two approaches to introduce the VOT to the model. The first one is a so-called “implied value of 

time” that can be obtained from the β-coefficients of the model, where the travel time (TT) and the 

travel cost (TC) are independent variables: 

𝑈 = 𝛽!"#$ ∙ 𝑇𝑇 + 𝛽!"#$ ∙ 𝑇𝐶                                            (14) 



 

 

	
Model Estimation 

	
	 	

31 

The ratio of the travel time and travel cost parameters define the VOT: 

𝑉𝑂𝑇 = !!"#$
!!"#$

                                                         (15) 

However, due to the high correlation of time and costs for certain modes of transport (e.g. car 

sharing, car rental, private car and taxi), their coefficients resulted in implausible values – the 

estimate for a cost usually had a positive sign that is not consistent with the utility maximization 

rule. Thus, it was decided to use another approach and use the asserted VOT from the previous 

researches. 

The guidance for the valuation of travel time made by the U.S. Department of Transportation 

(2016) provides different values of travel time savings for business and leisure passengers. For 

intercity personal travel by surface modes, the VOT is estimated at 70% of the hourly median 

household income, while the VOT for intercity business travel and transfer time is valued at 100% 

of the hourly income (U.S. Department of Transportation, 2016). In the guidance of the U.S. 

Department of Transportation (2016, p. 11), the nationwide median annual household income in 

the U.S. comprised 56,516 USD in 2015 and was divided by 2,080 to yield an income of 

27.20 USD per hour. 

The same calculations are made to obtain an hourly income for this research. According to the 

Federal Statistical Office of Germany (Statistisches Bundesamt, 2020), the median monthly gross 

household income in 2018 was 4,846 Euros. In the same year, the mean working time for full-time 

workers in Germany was 41 hours per week (Statistisches Bundesamt, 2019), which makes it 

approximately 2,140 hours per year. 

The income per hour Ih can be calculated by multiplying the monthly income Im by 12 months and 

dividing the obtained value by the annual working time WTy in hours: 

𝐼! =
!! ∙ !"
!"!

= !,!"# !"#$% ∙ !"
!,!"# !!"#$

= 27.2 [𝐸𝑢𝑟𝑜𝑠/ℎ𝑜𝑢𝑟]                                    (16) 

Consequently, the VOT for private trips comprises 70% of the hourly income and equals 19 Euros 

per hour, while the VOT for business travelers and the transfers equals 27.2 Euros per hour. The 

value of 27.2 Euros per hour is also used for the airport employees’ work trips. The results of the 

VOT calculations for each group of the airport users are demonstrated in Table 7. 
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Table 7. Time Values in Euros per Hour for APMs and the AEM 

Time 

value 

Model 

APM–BR APM–LR APM–BV APM–LV AEM 

VOT 27.2 19 27.2 19 27.2 

VOTtr 27.2 

Another set of VOT in the context of travel distance was considered during this research. In the 

study focused on the estimation of values of time and reliability, Axhausen et al. (2015) created a 

non-linear model based on the German population survey and calculated the time values based 

on the distance, mode of transport and travel purpose. The VOT values for leisure and work trips 

by auto and transit modes are represented in Table 8. 

Table 8. Distance Related Time Values in Euros per Hour by Purpose and Transport Mode  

Purpose Mode 
Distance, km 

<10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-125 

B
us

in
es

s Auto 3.68 5.01 6.72 7.72 8.60 9.16 9.67 10.08 10.49 10.76 11.25 

Transit 4.10 4.50 5.51 6.10 6.62 6.95 7.26 7.50 7.74 7.90 8.19 

Le
is

ur
e Auto 3.44 5.01 6.29 7.04 7.70 8.13 8.51 8.81 9.12 9.33 9.69 

Transit 3.97 4.22 5.22 5.81 6.32 6.66 6.95 7.19 7.43 7.59 7.88 

Note. Reprinted from “Ermittlung von Bewertungsansätzen für Reisezeiten und Zuverlässigkeit auf Basis der Schätzung 

eines Modells für modale Verlagerungen im nicht-gewerblichen und gewerblichen Personenverkehr für die 

Bundesverkehrswegeplanung”, by Axhausen et al., 2015, pp. 94-95, Zürich: ETH Zürich, Institut für Verkehrsplanung 

und Transportsysteme. Copyright 2015 by ETH  

The models were estimated twice using income- and distance-related values of time to choose 

