
Technische Universität München - Modellierung Räumlicher Mobilität 

Univ.-Prof. Dr.-Ing. Rolf Moeckel 

Augustenstraße 44 80333 München, www.msm.bgu.tum.de 

 

 

 

MASTER’S THESIS 

Long-Distance Mode Choice Modeling of Ontario 
Province 

Author: 

Joanna Yuhang Ji 

Supervision: 

Prof. Dr. -Ing. Rolf Moeckel  

 

Date of Submission: 2017-06-02



 

II 

 

Abstract 

Transportation planning has always been limited by data availability.  Data aggregation and 

collection can be time and resource intensive. Luckily, today, we are in an era of hitherto 

unknown abundance, with large amounts of data and data aggregators being readily available 

online. Though there are many mode data sources for short-distance travel, such as the 

General Transit Feed Specification (GTFS), long-distance travel data are still quite scarce and 

disaggregated. It is not yet clear how best to harness the potential of these data for travel 

demand modeling. 

The modeling area of this thesis, Ontario, Canada, presents a special challenge in this respect, 

as it is geographically large and has an extremely unevenly distributed population density. This 

paper describes the development process of a long-distance mode-choice model for Ontario, 

using a novel approach of open data from an online trip planner combined with traditional 

survey data.  

Rome2rio is an international door-to-door multi-modal trip building travel search platform. The 

website builds complete trips using available long- and short-distance, public and private 

modes. By utilizing its search API, it is possible to quickly collect vast amounts of precise, 

origin-to-destination mode data. To estimate this mode choice model, mode attributes of auto, 

air, train and bus travel were gathered between all zone pairs using the Rome2rio API. 

Traditionally, the scope of this project would have involved significant efforts to manually collect 

or estimate such data from disparate sources.  

The Rome2rio data was then combined with the Travel Survey of the Residents of Canada to 

estimate multinomial logit mode choice models for the business, leisure and visit trip purposes. 

The models include attributes specific to the mode, person and trip. The resulting estimated 

models match the overall modal share trends and are sensitive to level-of-service changes. 

Results show the viability of applying aggregated open source online travel data in long-

distance mode choice modeling.  
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1. Introduction 

In an era of increasing global mobility, we must address the additional strain on our intercity 

travel systems, from congested highways to overcrowded airports. This, coupled with the 

current zeitgeist of environmental impact awareness and economic sensitivity, makes it 

imperative to have reliable intercity mode choice models that can assess proposed intercity 

transportation improvements.  

According to the 2009 National Household Travel Survey (NHTS), though long-distance trips 

account for less than one-percent of all vehicle trips, they make up 15.5 percent of all vehicle 

miles traveled. (Schiffer, 2012).  Long-distance travel has an outsized impact on transport 

systems and travel-related emissions. This highlights the importance of accurately modeling 

long-distance travel, but also hints at its inherent difficulty: the small actual number of long-

distance journeys conducted means long-distance travel modeling suffers from a lack of data.  

The Ministry of Transportation of Ontario (MTO) is building a provincial transport model. An 

integral part of the model is the long-distance travel model, of which mode choice is a 

component. Making a mode choice model for Ontario presents some unique challenges. The 

region to be modeled is quite large, as Ontario boasts an area of more than 1 million km2 

(“Ontario Fact Sheet”, 2017). The population concentration is imbalanced and congregate in 

the southwestern part of the province (“Ontario Fact Sheet”, 2017).  

I was provided with the Travel Survey of Residents of Canada (TSRC), which gives revealed 

preference data of Canadian residents’ long-distance travel behavior and presents a chance 

to derive an intercity mode choice model econometrically. However, it was not a targeted 

survey for mode-choice modeling and is therefore missing relevant level-of-service attributes 

of the mode used. In addition, to compare the utility across modes, it is necessary to know the 

attributes of all modes in the choice set, chosen and unchosen. The time and resources spent 

on gathering this data depends on the zonal resolution and availability. There must be a 

balanced compromise between spatial resolution and data availability, especially for such a 

large model area. 

With the advent of the internet, more data has been made available than ever before. Many 

open sourced data are already being integrated into travel demand modeling (Toole et al., 

2014). However, this has been happening relatively slowly in long-distance modeling. More 

recently, several international intermodal, multimodal trip planning platforms have arisen. 
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These platforms have centralized short- and long-distance travel data for all available modes. 

Rome2rio in particular has door-to-door global coverage and supplies an applicable 

programming interface (API) for research purposes. By using the trip planner as a data 

resource, I can consistently and quickly gather modal data for all origin-destination (OD) pairs. 

The model is then estimated with data sourced from Rome2rio and the TSRC.  

1.1. Outline 

This thesis goes over the state-of-the-art and relevant background literature in Chapter 2. 

Chapter 3 discusses the data sources and presents the data collection methods used to 

estimate the model. Chapter 4 details the model estimation process of the multinomial logit 

and nested logit models and shows the model results and performance. Chapter 5 focuses on 

the discussion and results of the thesis, as well as limitations and suggestions for future work. 
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2. Literature review of long-distance mode choice modeling 

Transportation projects and policies are often costly. To evaluate their impact, planners turn to 

travel demand forecasting and modeling as one of primary tools to predict travel demand. The 

current most accepted paradigm of travel demand forecasting is the seminal four-step model 

(FSM), so named because it breaks down the travel demand estimation into four steps. The 

four-step model was originally pioneered in the 1950s and 60s in Detroit, Chicago (Miller, 

2001). In the time since, FSM has seen many developments and weathered much criticism, 

but it remains the most popular and practical approach to this day. The basic four steps of the 

process are as follows: 

1. Trip Generation 

2. Trip Distribution 

3. Mode Choice 

4. Trip Assignment 

This thesis focuses on the third step of the FSM, mode choice. This step splits the trips output 

by the Trip Distribution step into different modes. The output of this step are person trips by 

mode. Mode choice models are a crucial component in a travel demand model. Koppelman 

and Bhat state that “mode choice is arguably the single most important determinant of the 

number of vehicles on roadways” and “the most easily influenced travel decision” (2006, p. 3). 

In the context of intercity travel demand models, Eric Miller refers to them as the “‘heart’ of 

most intercity travel demand modeling efforts.” (2004, p. 97).   
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2.1. Discrete mode choice models 

In the beginning, travel demand forecasting relied on aggregate analysis. The models 

aggregated the collected travel data into travel analysis zones (TAZs) and then applied simple 

zonal averages or distributions of characteristics (Weiner, 1999, p. 90).  

However, with the idea from econometrics and psychometrics that travel choices were 

discrete, the field began to shift to a disaggregate approach (Weiner, 1999, p. 91). Currently, 

mode choice models are most often disaggregate, discrete choice models. These models 

analyze and predict an individual’s choice of one alternative from a set of finite alternatives 

(Koppelman & Bhat, 2006). They have distinct advantage over aggregate models in that they 

can explain a mode choice based on the traveler’s individual characteristics rather than 

statistical associations based on a larger group; are more applicable to different time and space 

contexts because they are causal and less tied to the estimation data; and are more data 

efficient, i.e. able to include a range of relevant variables versus the loss in variation of 

aggregate models (Koppelman & Bhat, 2006).  

Discrete choice analysis is based on the principles of utility maximization, i.e. the individual 

selects the alternative that has the highest utility in the set of choices, with the utility being how 

much they value each option (Schiffer, 2012, p. 32). This means that individuals with the same 

characteristics will always select the same alternative, which is not true to life, since similar 

individuals can still select different choices. To account for this, a certain random component 

is added to the utility function, making it a random utility model. (Koppelman and Bhat, 2006).  

Equation 1 

𝑈𝑖𝑡 = 𝑉𝑖𝑡 + 𝜀𝑖𝑡    (Koppelman & Bhat, 2006, p. 18) 

Here, 𝑈𝑖𝑡  is the utility of taking alternative i to trip-maker t,, 𝑉𝑖𝑡  is the observable portion of the 

utility and 𝜀𝑖𝑡  is the error portion of the utility, which is assumed to be Gumbel-distributed in 

the multinomial logit (MNL) estimation (Koppelman & Bhat, p. 19, 2006).  

The observable portion of the utility, or V, is calculated as follows: 

Equation 2 

𝑉𝑖𝑡  = 𝑉(𝑆𝑡) + 𝑉(𝑋𝑖) + 𝑉(𝑆𝑡,𝑋𝑖)  (Koppelman & Bhat, 2006, p. 19) 

where 𝑉𝑖𝑡 is the observation portion of utility of alternative i for individual t, 𝑉(𝑆𝑡) is the part of 

utility associated with characteristics of individual t, 𝑉(𝑋𝑖) is the utility from the attributes of 
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alternative i, and 𝑉(𝑆𝑡,𝑋𝑖) is the portion of the utility which results from interactions between 

the attributes of alternative i and the characteristics of individual t (Koppelman & Bhat, 2006, 

p. 19). 

The parameters for each attribute are estimated using a maximum likelihood function. The 

error component of the utility is represented by a probability distribution. Disaggregate discrete 

mode choice models rely on an S-curve distribution to represent the error components and 

thus determine the probability of a choice being made (Weiner, 1999, p 92). The curve is 

usually a probit or logit function. Arguably the most common model used in travel forecasting 

is the logit model, and the most common logit models being the multinomial logit model (MNL) 

(Schiffer 2012, p. 31).  

2.1.1. Multinomial logit model  

The multinomial logit model is a class of logit model that addresses more than two alternatives. 

It is based on the assumptions that the error terms follow a Gumbel distribution and are 

independently distributed across alternatives and individuals (Koppelman & Bhat, 2006, p. 26).  