VOT that improve the model performance. The VOT for travel time and the VOTtr for transfers 

were used to calculate the generalized cost GC by converting the travel time TT and the transfer 

penalty TP into the monetary values: 

   𝐺𝐶 = 𝑉𝑂𝑇 ∙ 𝑇𝑇 + 𝑉𝑂𝑇!" ∙ 𝑇𝑃 + 𝑇𝐶                                      (17) 
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The VOT can be also used to transform the travel cost into time and thus, calculate the 

generalized time GT: 

   𝐺𝑇 = 𝑇𝑇 + 𝑇𝑃 + !"
!"#

                                                (18) 

Table 9 provides an overview of the estimation results for the AEM and four sub-models for air 

passengers, with auto and transit modes and generalized cost or generalized time as a variable. 

In Option 1 the VOT is based on the hourly income, while for Option 2 it depends on the distance. 

Table 9. Log-likelihood and McFadden’s R2 Values in APMs and the AEM with Different VOT 

 Generalized cost Generalized time 

Model Option 1 Option 2 Option 1 Option 2 

 Log-likelihood 

APM–BR -734.4 -808.67 -734.4 -708.9 

APM–LR -2527.7 -2898.2 -2531.7 -2621.9 

APM–BV -628.8 -681.64 -628.8 -529.18 

APM–LV -975.35 -1179.5 -977.95 -942.58 

AEM -1247.5 -1376.1 -1247.5 -1371.7 

 McFadden’s R2 

APM–BR 0.49677 0.44588 0.49677 0.51425 

APM–LR 0.33494 0.23747 0.33388 0.31015 

APM–BV 0.67304 0.64556 0.67304 0.72484 

APM–LV 0.57197 0.48239 0.57084 0.58636 

AEM 0.11241 0.021704 0.11241 0.024029 

Table 9 shows that in the case of generalized cost the log-likelihood and McFadden’s R2 values 

improve with the VOT based on the income and travel purpose (marked in bold). At the same 

time, the model with generalized time has a better fit when using Option 2 of VOT. However, 

models for airport passengers with utility function based on generalized cost or generalized time 

were not demonstrating the plausible signs for the auto alternative and therefore, were rejected. 
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5.5. Nested Logit Model 

In a multinomial logit model, all the alternatives are mutually exclusive. Since some of the 

alternatives considered in the model are more similar than others, nested structures are tested to 

consider the correlation within groups of alternatives. Examining different clustering patterns 

identified the most appropriate and reasonable nesting structure of models: 

1. Private car, taxi, car rental and car sharing in Auto nest, bus and train in Transit nest; 

2. Taxi, car rental and car sharing in Hire nest, bus and train in Transit nest and Auto as an 

independent mode on the level of two mentioned above nests; 

3. Private car, taxi, car rental and car sharing in Auto nest; Bus and Train as independent 

modes; 

4. Taxi, car rental and car sharing in Hire nest, Auto, Bus and Train as independent modes. 

Created nested structures are evaluated by the logsum parameter or nesting coefficient. It is a 

function of the correlation between the unobserved portions for alternative pairs; if its values fall 

outside the range between 0 and 1, the NL model is rejected (Koppelman & Bhat, 2006, p. 163). 

However, the values of this parameter estimated for each group of airport users are not consistent 

with the theory. 

Further researches of the NL models for Munich Airport should be done with the help of other 

software for statistical analysis due to R limitations – the nesting coefficient cannot be adjusted in 

the mlogit package. For instance, the Python package Biogeme is focused on discrete mode 

choice models and includes necessary tools for NL model estimation. Other alternative software 

for the estimation and analysis of NL models include the NLOGIT 6 package by Econometric 

Software and the GAUSS DC application by Aptech Systems. After the exclusion of NL models 

due to the inconsistent output, the estimation results in Chapter 6 are provided for MNL models. 
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6. Estimation Results 

The best fit of the model to the survey data is achieved by introducing the total travel time and 

personal attributes (for APMs only) to the utility equation. All estimated parameters in the selected 

models have at least a 95% level of significance, shown in the Sig column of Table 10, and 

plausible signs that are in line with the theory. The values of the parameters are discussed in 

more detail further in this chapter. For the complete output of the mlogit function please refer to 

Appendix C. 