The equation of the probability of choosing an alternative is as follows: 

Equation 3 

Pr(𝑖) =  
𝑒𝑉𝑖

∑ 𝑒
𝑉𝑗𝐽

𝑗=1

  (Koppelman & Bhat, 2006, p. 26) 

where Pr(𝑖) is the probability of choosing alternative 𝑖, and 𝑉𝑗 is the observable component of 

utility of alternative 𝑗 (Koppelman & Bhat, 2006, p. 26).  

A troublesome characteristic of MNL models is the independence of irrelevant alternatives 

(IIA). This means that the ratio between any two alternatives are not affected by the presence 

of a third alternative (Koppelman & Bhat, 2006, p. 39). The implication of this is that the 

parameters are not affected by adding or removing an alternative from the choice set. 

However, in real life, sometimes alternatives are in fact dependent on and affect each other, 

as illustrated by the famous red bus/blue bus thought example (Koppelman & Bhat, 2006, p. 

40): When a model has an equal modal split between car and red bus, and later on introduces 

another bus alternative, only painted blue, one would expect more current red bus takers to 

switch to the new bus service, but in a simple MNL model, an equal number of car and bus 

takers would switch to the new bus service (Koppelman & Bhat, 2006, p. 41).  
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To address the IIA problem, many modelers employ another popular mode choice model, the 

nested logit model, which will be discussed in the next section.  

2.1.2. Nested logit model 

The nested logit model (NL) addresses the IIA problem by grouping together alternatives that 

are similar and making the choice as a multi-step decision (Schiffer, 2012, p 40). Take as an 

example the Figure 1: 

Figure 1.Sample nesting structure (adapted from Koppelman & Bhat, 2006) 

 

The nested logit model assumes that the random error terms are shared between some 

alternatives (Koppelman & Bhat, 2009, p. 160). This makes the utility equation of the 

alternative bus: 

Equation 4 

𝑈𝑏𝑢𝑠 = 𝑉𝑝𝑡 + 𝑉𝑏𝑢𝑠 + 𝜀𝑝𝑡 + 𝜀𝑏𝑢𝑠 (Koppelman & Bhat, 2006, p. 161) 

with 𝜀𝑝𝑡 being the common random component and 𝑉𝑝𝑡 being the common observed 

component (Koppelman & Bhat, 2006, p. 161).  

The error components are still assumed to follow a Gumbel distribution, but with a scale factor 

𝜇𝑝𝑡, or commonly 𝜃𝑝𝑡 =  
1

𝜇𝑝𝑡
 (Koppelman & Bhat, 2006, p. 161).  

The probability of choosing a nested alternative is based on the conditional probability of 

choosing the nested alternative times the marginal probability of choosing the nest, as shown 

in the following equations: 

Equation 5 

𝑃𝑟𝑏𝑢𝑠 = 𝑃𝑟𝑏𝑢𝑠

𝑝𝑡

∗ 𝑃𝑟𝑝𝑡 (Koppelman & Bhat, 2006, 161) 
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where 𝑃𝑟𝑏𝑢𝑠

𝑝𝑡

 is 

Equation 6 

𝑃𝑟𝑏𝑢𝑠

𝑝𝑡

=
𝑒

𝑉𝑏𝑢𝑠
𝜃𝑝𝑡

𝑒

𝑉𝑏𝑢𝑠
𝜃𝑝𝑡 +𝑒

𝑉𝑟𝑎𝑖𝑙
𝜃𝑝𝑡

 (Koppelman & Bhat, 2006, 162) 

and 𝑃𝑟𝑝𝑡 is 

Equation 7 

𝑃𝑟𝑝𝑡 =
𝑒(𝑉𝑝𝑡+𝜃𝑝𝑡𝜏𝑝𝑡)

𝑒𝑉𝑑𝑎+𝑒𝑉𝑠𝑟+𝑒(𝑉𝑝𝑡+𝜃𝑝𝑡𝜏𝑝𝑡)  (Koppelman & Bhat, 2006, 162) 

𝜏𝑝𝑡  is the log of sum of exponents of the nested utilities: 

Equation 8 

𝜏𝑝𝑡 = log[𝑒
𝑉𝑏𝑢𝑠
𝜃𝑝𝑡 + 𝑒

𝑉𝑟𝑎𝑖𝑙
𝜃𝑝𝑡 ] (Koppelman & Bhat, 2006, 162) 

The logsum parameter, or nesting coefficient, corresponds to how similar alternatives are 

within a nest. It should be between zero and one (Koppelman & Bhat, 2006, p. 163). When 

logsum is one, it implies that there are no correlation between mode pairs in the nest, and the 

model is equivalent to an MNL model (Koppelman & Bhat, 2006, p. 163). When the logsum is 

zero, there is perfect correlation between the mode pairs in the nest, and the model becomes 

deterministic (Koppelman & Bhat, 2006, p. 163). 

The selection of an appropriate nest structure for a model is a blend of reasonable judgment 

and statistical evidence. Potential nesting structures are narrowed down based on 

conventional wisdom, and the proposed nests are tested against each other and the MNL 

model to see which is the more representative model.  

2.2. Intercity mode choice models 

Intercity travel demand modeling, or long-distance travel demand modeling, dates almost as 

far back as urban mode choice models (Miller, 2004). They are often applied to a well-defined 

travel corridor that has a small number of origin and destination cities (Miller, 2004). There is 

a dearth of models that cover a larger, overall region (Moeckel, Fussell, & Donnelly, 2015).   

The models are usually segmented by trip purpose, distance, party size, region (Koppelman & 

Bhat, 2006; Koppelman & Wen, 1998; Bhat, 1997) The modes typically studied are auto, rail, 
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bus, and air (Koppelman & Bhat, 2006; Koppelman & Wen, 1998; Bhat, 1997). The usual 

explanatory variables considered are level-of-service attributes of the mode, characteristics of 

the trip maker, and characteristics of the trip (Zhang et al., 2015).  

Large regional models of Canada have been attempted before (Wilson et al., 1990. 

Abdelwahab, 1991). The models were based on the Canadian Travel Survey (CTS), the 

precursor to the TSRC used in this thesis. Both models were MNL intercity mode choice 

models split for eastern and western Canada at Thunder Bay (Wilson et al., 1990. Abdelwahab, 

1991). Due to data limitations, both models only used trips to and from Census Metropolitan 

Areas (Wilson et al., 1990. Abdelwahab, 1991). The models were segmented by trip purpose, 

and in Abdelwahab’s case, also by distance (Wilson et al., 1990; Abdelwahab, 1991). 

Abdelwahab concluded that there is very low transferability of estimated coefficients for 

different model regions, which reinforces the importance of estimating a model based on local 

data (1991). In recent decades, there has been some interest in a high-speed rail in the 

Windsor – Quebec corridor. This has inspired various intercity travel demand models and 

studies of the region. These models rely on the data assembled by VIA rail in 1989 and vary 

from MNL, NL, to the heteroscedastic model (Koppelman and Wen 2000, 1998; Bhat 1995, 

1997). The data was limited to business travelers only (Koppelman and Wen 2000). More 

recently, Wong and Habib derived an NL intercity mode choice model for the Windsor-Quebec 

corridor. They concluded that access and egress was more important to travelers than in-

vehicle travel time (2015).  

Intercity modeling has a number of inherent difficulties that do not apply to its short-distance 

counterpart. Eric Miller succinctly points out these major challenges in his 2004 paper, “The 

Trouble with Intercity Travel Demand Models”: 

 The modes are overly aggregated. 

 The effect of access and egress are not adequately accounted for in line-haul modes.  

 Current explanatory variables are limited due to data limitations and aggregation. 

 New modes can only be modeled based on Stated Preference surveys.  

Moeckel et al. gave a thorough overview of the state of the art of long-distance mode choice 

models (2013). They concluded that the nested logit model has been proven preferable to the 

simple multinomial logit model and that the transferability of models from one region to another 

is not recommended (Moeckel et al., 2010).  

Though model parameters can be asserted (Moeckel et al., 2010; Alliance Transportation 

Group, 2015), there is value in deriving a model, given the relative scarcity of intercity mode 
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choice models. The challenge is that long-distance travel is somewhat rare and thus suffers 

from a lack of data. The next section addresses this issue. 

2.3. Data for long-distance mode choice modeling 

Although there is an extensive literature on mode choice modeling, comparatively few studies 

focus on long-distance mode choice modeling. Those that do are often focused on the 

statistical methods of the model. However, the input data to the model itself has serious impact 

on the accuracy of the model. In fact, according to Zhang et al., the entire model framework 

largely hinges on the quality of the data available (2015). 

The primary input data source for long-distance mode choice modeling are often surveys, both 

stated preference and revealed preference. Most models in the U.S. are based upon the 

National Household Travel Survey (Cho, 2009; Schiffer, 2012). Per Zhang et al.’s review of 

data sources used in long-distance models, the most commonly used are household and 

person travel surveys from public agencies, followed by revealed or stated preference surveys 

conducted for the express purpose of the project, operational data from mode providers, and 

data purchased from private sources (2015). There can often be more than one data source 

per model (Zhang et al. 2015). Zhang et al. conclude that there is a general lack of data for 

building detailed, complete OD matrices, especially for bus, rail and auto modes in the U.S. 

(2015). Like Miller, they also point out the need for data on access and egress (2014; Zhang 

et al., 2015).  

Since the mode choice model is designed to select one out of several available modes, the 

level-of-service (LOS) variables of alternative modes are also needed. These tend to be, as 

Zhang et al. note, “monetary costs, travel times, and frequency of service” (2015, p. 417). 

Traditionally, for short-distance mode choice models, these could be derived as skims from an 

existing travel demand model. However, for intercity models, such networks may not be readily 

available, as was the case for this thesis.  

For long-distance travel, there are several methods for acquiring this data. One common 

method, as demonstrated by Cho, is to manually search actual LOS data from randomly 

selected OD pairs in the air, bus and train networks and then extrapolating linearly within 

certain distance groups (2013). Wilson et. al acquired mode data from the Strategic Planning 

Division of Transport Canada, and, because of the relatively manageable number of OD pairs, 

they could fill in the rest manually from published timetables and other such sources. (1990). 

In his 1997 model of the Toronto – Montreal corridor, Bhat relied on data provided by the major 
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Canadian rail operator, VIA (1997). Often the survey would ask for the LOS associated with 

the chosen mode of a journey. However, the TSRC, which was designed to gauge the state of 

domestic tourism, lacked the level-of-service variables associated with the chosen mode, not 

to mention other available modes.  

Miller pointed out that multimodal network data are hard to get since they are often run by the 

private sector (2011). Bus and rail data are proprietary, at least in the U.S., and hard to acquire 

in sufficient detail (Zhang et al. 2015). In the U.S., there are 10% samples of ticket survey data 

available for air, bus and train travel (Cho, 2013). Even if datasets exist, they are usually from 

disparate sources and must be combined and synthesized (Zhang et al. 2015). With an often-

limited budget for data collection (Zhang et al. 2015), it is in this area that aggregated web-

based data sources can shine.  

The use of new data sources in travel demand modeling, particularly the usage of big data, 

has become a trending topic. There have been various studies on using crowdsourced geo-

spatial data, mobile data, etc. in travel demand modeling (Toole et al., 2014). The use of 

various GTFS data in modeling has also been explored, but GTFS data only pertains to short 

distance public transport options and does not cover long-distance travel (Antrim & Barbeau, 

2013). Online trip planners, however, have not been explored as a data source. The platform 

Rome2rio, which is used in this thesis, has been the subject of occasional research, but only 

in its capacity as a trip planner (Antrim & Barbeau, 2013; Klock, Owens, & Schwartz, 2012). 

As far as I am aware, there has not been a documented case of using data from trip planners 

such as Rome2rio in travel demand modeling.  

2.4. Thesis implications 

As the Transportation Research Board NCHRP 735 report notes, “even for applications with 

similar circumstances, unless models have identical specifications, the values for specific 

coefficients may differ significantly between models” (Schiffer, 2012, p. 63). This points to how 

easily the coefficients of the model are affected by the definition of variables, and the value of 

an econometric estimation of a mode choice model using locally applicable data.  

This thesis aims to contribute to the transportation modeling field by developing a new long 

distance mode choice model for Ontario. An econometrically derived model can reflect the 

unique transportation behavior of Ontario, Canada and serve as reference. As a model that 

will be part of work done for the Ministry of Transportation of Ontario, it is publicly owned and 
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will hopefully enlarge the body of knowledge that future researchers can draw on for 

comparison.  

This model also goes towards addressing some of the concerns pointed out by Eric Miller in 

his 2004 paper, namely the lack of openly documented intercity models and the lack of mode 

data from privately owned organizations. 

The common modes of travel in intercity trips are often privately owned, and these actors may 

be unwilling to share operational data. The thesis attempts to circumvent this by using a 

relatively new aggregated web-based multimodal data source to derive a long-distance mode 

choice model. 

In addition, although combinations of GTFS and Web 2.0 data have been employed in 

transportation modeling, the specific application of Rome2rio in mode-choice modeling, 

especially intercity mode-choice modeling, has not yet been done. Comprehensive global trip 

planners such as Rome2rio have only recently emerged. Their application to solve the age-old 

data scarcity problem of long distance mode modeling has not been widely explored. By 

developing a model using mode-specific data from Rome2rio, this thesis aims demonstrate the 

plausibility and validity of using such data sources in intercity mode choice modeling. With the 

advent of big data, travel demand modeling is gaining access to many promising emerging 

data resources, such as social network-based location tracking, and wireless network location 

services (Schiffer, 2012). Updating methods to utilize novel data resources may thus herald a 

new way of building travel demand models.   
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3. Data collection  

The model estimation and calibration is reliant on two main sources of data, the Travel Survey 

of Residents of Canada and data collected from Rome2rio. The former is a survey conducted 

by Statistics Canada to collect the characteristics of domestic travel. This data gives the 

various trips and socioeconomic characteristics of the trip taker. It provides the origin, 

destination and mode taken for the trip. However, it lacks mode-specific details, such as travel 

time and travel costs. To this end, additional data was collected from Rome2rio, a trip-building 

web platform with comprehensive multimodal travel information aggregated from multiple 

sources. It can build a door-to-door trip itinerary of all possible modal connections between an 

origin and a destination, providing details such as travel time and costs. This thesis employs 

Rome2rio’s free API, which offers limited requests to access its database. The mode choice 

parameters were thus derived by combining these two sources of data.  

3.1. Travel Survey of Residents of Canada 

The Travel Survey of Residents of Canada is conducted periodically to assess the status of 

Canada’s tourism industry. It focuses on domestic travel and has information on the volume 

and characteristics of the trips and trip makers. The survey is a voluntary supplement of the 

compulsory household survey Labour Force Survey (LFS). The LFS has a sample size of 

54,000 households and a response rate of 90% (Schiffer, 2012). The TSRC provides Visit, 

Trip, and Person data files. The Person data file has the characteristics of individuals who 

answered the survey. The Visit file contains information about the places visited in each trip. 

However, the only relevant information for the estimation of this model was the Trips data.  

3.1.1. Trips data characteristics  

The TSRC Trips data for the years 2010 – 2013 were provided. Originally, the data was in a 

microfile format, which was processed for the destination choice model. It counts all non-

routine same-day trips with destinations more than 40 km away, and overnight trips with at 

least one night spent in Canada as long-distance trips.  Each trip record contains information 

on the trip purpose, origin, destination, distance, mode, socioeconomic factors, activities done 

on trip and money spent. The relevant data and data categories are listed in the Table 1. 
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Table 1.Relevant TSRC Trips data categories 

 

In this estimation, the ‘Other’ trip purpose is grouped together with leisure, forming three trip 

purposes, business, leisure and visit. The model is only concerned with overland modes; 

therefore, ‘Ship/ferry’, ‘Boat’ and ‘Other’ modes are excluded. Of the modes modeled, ‘Car or 

truck’ and ‘Camper RV’ are included in the auto mode. ‘Overnight-International’, meaning a trip 

with at least one night spent outside of Canada, was not considered a domestic long-distance 

trip and excluded.  

3.1.2. Zone system 

The TSRC records trips at the resolution of Census Divisions and Census Metropolitan Areas. 

Though more detailed traffic analysis zones were given for the project, the model is estimated 

using the broader zone system given by the TSRC.  

Since the model will eventually be disaggregated into TAZs, which are much finer in resolution 

than TSRC zones, it was worthwhile to pursue as much resolution as possible from the TSRC 

data. Therefore, CDs and CMAs were combined to form a new zonal system.  

There are 49 CDs and 15 CMAs in Ontario.  By intersecting the CDs and CMAs and taking the 

intersected areas as new zones, a total of 69 zones were derived from the TSRC data. 

Variables Categories

Reference month January - December

Origin Census division, census metropolitan area

Destination Census division, census metropolitan area

Trip purpose Leisure; Visit; Business; Other

Mode Car or truck; Air; Camper RV; Bus; Train; Ship/ferry; Boat; Other

Weights Trip weight

Age 18 - 24; 25 - 34; 35 - 44; 45 - 54; 55-64; >65

Sex Male; Female

Education <High school; High school; Post-secondary; University

Employment Employed; Unemployed

Income <$50,000; $50,000 - $70,000; $70,000 - $100,000; >$100,000

Travel party size 0 - 95

Household members on trip 0 - 6+

Household adults on trip 0 - 5+

Household children on trip 0 - 4+

Self reported trip distance Kilometers

Type of trip Overnight - Canadian; Sameday; Overnight - International
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Figure 2.Level 2 zone creation process 

 

This was done by Joe Molloy for the destination choice model. Since the mode-choice model 

is based on the same TSRC trips data, it is also estimated using the same zone system, 

leaving the disaggregation into TAZs to a later step.  
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Figure 3.Ontario level 2 combined zones 

 

3.1.3. Relevant trip records 

All four years of TSRC trips data amounted to a total of 219,997 records. As is the norm in 

surveys, not all data fields were filled out for all records. This renders some trip records 

unsuitable for consideration in the mode choice model estimation. For example, since income 

level is considered as a parameter in the estimation, when it is not reported for a trip record, 

that record is filtered not and not considered.  Therefore, as a first step, the following trip 

records were filtered out: 

 Records that did not state income level  



Data collection  

 

16 

 

 Records with number of travelers in travel group greater than 8, since it is assumed 

that an ordinary private vehicle could only carry up to 8 passengers 

 Records that do not have the main travel mode as either auto, rail, bus, air, or 

camping RV 

 Records of overnight trips that are under 40 km in distance, since this model defines 

long-distance travel as trips to destinations more than 40 km away, and the TSRC 

includes overnight trips that may be less than 40 km between origin and destination. 

Though these trips may be defined as long-distance by the TSRC, they are not 

representative of the long-distance travel behavior this model is trying to capture. 

Secondly, trips were geographically filtered out. Since the model is being built for Ontario, the 

only trips that were considered were those with at least one trip endpoint in Ontario or those 

going across Ontario. Trips considered were: 

 Trips with both origin and destination within Ontario 

 Trips with an origin in Ontario but a destination outside of Ontario 

 Trips with an origin outside of Ontario but with a destination inside Ontario 

 Trips with an origin and destination outside of Ontario, but which, due to geography, 

must go across Ontario 

The map in Figure 4 depicts Canada as Ontario and external zones.    
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Figure 4. Types of trips modeled 

 

Since Ontario province bisects Canada’s geography, it is reasonable to assume that all trips 

originating east of Ontario and ending west of Ontario and vice versa must travel across 

Ontario. Therefore zones east of Ontario and west of Ontario were identified, and external trips 

that cross Ontario were retained.  