Table 10. Estimation Results for APMs and the AEM 

  APM–BR APM–LR  APM–BV  APM–LV  AEM 

Mode Parameter Estimate Sig Estimate Sig Estimate Sig Estimate Sig Estimate Sig 

Transit Intercept 3.2802258 *** 4.0262908 *** 5.06111 *** 5.476835 *** -0.747848 *** 

Transit Age -0.0183097 ** -0.0076957 **       

Transit Gender 0.4435049 **     -0.303748 *   

Transit Income     -0.14519 *** -0.048046 *   

Transit Travel party -1.7131435 *** -1.1140557 ***   -1.146553 ***   

Auto Total travel time -2.8660224 *** -2.0970262 *** -2.32665 *** -3.107661 *** -4.902949 *** 

Transit Total travel time -2.4085491 *** -4.2807070 *** -4.38558 *** -4.944257 *** -1.756742 *** 

 Log-likelihood -776.07 -2235.8 -871.45 -845.34 -1118.5 

 McFadden’s R2 0.46822 0.41175 0.54686 0.62903 0.20418 

Note. Significance code: *** 99.9% significance level, ** 99% significance level, * 95% significance level 

McFadden’s R2 values demonstrate the overall goodness of fit of the model, as well as the log-

likelihood test results. McFadden’s R2 measures the variability proportion that can be explained, 

and the values close to 1 indicate a higher predictive value of the model. Table 10 illustrates that 

this value is the highest for visitors that have personal trips (LV model). 

The likelihood function evaluates how fit is the model to input data with given unknown 

parameters’ values, and the log-likelihood values are always negative. The likelihood ratio test 

(LRT) compares the log-likelihood values of two models to assess their goodness of fit. This test 

is carried out to determine whether the variables introduced in each of the estimated models 

improve their accuracy and fit the input data.  
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Table 11 demonstrates the log-likelihood values of complete models and models estimated only 

with constants. The values of the complete model improve in contrast to the constants-only model 

on average by 51%, with the most considerable change for the LV model (~63%). 

Table 11. Log-likelihood Values and the LRT Results 

Model Log-likelihood values LRT results 

 Constants-only model Complete model p-value Significance 

APM–BR -1459.4 -776.07 < 2.2e-16 *** 

APM–LR -3800.7 -2235.8 < 2.2e-16 *** 

APM–BV -1923.1 -871.45 < 2.2e-16 *** 

APM–LV -2278.7 -845.34 < 2.2e-16 *** 

AEM -1405.4 -1118.5 < 2.2e-16 *** 

Note. Significance code: *** 99.9% significance level, ** 99% significance level, * 95% significance level 

The LRT is conducted for complete and constants-only models with generic function lrtest of 

lmtest package for R. The resulting p-values shown in Table 11 are very close to zero. Thus, we 

can confirm at 99.9% significance level that individual- and trip-specific variables increase the 

explanatory power of the models and improve their fit to the actual data. The improvement of log-

likelihood values of the AEM is moderate compared to APMs, since the utility function is based on 

one variable (total travel time) only. Nevertheless, the LRT results verify the APMs with the total 

travel time parameter fit to the data considerably better at the same significance level. 

Another method to assess the goodness of fit of the model is to define how closely the average 

probabilities from the input data match the probabilities of choosing auto or transit mode, 

estimated by the model. The actual probabilities of APMs and the AEM are compared to predicted 

probabilities in Table 12, and it can be noted that the probabilities estimated by each model have 

the same values as the ones in the input data. This indicates a very good model fit, but it is 

essential to recall that all modes were merged into two groups, which simplifies the created 

models. 
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Table 12. Actual and Predicted Probabilities of APMs and the AEM 

Model Actual probabilities Predicted probabilities 

 Auto Transit Auto Transit 

APM–BR 0.6125 0.3875 0.6125 0.3875 

APM–LR 0.5558 0.4442 0.5558 0.4442 

APM–BV 0.5918 0.4082 0.5918 0.4082 

APM–LV 0.5281 0.4719 0.5281 0.4719 

AEM 0.7902 0.2098 0.7902 0.2098 

The estimated parameters are used in utility equation as coefficient values and vary from model to 

model. As there are no individual-specific variables for airport workers, the total travel time is the 

only parameter of the AEM. The number of accompanying people influences the mode choice of 

all passengers except for business visitors. The monthly household income is an explanatory 

variable in both models for visitors. The age of airport passengers is a significant parameter only 

for residents of the study area, while gender is considered in APMs for business residents and 

leisure visitors. 

The coefficients of each model presented in Table 10 are consistent with the theory. As the auto 

is chosen as the base mode for APMs and the AEM, the further discussion of estimated 

parameter values is made with respect to it. 

Total travel time 

The total travel time parameter, comprised of the journey time and the transfer penalties, is 

present in a model for each airport user group. It has a negative sign that implies that if this value 

increases, the attractiveness of the transport mode is reduced. The total travel time estimate is 

the most negative for the transit trips of leisure visitors, followed by car trips of airport employees. 

This means that the visitors that have a non-business journey are more sensitive to changes in 

the duration of their trip by public transport to Munich Airport. There is a certain tendency among 

LR, BV and LV passengers that with the increase of total travel time the transit trips become less 

attractive compared to traveling by auto. An exception to this are residents that have a business 

trip – their time sensitivity is almost the same for trips by private and public transport.  
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Travel party 

The number of accompanying people is considered in all APMs except the model for business 

visitors, and all coefficients estimated for this parameter are negative. The growth of the travel 

party size makes traveling by transit modes less attractive compared to the auto. The coefficient 

values are very alike, with the most negative of them for the BR sub-model – it indicates that this 

passenger group has a higher sensitivity to a number of accompanying people compared to 

others. 

Monthly household income 

As expected, the value of the income parameter used in both APMs for visitors has a negative 

sign. This means that in comparison to auto, people with a higher monthly household income are 

less likely to commute to Munich Airport by public transport. The probability of choosing transit 

modes is lower for business travelers compared to leisure trips of passengers within the same 

income group.  

Gender 

In BR and LV sub-models, this dummy variable takes on the value of 1 for male travelers. Male 

residents on a business trip are more likely to choose transit modes to reach the airport than 

women, while female travelers have a higher probability to make this choice in the LV group. 

Age 

Older residents in the study area are less likely to choose public transport – this can be concluded 

from the negative value of age parameter in BR and LR models. Traveling by transit can imply 

certain service unreliability and the need to make transfers. This creates some decrease in the 

comfort of a trip that is easier to accept for young passengers. 
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7. Scenario Analysis 

This thesis aims to assess the impact of the new railway connections to Munich Airport on the 

mode choices of airport passengers and employees. In the study area, there are several railway 

projects – some of them are currently under construction, some are on the planning stage, or 

were postponed for a variety of reasons. They imply certain reductions in travel time and the 

number of transfers by providing express connections on the existing routes, or by the creation of 

new railway lines and links. These projects are divided into several scenarios, their influence on 

the airport users’ travel behavior is evaluated with the APMs and AEM discussed in Chapter 6. 

The descriptions of each scenario, together with a spatial analysis of the results, are presented in 

Sections 7.2-7.7. Geospatial data used in QGIS to visualize the location of railways in each 

scenario was downloaded from Geofabrik (2018), a geodata download server of Openstreetmap. 

The predictions are made with generic function predict of car package for R. 

7.1. Catchment Area 

Before testing each scenario, certain assumptions about the catchment area should be made. 

First, each scenario is tested by changing the travel time and number of transfers across the 

whole city and county affected. Despite the simplicity of this method, it is discarded after 

consideration of predicted modal shares. They are slightly different compared to the results 

described further; however, in many cases, the postal code zones that are considered with this 

approach were located between two railway lines or were closer to the railway connection in 

another county, which made the changes in trip-specific variables for these areas questionable. 

To avoid these issues, the distance-related approach is adopted for every scenario.  

In the regional public transport plan of MVV, a radius of 1,000 m is used for the catchment area of 

the suburban rail (MVV GmbH, 2018, p. 68). Based on this document, the trip-specific variables 

are modified in the postal code areas that are located within 1,000 m radius from the involved 

railway lines. It is worth mentioning that in some scenarios the corresponding adjustments are 

made in the areas around the urban and suburban rails in Munich: they might not be located in 

the vicinity of new railway projects, but are connected to them and produce changes in the travel 

time for the travelers that are using these networks to reach Munich Airport.   

To justify this choice of the catchment area, the radii of 500 m and 2,000 m were also tested. The 

produced results are very similar to the initial output with 1,000 m catchment area. Table 13 

compares the predicted transit shares with 500 m and 2,000 m radii with the results obtained with 
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1,000 m radius. In the case of 2,000 m, as expected, there is a slight increase in the share of 

transit, since the catchment area expanded. The changes are out of pattern with Scenario 2 and 

2,000 m radius of the catchment area, as some postal code zones were included in the areas with 

a higher decrease in travel time.  