There were also two zones identified in Quebec province that could potentially result in cross-

Ontario trips. These were zones 85 and 103, or Ottawa-Gatineau and Montreal. Trips to and 

from these zones and from the rest of the Quebec province CMA zones were also retained.  
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Figure 5. Trips also crossing Ontario from zones 85 and 103 

 

Table 2. Trips retained per trip purpose 

 

3.1.4. Weights 

There are two relevant weights in the TSRC Trips data: the person-trip weight (WTTP) and the 

trip weight (WTEP). The person-trip weight (WTTP), was calculated from the person-weight for 

the LFS survey adjusted with factors that approximate how many identical trips were taken. 

The trip weight, or (WTEP), was calculated by dividing the person-trip weight by number of 

adults from household on the trip.  As the survey user guideline suggests, the person-trip 

weight (WTTP) was the appropriate weight to use for all socioeconomic characteristics of all-

travelers, same-day or overnight. 

3.2. Data from Rome2rio 

A mode choice model relies heavily on level-of-service factors, especially travel time and travel 

cost (Koppelman & Bhat, 2006). That is to say, an individual often chooses a travel mode by 

comparing what each mode offers in terms of travel time, travel cost, service frequency, etc. 

Having the level-of-service data for all available mode choices is therefore crucial to the 

derivation of a mode choice model. The TSRC did not include travel time. Though it did ask 

for travel costs, the travel costs were only recorded for the mode taken, so it is not possible to 

Trip Purpose Trips Retained

Business 6,028                 

Leisure 25,922               

Visit 31,744               
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form a comparison between travel costs of all available modes and between an origin and 

destination pair. Therefore, alternative sources of data were pursued.  

At first, I considered the option of manually searching for each OD pair in the appropriate online 

trip planner for each mode, but this was not feasible as we had over 20,000 relevant OD pairs. 

Another option we explored was to extract data from available resources. For example, the 

travel time for rail mode was calculated by manually entering rail network location and time 

table data from VIA into the transport modeling software EMME and extracting the calculated 

skims. However, this would require enormous effort and disparate data sources that might or 

might not be readily available, such as the location of all long-distance bus stops in North 

America, or long-distance bus timetables from each bus provider. Furthermore, this method 

could not be applied to air transportation, which does not rely on traditional time tables and 

networks. 

In the end, I turned to web-based open resources and discovered Rome2rio. Rome2rio is an 

online travel metasearch platform that provides door-to-door journey planning. The platform is 

unique in that it has global multimodal and intermodal capabilities, meaning that it can provide 

long-distance trip planning options across multiple modes, including flight, train, bus, ferry and 

driving. Its strength lies in its ability to build trips from door-to-door. That is, it provides the first 

and last leg journey information, such as the access to and egress from the airport. This is 

achieved by drawing on multiple data sources such as API feeds from other travel search 

websites, GTFS data, etc., which aggregate into a comprehensive multimodal route 

information database of both long- and short-distance travel. Rome2rio boasts a global 

coverage: it contains information from 670 airlines worldwide, and, in North America, it covers 

the rail providers Amtrak and ViaRail and 170 bus transport providers (“Transport Coverage 

Overview,” 2017). Driving and walking directions are supplied using OpenStreetMaps 

(“Transport Coverage Overview,” 2017).  

3.2.1. Rome2rio API 

Rome2rio offers a free API key with a limit of 100,000 searches per month and 300 requests 

per hour. This API allows the user to specify an origin, a destination, and gives the Rome2rio 

search result back in XML or JSON formats. The API query returns all information contained 

in a normal search request on Rome2rio. However, it does not provide live pricing data as that 

is done through a third-party website. Instead, it returns the Rome2rio general price estimate 

based on its historical data. 
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To illustrate the details available in the data, below is a sample query using the normal 

Rome2rio interface. 

Figure 6. Example request and route suggestions from Rome2rio (rome2rio.com, 2016) 

 

As can be seen above, a query returns several possible trip route options combining different 

available modes. The exact algorithm used by Rome2rio for trip-building is not public, but I 

assume it is optimized to give all possible, reasonable travel options. For each route option, 

the travel duration, transfer time, travel distance, and estimated price range are given. Each 

route option is composed of one or more travel segments, separated by mode or transit 

provider. In the Figure 6, the route option “Bus, fly to Regina, Taxi” is composed of four 

segments, taxi, bus, plane, then taxi again. For each travel segment, in addition to travel 

duration, distance and price, Rome2rio gives details such departure schedules, service 

frequency and transit provider. The Rome2rio API query returns all of the above information 

and more.  

3.2.2. Methodology 

1.   Request a free API key from Rome2rio for research purposes  
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2. Build query URLs usingzone centroid geographical coordinates. Below is an example 

query URL: 

http://free.rome2rio.com/api/1.4/xml/Search?key=&oPos= &dPos= &currencyCode=CAD 

where oPos is the origin latitude and longitude, and dPos is the destination latitude and 

longitude, and currencyCode is the international currency code, in our case, Canadian 

dollars (CAD).  

 A query was performed  

a. from each Canadian zone to all other zones, meaning from each Canadian zone 

to each other Canadian zone, and  

b. from each Canadian zone to each zone outside of Canada.  

This resulted in a total of 21,878 OD pairs. 

3. A python script was composed to automate the API querying process to adhere to the 

request limit of 300 per hour and 100,000 per month.  

4. The data was collected on November 11th – 13th, 2016. The Rome2rio data extracted 

is in JSON format. Due to the nature of the trip building search platform, it does not 

clearly distinguish between drive, air, bus and train modes, nor does it distinguish 

access, egress and main modes. Therefore definitions and assumptions were made 

to categorize and process the data into a useful format for the task at hand.  

5. For more information on the API search request and response variables, please refer 

to the Rome2rio API documentation page in the bibliography.  

3.2.3. Data processing and parsing 

The JSON files returned from the API request were parsed using Python to extract useful 

information. The following presents a detailed list of how each variable was extracted and 

calculated. 

Although Rome2rio does give total travel time and price for the entire route, they were 

calculated using segments because Rome2rio does not distinguish between access, egress 

and main parts of the journey. Furthermore, Rome2rio may give alternative segments that may 

be faster than the original suggested segment, therefore making it necessary to calculate the 

total route characteristics using segments instead of taking the given value.  

Main mode 

Rome2rio may build a travel route from several different modes. For this thesis, a main mode 

must be determined to be used in mode choice analysis. A mode hierarchy was used to 
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determine the main mode of a route option. The hierarchy used here is air, rail, bus, and auto. 

This meant that if any segment of a travel route listed flying as a mode, then flying was taken 

as main mode of the route. If there was no flying segment, then rail took precedence and so 

on and so forth. The consecutive segments of a route with the main mode were then 

considered together as the main trip. In the example above, the main mode of the suggested 

route “Bus, Fly to Regina, Taxi” would be air. The main mode travel time, main mode price, 

main mode transfer time, and main mode distance were summed using these segments of the 

route. The main mode frequency was taken as the minimum service frequency of all main 

mode segments instead of an average, as the segment of a trip with the lowest service 

frequency would be the limiting factor of the journey. The number of transfers of a journey was 

taken as the number of main mode segments minus one.  

In some cases, the main mode segments are broken up by other modes. 

Example route:  

1. Taxi (10km) – 2. Bus (50 km) – 3. Taxi (20km) – 4. Bus (100 km) – 5. Taxi (10 km) 

For such cases, the segment with the longest distance travelled – here, bus – was taken as 

the main mode, and everything from 2. Bus (50 km) to 4. Bus (100 km) segments were taken 

as the main mode.  

In another special case, such as  

1. Train (10 km) – 2. Bus (20km) – 3. Train (100 km) – 4. Taxi (10 km) 

the main mode was train, and the journey would be taken as segments 1 – 3, which left no 

access time and taxi as egress. In this case the first segment of the journey, train (10km), was 

taken as access mode.  

Access and egress  

Access and egress are any segments of the trip that comes before and after the main mode 

segments respectively. Access and egress time and distance were taken to be the travel times 

and distances of all travel segments before and after the main mode segments, respectively. 

In the first example above, the first taxi and bus segments would be counted as access, and 

the last segment by taxi would be counted as egress. 

Total trip  
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Total travel time, total transit time, and distance were calculated using all segments of a route. 

Total travel time is the travel time of all segments combined. Total transit time is the total in-

vehicle travel time of a route, i.e. omitting transfer time. The average price took the price of 

access and egress modes into account, but the model estimation only used the price of the 

main mode.  

Alternative segments 

Rome2rio might give alternative suggestions for some minor segments of a route. In that case, 

if the alternative segments were faster, they were substituted in place of the original segments, 

and all calculations were done with the substituted alternative segments.  

Flight  

Flight segment data was formatted differently from other segments. Due to the large amount 

of different flight options that can be available between an OD pair, one single flight segment 

can contain many different potential flight routes and their respective details. Therefore, when 

flying was the main mode, the main mode frequency was the sum of the frequencies of all flight 

options.  

Transfer time  

Transfer time in Rome2rio is given as the wait time between two travel segments. Access and 

egress transfer times were not counted in access and egress time or in total transfer time. 

Travel cost  

The travel cost for transit modes were taken as given by Rome2rio. However, Rome2rio 

assumes all auto travel segments are done by taxi or other car services, and calculates costs 

accordingly. Therefore driving costs were not taken from Rome2rio but rather calculated using 

distance and fuel price.  

Train fare  

Rome2rio gives fares differently for VIA and Amtrak trains: VIA rail is shown with escape, 

economy and economy plus fares, while Amtrak is given Coach, Business and Room fares, 

which are not equivalent and ended up tilting price averages so that Amtrak train fares are 

much more expensive than VIA rail train fares for similar distances travelled. Therefore train 

fares were taken as Economy Plus train fares for VIA rail, as Coach train fares for Amtrak-
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operated trains, and as Business Seat fares for some Amtrak trains when the only fares 

available are Business Seat and First Class Seat. However, Amtrak trains are only relevant for 

international travel into the U.S., which is not considered in this portion of the model.  

Frequency 

Frequency was taken as the number of times service is offered per week. When there was 

more than one segment to a route, the minimum frequency is taken.  

3.2.4. Intrazonal mode data 

The prepared URLs that use centroids of Level 2 zones neglected long distance trips made 

within the same zone. Therefore, a separate URL list was prepared to acquire intrazonal travel 

data.  
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Figure 7. Zones with intrazonal distances longer than 40 km 

For zones within Ontario with intrazonal distances of under 40 km, I assume that the only 

intrazonal mode available is driving, with intrazonal travel time assumed to be 35 minutes. For 

zones outside of Ontario, I assume the CMA zones only have driving as the long-distance 

mode. Therefore, zones with an intrazonal driving distance of over 40 km in Ontario and non-

CMA zones outside of Ontario but within Canada are considered to have significant long-

distance mode competition. To estimate the intrazonal travel times by each mode, I pick the 

two municipalities or metropolitan areas within that zone with the largest populations as the 

origin and destination, with the assumption that most intrazonal trips are made between them.  
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3.3. Combine results with TSRC survey data  

The data was spotchecked for reliability, and then combined with the TSRC trips data in R, 

using the Level 2 zone origin and destination to match. Since there can be multiple routes for 

the same mode per O-D pair, only the route with the fastest overall travel time for each mode 

was used.  

Rome2rio was not able to find all corresponding mode options for all reported trips. This could 

be due to reasons such as error in survey reporting, or the coarseness in our assumption of 

level 2 zone geographical centroids as origin and destination points. Out of all trip records in 

the TSRC data, Table 3 was the percentage of trips for each relevant mode that was not found 

by Rome2rio. 

Table 3. Percentage of trip records by mode in TSRC not matched by Rome2rio 

Mode 
% of Trip Records not 
Found 

Air 1.3% 

Bus 1.1% 

Train 3.6% 

 

3.3.1. Auto assumptions 

The auto price from Rome2rio was not used in the estimation since it assumes taxi or other 

commercial car rental services as part of auto travel costs. Instead it was calculated using 

average fuel efficiency and average fuel prices.  According to the Canadian Company Average 

Fuel Consumption, the estimated average fleet fuel consumption for 2010 passenger cars was 

6.8L/100km (“Canada Light-Duty Fuel Consumption and GHG”, 2016). Per the Ontario Ministry 

of Energy website, the latest Ontario average unleaded gasoline price for the year 2016 is 105 

cents per liter (“Fuel Price”, 2017). Multiplying the two and an estimate of roughly CAD 

$0.072/km was used to estimate auto travel price. Estimated auto access and egress times 

were assumed to be 1 minute if in a non-metropolitan area and 5 minutes in a metropolitan 

origin or destination.  

3.4. Data summary statistics 
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The data was analyzed statistically to help determine the relevant explanatory variables and 

other specifications of the model. The relationship between variables and modal choice were 

explored.  

Since the auto mode is dominant in this dataset, often another graph is made showing just 

transit modes for clarity. If there is no auto displayed in a graph, please consult Appendix A for 

graphs that include auto. 

3.4.1. Socioeconomic characteristics 

Figure 8. Trip purpose vs. modal share (a) with and (b) without auto mode shows that the trip 

purposes business and visit have unique modal share patterns, with business trips exhibiting 

the highest transit modal share, followed by visit. Business also has higher air modal share 

than any other trip purposes. Other and leisure purpose modal shares are very similar to each 

other. As such, trips with ‘other’ purpose are counted as leisure trips and used together to 

estimate the leisure model. Figure 9 shows that higher income seems to correlate with lower 

bus and train use and more trips by flying. Bus is particularly favored by those making under 

$50,000. Figure 10 shows that, as education level goes up, so too does the modal share of all 

transit modes. The general pattern in Figure 11 seems to be that the transit modal share 

declines past age bracket 45 – 54. The youngest age group has lower air modal share than 

bus and train modes. Figure 12 show that gender does affect modal share - females are more 

likely to take all forms transit modes than males and are less likely to drive.  This echoes the 

findings of Bhat (1997), using the Canadian Travel Survey.  

Figure 8. Trip purpose vs. modal share (a) with and (b) without auto mode 
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Figure 9. Income bracket vs. modal share without auto mode 

 

Figure 10. Education level vs. modal share 
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Figure 11. Age bracket vs. modal share 

 

Figure 12. Gender vs. modal share 

 

3.4.2. Trip characteristics 

In Figure 13, as travel party size goes up, modal share of auto goes up while transit shares go 

down. This peaks at a travel party size of five, and then auto share goes down slightly. This 

could be due to most passenger autos holding five occupants. A season segmentation was 

also tested, with the months November until March labeled as winter and the rest as summer. 

It was found to be of no significance to modal share, as seen in Figure 14, and was thus not 

considered further. As demonstrated in Figure 15, trips that start and end in non-metropolitan 
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a metropolitan area. Trips that start and end in metropolitan areas have the highest transit 

modal shares and the lowest auto share. Therefore whether a trip is ‘intermetro’ or ‘interrural’ 

is used as a variable in the estimation. In Figure 16, when a trip has at least one night spent 

under way, the proportion of trips made by transit and especially by air is much higher. 

Therefore, whether a trip is overnight or same-day is used as a potential explanatory variable.  

 

Figure 13. Travel party size vs. modal share 

 

Figure 14. Modal share by season 
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Figure 15. Origin and destination in metro or rural areas vs. modal share (a) with auto and (b) without 
auto 

  

(a) (b) 

Figure 16. Same-day or overnight trip vs mode share 
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Figure 17. Modal distribution by trip distance bands 

 

Figure 18. Total trips per year by trip distance bands (km) 
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variables. Age is correlated with employment status – the older someone is, the less likely they 

are to be employed. This is so because the age group in TSRC starts at the working adult age 

18 – 24 and continues past the retirement age of 65. Employment status is corrected with 

income – being employed means having higher income. There is also some negative 

correlation between number of household members on a trip and travel party size, which is to 

be expected. During estimation, only one of these correlated variables were tested at a time. 

In the mode-specific characteristics, correlations are prevalent between travel time and price 

for all modes. Travel cost for air is less correlated to travel time, which is reflective of the volatile 

and opaque pricing structure of air travel. Travel times and costs are also highly correlated to 

distance and between modes. These correlations have implications for model estimation, as 

will be discussed in the next section.  
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Figure 19. Correlation matrix
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4. Model estimation 

4.1. Model specification  

The model is specified before the estimation process. This involves specifying the alternative 

choice set, model segmentation, explanatory variables and model structure. In the previous 

chapter, the choice set was determined to be auto, air, bus and rail, and the segmentation to 

be by trip purpose into business, leisure and visit.  

4.1.1. Variables considered 

The variables considered were heavily dependent on the mode choice modeling state-of-the-

art and on the characteristics of the data, as shown in the previous chapter. I considered both 

variables that have often been shown to influence mode choice and variables that seem to 

have significant correlations with mode share in the data. Variables highly correlated to each 

other were discarded or only considered one at a time. The variables are broken down into 

three groups: mode characteristics, trip characteristics, and individual trip-maker 

characteristics. Mode characteristics are those that represent the LOS of the mode, such as 

travel time and frequency of service. Trip characteristics describe characteristics of the trip 

such as the time of day a trip is made and the travel party size of the trip. Individual specific 

variables are the characteristics of the trip maker, such as income or education level, or the 

trip maker’s household size, such as the number of children. 

Table 4 summarizes the variables considered for estimation. Note that some variables 

represent categorical data and are used in the model as so-called dummy variables. This 

means that they are coded as either 1 or 0, 1 meaning the characteristic is present, and 0 

meaning it is not. For example, a dummy variable for income could be a 1 representing those 

in the lowest income bracket, and 0 representing those who are in all other income brackets.   
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Table 4. Variables considered in the estimation 

Variables considered Type of variable 

Individual characteristics 

Age Dummy 

Gender Dummy 

Education Dummy 

Employment status Dummy 

Income Dummy 

Number of household members on trip Continuous 

Number of adult household members on trip Continuous 

Trip characteristics 

Travel party size Continuous 

Overnight or same-day  Dummy 

Intermetro/interrural Dummy 

Mode characteristics (per each mode) 

Frequency (excl. auto) Continuous 

Number of transfers (excl. auto) Continuous 

Travel cost Continuous 

Travel 
time 

Access time Continuous 

Egress time Continuous 

Transfer time (excl. auto) Continuous 

Main mode travel time Continuous 

Total travel time Continuous 

Travel 
distance 

Access distance Continuous 

Egress distance Continuous 

Main mode travel distance Continuous 

Total travel distance Continuous 

 

4.1.2. Utility equation 

The utilities are estimated against a base alternative. In this model, the alternative auto was 

taken as the base alternative, with its constant set to zero. 

Equation 9 

𝑈𝑖𝑡
𝑘 = 𝑉𝑖𝑡

𝑘 + 𝜀𝑖𝑡
𝑘  

where 𝑈𝑖𝑡
𝑘  is the utility of taking alternative i (i = auto, air, bus and rail) to trip-maker t for purpose 

k, 𝑉𝑖𝑡
𝑘 is the observable portion of the utility and 𝜀𝑖𝑡

𝑘  is the error portion of the utility, which is 

assumed to be Gumbel-distributed in the MNL estimation (Koppelman and Bhat, p. 19, 2006).  
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The observable part of the utility, 𝑉𝑖𝑡, is composed of portions related to the mode 

characteristics, the trip-maker’s characteristics and the trip’s characteristics.  