Table 13. The Difference in Transit Shares Compared to Results with 1,000 m Catchment Area 

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 500 m 2,000 m 500 m 2,000 m 500 m 2,000 m 500 m 2,000 m 

APM–BR -0.05% 0.12% -1.07% 0.19% -0.18% 0.44% -0.79% 0.60% 

APM–BV 0.00% 0.05% -0.44% -0.05% -0.07% 0.11% -0.37% 0.19% 

APM–LR -0.03% 0.25% -1.19% 0.35% -0.10% 0.31% -0.75% 0.84% 

APM–LV 0.00% 0.03% -0.44% -0.07% -0.03% 0.12% -0.28% 0.21% 

AEM -0.12% 0.35% -0.37% -0.61% -0.07% 0.43% -0.73% 0.58% 

The opposite effect is observed with a 500 m radius – the transit shares are lower in contrast to 

1,000 m catchment area. When the catchment area is narrowed, there is a risk of not including 

certain postal code zones around the railways. This can be noted in Scenario 2, where business 

residents have a 1.07% decrease in transit trips with a 500 m radius and 0.19% increase with 

2,000 m radius. For some scenarios (e.g. Scenario 1 and Scenario 3), there is a slight difference 

in modal shares between the 1,000 m and 500 m radii of the catchment area.  

Given the mentioned drawbacks of 500 m and 2,000 m radii, it is decided to analyze the scenarios 

with 1,000 m radius of the catchment area, as defined in the regional public transport plan of MVV 

(2018). The resulting modal shares for each model with 500 m and 2,000 m radii can be found in 

Appendix D.  

7.2. Scenario 1: Erding Ring Closure  

 

Content removed due to data usage restrictions 
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7.3. Scenario 2: Munich Ring Railway 

Content removed due to data usage restrictions 

7.4. Scenario 3: Transrapid Munich 

Content removed due to data usage restrictions 

7.5. Scenario 4: Airport Express 

Content removed due to data usage restrictions 

7.6. Direct Bus Connections Scenario 

Content removed due to data usage restrictions 
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7.7. Spatial Analysis 

Content removed due to data usage restrictions 
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8. Conclusions 

The growing demand for air traveling increases the number of trips to the airport, which makes the 

ground access an essential factor in the airport attractiveness. Another motivating factor to study 

the transport accessibility of Munich Airport is the desire to investigate the effect of new rail 

connections on mode choices of airport workers and passengers. 

This thesis describes the process of discrete mode choice models estimation to assess the 

variations of travel behavior in the response to changes in existing railway services. The models 

were based on revealed preference surveys of air passengers and employees of Munich Airport, 

together with the aggregated travel times and the number of transfers provided by the MSM 

research group. The model for air passengers was segmented into four sub-models by residence 

and travel purposes to account for distinctions of different market segments. The initial set of 

transport alternatives was merged into auto and transit clusters. 

The models were iteratively estimated with various combinations and forms of explanatory 

variables using R software. The negative coefficients obtained for total travel time confirm that the 

increase in travel time and the number of transfers reduces the utility of transit. Other variables 

such as gender, age, number of accompanying people and monthly household income also 

influence the travel behavior of air passengers. The growth of the travel party size makes traveling 

by transit modes less attractive compared to auto. Senior citizens and people with higher income 

tend to commute to Munich Airport by auto. Male residents on a business trip are more likely to 

choose transit modes to reach the airport than women, while female visitors have a higher 

probability to make this choice during a leisure trip. All estimated parameters have at least a 95% 

level of significance and theoretically consistent signs. The statistical validity of every model was 

confirmed by log-likelihood and McFadden R2 values. 

The models estimated for each group of airport users were applied to test four scenarios that 

suggest various improvements of the railway network in the study area. The comparison of initial 

and estimated mode shares confirms the assumption that the reduction in total travel time due to 

the provision of new rail links or the improvement of existing railway connections increases the 

attractiveness of public transport. In certain scenarios, the share of transit trips even became 

dominant among some groups of air passengers. The spatial analysis identified areas and airport 

users who demonstrated the most significant increase in the share of trips by public transport in 

each of the scenarios. Plotting the predicted changes in transit shares for air passengers and 
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airport employees revealed railway projects that have the most favorable impact on the 

attractiveness of public transport for each of the airport user groups.  