Equation 10 

𝑉𝑖𝑡
𝑘  = 𝑉𝑚𝑜𝑑𝑒

𝑘 + 𝑉𝑡𝑟𝑖𝑝−𝑚𝑎𝑘𝑒𝑟
𝑘 + 𝑉𝑡𝑟𝑖𝑝

𝑘  

Each of these portions of utility is a linear addition of estimated parameters multiplied by the 

attribute. 

Equation 11 

𝑉𝑚𝑜𝑑𝑒
𝑘 = 𝛽𝑖𝑚

𝑘 ∗ 𝐴𝑖𝑚
𝑘 … … 

where 𝑉𝑚𝑜𝑑𝑒
𝑘  is the portion of the utility related to the characteristics of the mode, 𝛽𝑖𝑚

𝑘  is the 

mth parameter for mode i for purpose k, and 𝐴𝑖𝑚
𝑘  is the mth attribute of mode i for purpose k. 

Equation 12 

𝑉𝑡𝑟𝑖𝑝−𝑚𝑎𝑘𝑒𝑟
𝑘 = 𝛽𝑖𝑚

𝑘 ∗ 𝐴𝑚𝑡
𝑘 … … 

where 𝑉𝑡𝑟𝑖𝑝−𝑚𝑎𝑘𝑒𝑟
𝑘  is the portion of the utility related to the characteristics of the trip-maker, 𝛽𝑖𝑚

𝑘  

is the mth parameter for mode i for purpose k, and 𝐴𝑚𝑡
𝑘  is the mth attribute of traveler t for 

purpose k. 

Equation 13 

𝑉𝑡𝑟𝑖𝑝
𝑘 = 𝛽𝑖𝑚

𝑘 ∗ 𝐴𝑚𝑝
𝑘 … … 

where 𝑉𝑡𝑟𝑖𝑝
𝑘  is the portion of the utility related to the characteristics of the trip, 𝛽𝑖𝑚

𝑘  is the mth 

parameter for mode i for purpose k, and 𝐴𝑚𝑝
𝑘  is the mth attribute of trip p for purpose k. 

This makes the utility for a mode i, individual t for purpose k: 

Equation 14 

𝑈𝑖𝑡
𝑘 = 𝛽0𝑖

𝑘 + 𝑉𝑚𝑜𝑑𝑒
𝑘 + 𝑉𝑡𝑟𝑖𝑝−𝑚𝑎𝑘𝑒𝑟

𝑘 + 𝑉𝑡𝑟𝑖𝑝
𝑘  

where 𝛽0𝑖 is the alternative specific constant, or mode constant for mode i for purpose k, which 

represents the portion of utility that is not estimated by the variables.   
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4.2. Estimation using R package mlogit 

The model is estimated using the package for multinomial logit models, mlogit, developed by 

Yves Croissant. The package has the capability to estimate the basic MNL model and other 

popular logit class models such as NL (Croissant, 2011).  

4.2.1. Mlogit data format 

The mlogit function accepts data in wide and long format. The wide format has one row per 

each choice while the long format has one row per each alternative. In this case, there would 

be four rows per trip record, one per each mode. The long data format is used here to account 

for the mode specific characteristics.  

4.2.2. Mlogit function 

The mlogit function accepts a formula and a dataset. The mlogit formula consists of three types 

of variables: 

 Alternative specific variables with a generic coefficient across all alternatives 

o Ex. Generic travel time coefficient 

 Individual and trip specific variables 

o Ex. Income, age, number of travelers 

 Alternative specific variables with different coefficients for each alternative (Croissant, 

2011) 

o Ex. Travel time for auto, air, bus, and rail separately 

The function then outputs estimated coefficients, statistical measures of each parameter and 

of the overall model, e.g. the t-statistics and the log-likelihood, etc.  

For nested logit models, the mlogit function offers the same specifications in terms of variables, 

with an added specification of nesting structures. The function then outputs the estimated 

coefficients as well as the nesting coefficient.  

4.3. Multinomial logit model estimation results 

The process of model specification and estimation is not strictly linear. Model estimation 

informed the specification of the model, i.e. the results from model estimation showed whether 

variables worked reasonably together, and variables were then modified, added or dropped to 

form a coherent estimation. This process continues until one reaches a final specification of 
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the utility equation with good statistical performance and theoretical soundness. This sort of 

feed-back loop process is common in model estimation.  

Estimations were performed for different combinations of explanatory variables. Variables 

were added gradually, in the order of alternative-specific variables, trip-specific variables, and 

individual-specific variables. Variables that were theoretically consistent and had at least a 

95% significance were retained.  

As this model should be policy sensitive for MTO, it was important to have both travel time and 

travel cost variables. This was problematic due to the high correlation between travel time and 

travel cost in long distance travel, which resulted in a positive price coefficient in some 

estimations. In the end, the most consistent model results came from having one aggregated 

coefficient for travel price. Travel time worked well as an aggregated coefficient across all 

modes for business and visit trips, and was disaggregated for the leisure purpose. Number of 

transfers was discarded when the coefficient became positive and illogical, but frequency of 

service was kept.  

The models and coefficients of this model, which will be called Model 1, are shown Table 5, 

although the variables are only explained in detail later in the chapter since this is not the final 

version of the model. 
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Table 5. Coefficients of Model 1 with travel cost and travel time as separate variables (Significant 
codes: *** 99.9% significance level, ** 99%, * 95%) 

 

Mode Parameter Coefficent Significant Coef. Sig. Coef. Sig.

Air Intercept -1.293378 *** -5.055 *** -6.45 ***

Bus Intercept -3.54818 *** -4.124 *** -3.354 ***

Rail Intercept -4.380824 *** -3.892 *** -3.078 ***

Frequency 0.0029796 *** 0.0031 *** 0.0027 ***

Travel cost -0.00598 *** -0.002 *** -0.001 **

Travel time -0.004449 *** -0.005 ***

Auto Travel Time -0.003 ***

Air Travel Time -8E-04 *

Bus Travel Time -0.001 ***

Rail Travel Time -0.0049 *** -0.002 ***

Air Intermetro 0.3828137 **

Bus intermetro 0.4362147 . 1.7715 ***

Rail Intermetro 1.6676012 *** 0.6605 ***

Air Interrural -1.056 ***

Bus Interrural -1.144 ***

Rail Interrural -3.748 **

Air Overnight 1.1448042 *** 1.7124 *** 3.565 ***

Bus Overnight 1.0552277 *** 0.4485 *** 1.5068 ***

Rail Overnight 0.8852667 *** 0.9029 *** 0.8427 ***

Air Group size -0.27165 *** -0.174 *** -0.532 ***

Bus Group size -0.428316 ** -0.404 *** -1.17 ***

Rail Group size -0.578 *** -0.926 ***

Air Young (<25) -1.777155 ***

Bus Young (<25) 1.1630496 *** 1.5996 ***

Rail Young (<25) 1.5898 ***

Air Male -0.541929 *** 1.217 *** -0.673 ***

Bus Male -0.582315 ** 1.4509 *** -0.465 ***

Rail Male -0.888204 ***

Air Highly educated 0.6087562 ***

Bus Highly educated 0.8073368 ***

Rail Highly educated 0.8343339 ***

Air High income 0.6112 ***

Bus High income -0.89 ***

Rail High income -0.908 ***

Air Low income -0.876095 ***

Bus Low income 0.5372872 *** 1.3243 ***

Rail Low income 0.5619 ***

Log-likelihood

McFadden's R^2 0.47 0.35 0.46

-2074.8 -3923.7 -6090.8
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The following chart shows the log-likelihood and Mcfadden’s R2 for a mode-specific constants-

only model, a variables-only model, and the full model. This is done to assess the contribution 

of the variables. In other words, this shows how much the variables improve the model, and 

how much of the model is determined by the constants alone. In general, smaller constants 

are preferred, as this means the variables are capturing most of the behavior.  

Table 6. Full model comparison with constants-only model and model without constants 

Purpose Constants Only No Constants Full Model 

Log-likelihood 

Business -3910.2 -2315.4 -2074.8 

Leisure -6038.5 -4630 -3923.7 

Visit -11261 -6504.1 -6090.8 

McFadden's R^2 

Business   0.41 0.47 

Leisure   0.23 0.35 

Visit   0.42 0.46 

The comparison indicates that the variables do go some way towards explaining mode choice 

behavior. The log-likelihood and R2 values of the full model improve over the constants-only 

model by almost 50%. The model with variables but no constants is still a signification 

improvement compared to constants-only and does not increase in log-likelihood substantially 

with constants added (full model). This could mean that the constants do not play as strong a 

role when compared to the variables, which is encouraging.  

4.3.1. Confusion matrix 

A confusion matrix, or a misclassification matrix, was also created to see the effectiveness of 

the model. The sum of each row represents the actual number of observations while the sum 

of each column represents the predicted number. The diagonal cells are the matched 

observations while the non-diagonal cells show how much each mode is misclassified as 

another mode choice. The individual match rate is the percentage of correctly predicted 

observations over the number of actual observations, which shows the accuracy of predictions. 

The aggregate match rate is the total number of predicted observations, correctly and 

incorrectly predicted, over the actual number of observations per mode.  
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Table 7. Confusion matrix for the (a) business, (b) leisure and (c) visit mode choice model including 
time and price 

 
(a) 

 
(b) 

 
(c) 

It is reassuring to see that the model has a very good aggregate match rate. There is a high 

misclassification rate for the modes bus and rail. It seems most bus and rail trips are 

misclassified as auto trips, which may indicate these modes share many similar characteristics. 

This could also be due to heavy dominance of the auto mode and the low number of 

observations for the modes bus and rail in the dataset.  

However, this was not the final iteration of the model, as the implied values of time were not 

theoretically consistent. This issue is discussed in full in the next section. 

4.3.2. Value of time  

In mode choice modeling, when the coefficient for time and the coefficient of cost are known, 

it is possible to calculate the hidden value of time (VOT), i.e. how much the traveler values a 

unit of their time.  

Equation 15 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑚𝑜𝑑𝑒 = 𝛽1 ∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 𝛽2 ∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 + 𝜀 

Auto Air Bus Rail Actual total Individual match rate% Aggregate match rate%

Auto 22,612          858             645           1,149        25,264          89.50% 99.86%

Air 929                2,986          28             111            4,054            73.66% 99.33%

Bus 574                46                39             89              748                5.18% 102.64%

Rail 1,115            137             56             203            1,510            13.46% 102.78%

Predicted total 25,229          4,027          768           1,552        31,575          

Business Confusion Matrix

Predicted

Actual

Auto Air Bus Rail Actual total Individual match rate% Aggregate match rate%

Auto 121,864       754           2,040       1,408       126,066      96.67% 100.00%

Air 787                1,432       38             17             2,274           62.97% 98.99%

Bus 1,969            32             109           94             2,204           4.92% 102.54%

Rail 1,451            33             74             109           1,666           6.51% 97.69%

Predicted total 126,071       2,251       2,260       1,628       132,209      

Leisure Confusion Matrix

Predicted

Actual

Auto Air Bus Rail Actual total Individual match rate% Aggregate match rate%

Auto 131,646       865             3,252          2,546       138,309      95.18% 99.99%

Air 924                3,549          27                29             4,528           78.37% 100.04%

Bus 3,186            50                753             422           4,411           17.07% 101.85%

Rail 2,541            66                461             371           3,438           10.78% 97.96%

Predicted total 138,296       4,530          4,493          3,368       150,686      

Predicted

Actual

Visit Confusion Matrix
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Equation 16 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑚𝑜𝑑𝑒 =
𝛽1

𝛽2

∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 + 𝜀 

Equation 17 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝑖𝑚𝑒 (𝑉𝑂𝑇) =
𝛽1

𝛽2

 

Though both travel time and travel cost coefficients were negative across all trip purposes, the 

calculated hidden value-of-time implied by them were not consistent with expectations.  

Table 8. The implied value of time for each trip purpose (Note that the leisure model has 
disaggregated travel time coefficients and therefore has a value of time per mode while the other two 
models do not) 

 
Business Leisure Visit 

Auto    $    96.89    

Air    $    25.74    

Bus    $    33.23    

Rail    $    61.32    

General  $    44.64     $  235.09  

The VOT for trip purpose business is smaller than non-business, which goes against the 

common understanding that business travelers tend to be more sensitive to time and should 

thus have a higher VOT. In the disaggregated VOTs calculated for the leisure model, air 

travelers had the lowest VOT, followed by bus, rail and auto. This ranking is illogical, as flying 

is usually the fastest and most expensive option, and normally we would expect air travelers 

to have higher VOTs than other modes. Bus travelers, for example, accept a longer journey 

time in return for a cheaper fare.  

To investigate further, models were estimated with a travel cost coefficient per each income 

category. The Table 9 shows the implied value of time per each income category for each trip 

purpose.  
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Table 9. The implied Value-of-Time per income category for each trip purpose 

Income Category Business Leisure Visit 

< $50,000  $     69.36   $  134.36   $   116.35  

$50,000 - $70,000  $     45.34   $     21.44   $      86.76  

$70,000 - $100,000  $     34.65   $     24.79   $      97.57  

>$100,000  $     46.00   $     64.44   $ (353.58) 

Table 9 shows no clear trend of value-of-time across income categories. The lowest income 

bracket has the highest implied value-of-time across all purposes. The highest value-of-time 

belong to the lowest income bracket leisure travelers. There was even a negative VOT for high 

income bracket visit travel. So, this segmentation of travel cost by income bracket was 

discarded. 

The next possibility was to fix the value of time. This means a VOT is asserted rather than 

derived from the estimated model. The asserted VOT is used to convert either time into cost 

or vice versa, forming one general impedance factor that incorporates both time and cost. 

However, there is no consensus in the modeling community on the right VOTs, and VOTs can 

vary depending on demographics and trip characteristics. To mitigate this uncertainty, the 

Ministry of Transportation of Ontario proposed VOTs based on past and current relevant travel 

demand models and rail forecasting models in the region.  
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Table 10. Proposed value of time in Canadian dollars per hour 

 

The VOTs are separated by trip purpose. Option 1 differentiates VOT by mode. Option 2 has 

one generic VOT for all modes. Option 3 has VOTs by mode and by in vehicle travel time 

(IVTT) and access/egress time (OVTT). Option 3 was not considered because the model does 

not distinguish access/egress time from IVTT. Options 1 and 2 were tested by converting travel 

cost into travel time using VOT and adding the two together to form a generalized time variable 

(GT).  

Equation 18 

𝐺𝑇 (𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑡𝑖𝑚𝑒) =
𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡

𝑉𝑂𝑇
+ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

Equation 19 

𝑢𝑚𝑜𝑑𝑒 = 𝛽1 ∙ 𝐺𝑇 + 𝜀 

Using VOT Options 1 and 2, three different models were derived and compared, making a total 

of four models including the already estimated model with separate travel time and travel cost 

coefficients 

Model 1. Existing model estimation with separate coefficients for travel time and travel cost 

Model 2. One general VOT (Option 2) used to calculate GT and one coefficient derived for GT 

Business Leisure Visiting

100$        50$          50$          

35$          20$          20$          

60$          30$          30$          

60$          30$          30$          

65$          32$          32$          

Air 75$          45$          45$          

Bus 20$          15$          15$          

Auto 50$          30$          30$          

Rail 30$          20$          20$          

average 45$          25$          25$          

Air 110$        65$          65$          

Bus 35$          20$          20$          

Auto 50$          30$          30$          

Rail 70$          40$          40$          

average 65$          40$          40$          

IV
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Option 2
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Mode

Air
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Rail
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Model 3. One general VOT (Option 2) used to calculate GC and four coefficients derived for 

GT  

Model 4. Four VOT (Option 1) to calculate GT and one coefficient derived for GT  

Table 11. Log-likelihood and Mcfadden’s R2 values across all four models 

Model 1 2 3 4

Time & Price 1VOT 1 COEF 1 VOT 4 COEF 4 VOT 1 COEF

Business -2074.8 -2077.3 -2034.4 -2096.2

Leisure -3923.7 -3923.9 -3826.3 -3923.7

Visit -6090.8 -6092.2 -6097.7 -6077

Business 0.47 0.47 0.48 0.46

Leisure 0.35 0.35 0.37 0.35

Visit 0.46 0.46 0.46 0.46

Log-likelihood

McFadden's R^2

 

As can be seen Table 11, the likelihoods and R2 values were similar. No one model performed 

consistently better. Further analysis was conducted to differentiate the model performances. 

4.3.3. Scenario analysis 

As a continuation of the VOT discussion, a sensitivity analysis was also conducted with the 

help of Dr. Carlos Llorca. The city pair Toronto – Montreal was selected. To see the sensitivities 

of the models to travel time and travel cost, we analyzed a few scenarios: doubled air travel 

time, doubled air fare, and halved rail travel time. The analysis was run 1000 times to account 

for stochastic effects.  

Air Scenarios 

Below are the results for the trip purpose business: 
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Figure 20. Comparison of business modal changes for Toronto – Montreal with doubled air travel time 

 

 

Figure 21. Comparison of business modal changes for Toronto – Montreal with doubled air fare 

 

As expected, when airfare or air travel time doubled, the attractiveness of air mode went down, 

resulting in less air modal share and more of the other three modes. Auto had the biggest 

modal share increase, followed by rail and bus, which is also in accordance with their current 

modal share. Since all models show the correct sign of sensitivities, and we do not have 
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information on the correct, expected sensitivity, it was hard to use this as a measurement of 

model performance.  

High Speed Rail Scenario 

For the past few decades there has been continued interest in the potential of high speed rail 

in Canada, particularly for the southern Ontario region. The Quebec City – Windsor corridor 

region is the most densely populated corridor in Canada and is already well-serviced by air, 

bus and existing rail. Thus, at the behest of MTO, a scenario analysis with rail was also 

conducted for Toronto – Montreal, two of the biggest metropolitan areas in this corridor and in 

Canada.   

Currently, the travel speed by train between the OD pair is five hours. Taking the straight 

driving distance between the pair to be 550 km, the average train speed is currently about 

100km/hr. Assuming a high-speed rail speed of 200 km/h, the new travel time would be 2.5 

hours, approximately halving the current travel time by rail.  

This scenario is rather simplified and is only concerned with Toronto to Montreal one-way trips. 

As is the case with the air mode sensitivity analysis, there is no clearly superior model. All four 

models show the correct signs – rail modal share goes up while auto, air and bus modal shares 

go down.  

Figure 22. Comparison of modal share changes for Toronto – Montreal with high speed rail for trip 
purposes: (a) business, (b) leisure, (c) visit  

 

(a) 
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(b) 

 

(c) 

4.3.4. Comparison of coefficients 

The coefficients were also considered. All four models had similar statistically significant 

variables. It was noted that the coefficients for Models 2 and 4 were similar while Model 3 had 

markedly different coefficients. Since Models 2 and 4 had similar coefficients and thus validate 

each other, it was more likely that the disaggregation of the GC coefficient in Model 3 might 

have affected the behavior of other parameters. Furthermore, the relative ranking of the 

estimated GT coefficients were also not strictly logical. In the business model, the most 

negative GT was auto, followed by rail, air, and bus. This implies that, for an increase in travel 
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time and/or travel cost, auto would be the least attractive, followed by rail, air and finally bus. 

It is hard to argue that bus is the most attractive mode for business travelers unless we assume 

these are captive riders. The rankings of Model 3 for the other two purposes follow different 

patterns (from most to least negative: leisure: auto, rail, bus, air; visit: auto, bus, rail, air) and 

are similarly hard to justify. Thus we decided to reject Model 3 and pick either Models 2 or 4. 