The findings of this research create a foundation for ground transportation planning in the area of 

Munich Airport that takes into account factors influencing the travel behavior of air passengers 

and airport employees. The designed models can help to evaluate the concepts for improving 

transport accessibility of the airport and determine projects that will result in the highest growth of 

sustainable transport modes share. However, before the application of these models, they must 

be calibrated to improve the match to the observed travel behavior. Ideally, the datasets different 

from the ones used for the model estimation shall be engaged in the validation process.  

8.1. Limitations and Suggestions for Further Research 

This study has certain limitations that should be tackled in future research: 

1. Completeness and accuracy of the input data 

The results of this study confirm the importance of individual-specific variables. Comparing the 

estimation results of APMs and the AEM, it can be observed that the overall AEM’s goodness of 

fit is lower. The travel costs of bus and train were aggregated on the county and city level and did 

not account for possible variations in the ticket prices. Other assumptions were made for the car 

rental and shared taxi costs due to the lack of information about these services. Higher data 

accuracy would create a possibility to test scenarios that involve changes in costs, which is an 

important transportation characteristic. More reliable travel cost information can also have a 

positive impact on the implied value of time estimation that would more accurately reflect the 

willingness to pay of each airport user group.  

2. Model structure 

The alternatives in the APMs and the AEM were merged into auto and transit clusters, as the 

survey results indicated a few observations for certain modes. This improved the models’ 

goodness of fit, but at the same time oversimplified them. The collection of more input data would 

allow an estimation of models with a more precise distinction among available transport modes 

with no loss in models’ performance.  
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3. Scenarios tested 

The new travel times and the number of transfers suggested by different railway projects were 

missing for certain areas. These values had to be approximated based on the data available and 

their validity cannot be checked.  

Several suggestions for further research based on this study can be offered. The aggregated 

travel times used for the models indicate only the duration of the trip from origin to destination. 

Estimation of separate coefficients for access, egress, waiting and in-vehicle time would create a 

more complex time component, but increase the accuracy of predictions. Additionally, splitting the 

travel time into these components can provide insights into their role in the mode choice decisions 

of air passengers and airport employees. 

The models chosen in this research are often criticized for their IIA properties. NL models help to 

overcome this problem and are worth being enlightened in more detail in future studies of mode 

choice models for Munich Airport. However, they shall be estimated with other software for 

statistical analysis. 

To define the catchment area of the considered railway concepts, the 1,000 m radius was 

adopted from the regional public transport plan and used for scenarios testing. Another study can 

be conducted with a focus on catchment area estimation with respect to land use and population 

distribution.  

The evaluation of bus services is another promising topic in the research of Munich Airport ground 

accessibility. The direct bus connections can result in an increase in the share of trips by public 

transport comparable to changes associated with new railway links. For such research, prior 

inspection and evaluation of the existing bus city-terminal services is advised. 

One final comment should be done concerning the transferability of the estimated mode choice 

models for Munich Airport. The peculiarities of the airport’s location, level of service provided by 

the surrounding transportation system, personal characteristics of the air passengers and 

employees challenge the implementation of the estimated models in other regions. It is 

recommended to address the other study cases individually to increase the forecasting accuracy. 
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Appendix A. Estimation results for APMs with three modes 

  APM–BR APM–LR APM–BV APM–LV 

Mode Parameter Estimate Sig Estimate Sig Estimate Sig Estimate Sig 

Bus Intercept 1.091263 * 0.315783 * -1.1154364 *** -0.772383 . 

Train Intercept 1.885858 *** 0.896107 *** 0.4921743 ** 0.549812 ** 

Bus Income       -0.068036 * 

Train Income -0.090238 ***     -0.072896 *** 

Bus Travel party   -0.498462 *** 0.1229133 *   

Train Travel party -1.496414 *** -1.621950 *** -0.4646060 ***   

Bus Age -0.034747 **       

Train Age -0.013353 **   -0.0114680 **   

Car Total travel time -1.024627 *** -0.865103 *** -0.6186274 *** -1.809707 *** 

Bus Total travel time -2.300910 *** -2.653837 *** -0.9308695 *** -0.795722 *** 

Train Total travel time -1.901370 *** -1.608504 *** -1.2380693 *** -1.087022 *** 

 Log-likelihood -1560.4 -4087.9 -2316.1 -2652 

 McFadden’s R2 0.080006 0.10079 0.019538 0.027049 

Note. Significance code: *** 99.9% significance level, ** 99% significance level, * 95% significance level. Please note 

that for bus intercept in LV model only 90% significance level was achieved. 
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Appendix B. Comparison of models’ goodness of fit with different transfer penalty values 

Model Progressive penalty Uniform penalty 

 Log-likelihood 

APM–BR -776.07 -790.39 

APM–LR -2235.8 -2222.1 

APM–BV -871.45 -879.98 

APM–LV -845.34 -856 

AEM -1118.5 -1117 

 McFadden’s R2 

APM–BR 0.46822 0.45841 

APM–LR 0.41175 0.41534 

APM–BV 0.54686 0.54242 

APM–LV 0.62903 0.62435 

AEM 0.20418 0.20527 

             Note. The utility equations for each model correspond to the equations in Table 9. 
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Appendix C. Complete output of mlogit function  

Business residents (BR) model 

Call: 

mlogit(formula = BR, data = logit_data, reflevel = "auto", method = "nr") 

Frequencies of alternatives: 

auto transit 
    0.61253 0.38747 
    nr method 

     6 iterations, 0h:0m:0s 

g'(-H)^-1g = 0.0016 

successive function values within tolerance limits 

Coefficients : 

 
Estimate Std. Error z-value Pr(>|z|) 

 transit:(intercept) 3.2802258 0.3236468 10.1352 < 2.2e-16 *** 

transit:gender 0.4435049 0.1465992 3.0253 0.002484 ** 

transit:age -0.0183097 0.0058204 -3.1458 0.001657 ** 

transit:accompnum -1.7131435 0.3170499 -5.4034 6.539e-08 *** 

auto:ttime -2.8660224 0.3222865 -8.8928 < 2.2e-16 *** 

transit:ttime -2.4085491 0.0997908 -24.1360 < 2.2e-16 *** 

--- 
     Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 

Log-Likelihood: -776.07 

McFadden R^2: 0.46822 

Likelihood ratio test: chisq = 1366.6 (p.value = < 2.22e-16) 
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Appendix C (continued). Complete output of mlogit function  

Business visitors (BV) model 

Call: 

mlogit(formula = BV, data = logit_data, reflevel = "auto", method = "nr") 

Frequencies of alternatives: 

auto transit 
    0.59177 0.40823 
    nr method 

6 iterations, 0h:0m:0s 

g'(-H)^-1g = 1.65E-05 

successive function values within tolerance limits 

Coefficients : 

 
Estimate Std. Error z-value Pr(>|z|) 

 transit:(intercept) 5.06111 0.29604 17.096 < 2.2e-16 *** 

transit:hhmonth -0.14519 0.02804 -5.178 2.243e-07 *** 

auto:log(ttime) -2.32665 0.18491 -12.583 < 2.2e-16 *** 

transit:log(ttime) -4.38558 0.13392 -32.748 < 2.2e-16 *** 

--- 
     Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 

Log-Likelihood: -871.45 

McFadden R^2: 0.54686 

Likelihood ratio test: chisq = 2103.4 (p.value = < 2.22e-16) 
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Appendix C (continued). Complete output of mlogit function  

Leisure residents (LR) model 

Call: 

mlogit(formula = LR, data = logit_data, reflevel = "auto", method = "nr") 

Frequencies of alternatives: 

auto transit 
    0.55576 0.44424 
    nr method 

6 iterations, 0h:0m:0s 

g'(-H)^-1g = 8.53E-05 

successive function values within tolerance limits 

Coefficients : 

 
Estimate Std. Error z-value Pr(>|z|) 

 transit:(intercept) 4.0262908 0.1490346 27.0158 < 2.2e-16 *** 

transit:age -0.0076957 0.0023393 -3.2897 0.001003 ** 

transit:accompnum -1.1140557 0.0965695 -11.5363 < 2.2e-16 *** 

auto:log(ttime) -2.0970262 0.1163806 -18.0187 < 2.2e-16 *** 

transit:log(ttime) -4.2807070 0.1101799 -38.8520 < 2.2e-16 *** 

--- 
     Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 

Log-Likelihood: -2235.8 

McFadden R^2: 0.41175 

Likelihood ratio test : chisq = 3129.9 (p.value = < 2.22e-16) 
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Appendix C (continued). Complete output of mlogit function  

Leisure visitors (LV) model 

Call: 

mlogit(formula = LV, data = logit_data, reflevel = "auto", method = "nr") 

Frequencies of alternatives: 

auto transit 
    0.52807 0.47193 
    nr method 

6 iterations, 0h:0m:0s 

g'(-H)^-1g = 0.00133 

successive function values within tolerance limits 

Coefficients : 

 
Estimate Std. Error z-value Pr(>|z|) 

 transit:(intercept) 5.476835 0.267091 20.5055 < 2.2e-16 *** 

transit:gender -0.303748 0.133237 -2.2798 0.02262 * 

transit:hhmonth -0.048046 0.021896 -2.1943 0.02821 * 

transit:accompnum -1.146553 0.141385 -8.1095 4.441e-16 *** 

auto:log(ttime) -3.107661 0.199602 -15.5693 < 2.2e-16 *** 

transit:log(ttime) -4.944257 0.144026 -34.3289 < 2.2e-16 *** 

--- 
     Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 

Log-Likelihood: -845.34 

McFadden R^2: 0.62903 

Likelihood ratio test: chisq = 2866.8 (p.value = < 2.22e-16) 
 

  



 

 

 
Appendix C. Complete output of mlogit function 

 
  

59 

Appendix C (continued). Complete output of mlogit function  

Airport employees model (AEM) 

Call: 

mlogit(formula = AEM, data = logit_data, reflevel = "auto", method = "nr") 

Frequencies of alternatives: 

auto transit 
    0.7902 0.2098 
    nr method 

6 iterations, 0h:0m:0s 

g'(-H)^-1g = 0.000596 

successive function values within tolerance limits 

Coefficients : 
     

 
Estimate Std. Error z-value Pr(>|z|) 

 transit:(intercept) -0.747848 0.147402 -5.0735 3.905e-07 *** 

auto:ttime -4.902949 0.313037 -15.6625 < 2.2e-16 *** 

transit:ttime -1.756742 0.096575 -18.1905 < 2.2e-16 *** 

--- 
     Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 

Log-Likelihood: -1118.5 

McFadden R^2:  0.20418 

Likelihood ratio test : chisq = 573.93 (p.value = < 2.22e-16) 
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Appendix D. The base modal shares compared to predicted modal shares with 500 m and 

2,000 m radii of catchment area 

Model Base modal shares 
Predicted modal shares 

(r = 500 m) 
Predicted modal shares 

(r = 2,000 m) 

 Scenario 1 Scenario 1 Scenario 1 

 Auto Transit Auto Transit Auto Transit 

APM–BR 61.25% 38.75% 59.99% 40.01% 59.82% 40.18% 

APM–LR 55.58% 44.42% 53.87% 46.13% 53.59% 46.41% 

APM–BV 59.18% 40.82% 58.35% 41.65% 58.29% 41.71% 

APM–LV 52.81% 47.19% 52.05% 47.95% 52.02% 47.98% 

AEM 79.02% 20.98% 74.50% 25.50% 74.03% 25.97% 

 Scenario 2 Scenario 2 Scenario 2 

 Auto Transit Auto Transit Auto Transit 

APM–BR 61.25% 38.75% 56.04% 43.96% 54.78% 45.22% 

APM–LR 55.58% 44.42% 48.31% 51.69% 46.77% 53.23% 

APM–BV 59.18% 40.82% 55.14% 44.86% 54.75% 45.25% 

APM–LV 52.81% 47.19% 49.14% 50.86% 48.78% 51.22% 

AEM 79.02% 20.98% 72.87% 27.13% 73.11% 26.89% 

 Scenario 3 Scenario 3 Scenario 3 

 Auto Transit Auto Transit Auto Transit 

APM–BR 61.25% 38.75% 55.96% 44.04% 55.33% 44.67% 

APM–LR 55.58% 44.42% 49.19% 50.81% 48.78% 51.22% 

APM–BV 59.18% 40.82% 55.22% 44.78% 55.04% 44.96% 

APM–LV 52.81% 47.19% 49.48% 50.52% 49.33% 50.67% 

AEM 79.02% 20.98% 74.44% 25.56% 73.93% 26.07% 

 Scenario 4 Scenario 4 Scenario 4 

 Auto Transit Auto Transit Auto Transit 

APM–BR 61.25% 38.75% 56.81% 43.19% 55.42% 44.58% 

APM–LR 55.58% 44.42% 49.40% 50.60% 47.81% 52.19% 

APM–BV 59.18% 40.82% 55.75% 44.25% 55.19% 44.81% 

APM–LV 52.81% 47.19% 49.70% 50.30% 49.22% 50.78% 

AEM 79.02% 20.98% 73.37% 26.63% 72.06% 27.94% 
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Appendix E. The spatial distribution of predicted transit shares 
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