Of these two models, Model 2 was favored with the argument that when two models are similar, 

we should strive for the more parsimonious model, i.e. the model that can explain the observed 

behavior with as few variables as possible. Therefore the rest of the analysis was conducted 

with Model 2. Table 12 shows the coefficients of all four models for the trip purpose visit. Please 

refer to Appendix D for the detailed coefficient comparisons across models for the other trip 

purposes.   
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Table 12. Coefficients for models 1 – 4 for trip purpose visit (Significant codes: *** 99.9% significance 
level, ** 99%, * 95%) 

 

  

  
Model 1 Model 2 Model 3 Model 4 

  
Time & Price 1VOT1Coef 1VOT4Coef 4VOT1Coef 

Mode Variable Coef Sig Coef 
 

Coef Sig Coef Sig 

Air Intercept -6.45048 *** -4.17917 *** -6.12773 *** -5.19775 *** 

Bus Intercept -3.3544 *** -3.30337 *** -2.10221 *** -3.24767 *** 

Rail Intercept -3.07761 *** -2.90239 *** -2.90149 *** -2.911 *** 
 

Frequency of service 0.002678 *** 0.00277 *** 0.003782 *** 0.00274 *** 
 

Travel cost -0.00127 ** 
      

 
Travel time -0.00498 *** 

      

 
Generalized Time (4 VOT) 

      
-0.00399 *** 

 
Generalized Time (1 VOT) 

  
-0.00425 *** 

    

Auto Generalized Time (1 VOT) 
    

-0.0044 *** 
  

Air Generalized Time (1 VOT) 
    

-0.00199 *** 
  

Bus Generalized Time (1 VOT) 
    

-0.00276 *** 
  

Rail Generalized Time (1 VOT) 
    

-0.0026 *** 
  

Bus Intermetro 1.771512 *** 1.722853 *** 
  

1.70792 *** 

Rail Intermetro 0.660516 *** 0.691231 *** 
  

0.695349 *** 

Air Interrural 
    

-0.78429 *** 
  

Bus Interrural 
    

-2.38203 *** 
  

Rail Interrural 
    

-0.98862 ** 
  

Air Male -0.67324 *** -0.69495 *** -0.78386 *** -0.67762 *** 

Bus Male -0.46476 *** -0.45977 *** -0.46706 *** -0.45681 *** 

Bus Young (<25) 1.599585 *** 1.601469 *** 1.593182 *** 1.602354 *** 

Rail Young (<25) 1.589757 *** 1.581962 *** 1.579817 *** 1.579972 *** 

Air Group size -0.5325 *** -0.47254 *** -0.59804 *** -0.47815 *** 

Bus Group size -1.16971 *** -1.16337 *** -1.19603 *** -1.15705 *** 

Rail Group size -0.92632 *** -0.92223 *** -0.94602 *** -0.92195 *** 

Air High income 0.611178 *** 0.526003 *** 0.584993 *** 0.55181 *** 

Bus High income -0.89031 *** -0.90202 *** -0.87169 *** -0.90533 *** 

Rail High income -0.90797 *** -0.89541 *** -0.91935 *** -0.89352 *** 

Air Overnight 3.565031 *** 3.509203 *** 3.442622 *** 3.499783 *** 

Bus Overnight 1.506792 *** 1.543912 *** 1.223359 *** 1.597125 *** 

Rail Overnight 0.842706 *** 0.998013 *** 0.669765 *** 1.001357 *** 
          

 
Log-likelihood -6090.8 -6092.2 -6097.7 -6077 

 
McFadden's R^2 0.46 0.46 0.46 0.46 



Model Results  

 

52 

 

5. Model Results 

5.1. Model 2 coefficients  

The final coefficients of Model 2, using 1 VOT for all modes and deriving 1 coefficient for all modes. 

Table 13. Final model coefficients by trip purpose (Significant codes: *** 99.9% significance level, ** 
99%, * 95%) 

 

 
 
 
 

Mode Variable Coefficent Significant Coef. Sig. Coef. Sig.

Air Intercept -1.4863 *** -3.8029 *** -4.1792 ***

Bus Intercept -3.6936 *** -3.4143 *** -3.3034 ***

Rail Intercept -4.3905 *** -4.2292 *** -2.9024 ***

Frequency 0.0028 *** 0.0023 *** 0.0028 ***

Generalized Time (1 VOT) -0.0049 *** -0.0028 *** -0.0042 ***

Air Intermetro 0.3827 ** 0.7141 ***

Bus intermetro 0.4718 * 0.8660 *** 1.7229 ***

Rail Intermetro 1.6727 *** 1.3069 *** 0.6912 ***

Air Overnight 1.1602 *** 1.9594 *** 3.5092 ***

Bus Overnight 1.0972 *** 0.8945 *** 1.5439 ***

Rail Overnight 0.8553 *** 1.1964 *** 0.9980 ***

Air Group size -0.2663 *** -0.1693 *** -0.4725 ***

Bus Group size -0.4433 *** -0.3740 *** -1.1634 ***

Rail Group size -0.5407 *** -0.9222 ***

Air Young (<25) -1.9031 *** -0.4283 *

Bus Young (<25) 1.0482 *** 1.0870 *** 1.6015 ***

Rail Young (<25) 1.3471 *** 1.5820 ***

Air Male -0.5222 *** -0.6949 ***

Bus Male -0.6176 ** -0.3875 *** -0.4598 ***

Rail Male -0.8944 *** -0.3475 ***

Air Highly educated 0.6580 ***

Bus Highly educated 0.8695 ***

Rail Highly educated 0.8313 ***

Air High income 0.1952 * 0.5260 ***

Bus High income -1.3484 *** -0.9020 ***

Rail High income -0.3724 ** -0.8954 ***

Air Low income -1.2428 ***

Bus Low income 0.6940 **

Log-likelihood

McFadden's R^2

Business Leisure Visit

-2077.3

0.47

-3923.9

0.35

-6092.2

0.46
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5.2. Mode specific variables 

 
These are variables that represent the level-of-service of the mode. This model employs gen

eric alternative-specific variables that do not vary across different modes.  

 

Generalized Time  

Though a model was estimated with travel time and travel cost as separate variables, a 

combined generalized time coefficient was estimated, in the interest of having a coherent and 

defensible VOT. The calculation of the generalized time is found in the previous section. The 

variable signifies how much disutility travel time and travel cost contributes. As expected, the 

generalized time has a negative sign across all trip purposes, meaning as travel time and/or 

travel cost of a mode increases, the attractiveness of traveling by that mode decreases. The 

GT for business purpose is the most negative, followed by visit, then leisure. This would mean 

that business travelers are most sensitive to travel time and/or cost changes, while leisure 

travelers are the least sensitive.  

Frequency 

The frequency represents the service frequency of transit modes. The frequency used was the 

number of times the service is offered per week. It has a positive coefficient, which is in line 

with the logic that more service frequency raises the attractiveness of the mode. 

5.3. Trip-specific variables 

These variables pertain to the characteristics of the trip, such as the number of travelers, time 

of day the trip is made, etc.  

Intermetro 

This is a dummy variable for trips that are made between two metropolitan areas. A zone is 

designated as a metropolitan area if it is tagged as a CMA in the TSRC data. The coefficients 

are positive for transit modes, which reflects the fact that transit modes offer better connections 

between metropolitan areas. The variable is strongest for rail for business and leisure trip 

purposes, indicating that if a trip takes place between two cities, rail becomes much more 
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attractive. As Canada has a rail network through southern Ontario and Quebec along big 

metropolitan areas, this is not surprising.  

Overnight 

This is a dummy variable indicating whether a trip was overnight or completed on the same 

day. Again the estimated coefficients were positive for transit modes. Trips with overnight stay 

likely require more planning, and taking transit is part of that planning, whereas trips that can 

be made in the same day can easily be done more spontaneously with auto. The coefficient is 

strongest for the air mode. This could be due to overnight trips also being longer in distance. 

It could also be that ground transit modes may take more time than driving, thus requiring a 

stay overnight.  

Group size 

The travel party size coefficients were negative for all transit modes. As travel party goes up 

in number, transit becomes less attractive compared to auto. Since auto travel cost is 

perceived as per vehicle, often only considering the fuel cost, it can be seen as more 

economical to have more passengers per car. The coefficient is least negative for air, indicating 

that as a large group, taking an airplane is less onerous than taking the bus or train.  

5.4. Individual specific variables 

These variables describe relevant characteristics of the individual trip maker, such as socio-

economic variables, household size, presence of children, etc.  

Age 

Various combinations of the age brackets were tested, and the young demographic, 18 to 25 

years old, was found to be the one with the most significantly different behavior. Being young 

decreases the attractiveness of flying, but increases the attractiveness of bus and transit. 

Young people are often more flexible with their time than with their budget and are more 

accepting of discomfort. They may also have lower auto ownership rates, thus necessitating 

trips by ground transit. 

Gender 
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Here a dummy variable was used to flag male trip makers. When a trip maker is male, they 

are more likely to take auto compared to transit. This reflects that males tend to have stronger 

car habits (Matthies, Kuhn & Kloeckner, 2002).  

Education 

After testing various combinations of the education brackets, it was found that high education, 

i.e. having a university degree, was significant for business travel. Those who are highly 

educated are more likely to travel by transit. Highly educated people may be more socially and 

environmentally conscious. They may also have better access to information and can better 

plan trips by transit. Though education could be a proxy for income, the income variable was 

also estimated and theoretically consistent, meaning that education is significant as a stand-

alone variable. Moreover, if education was merely a proxy for income, one would expect the 

coefficients for bus mode to be negative.  

Income 

For the business trip purpose, those in the lowest income bracket are less likely to fly and more 

likely to take the bus, as expected. For the leisure and visit purposes, those in the highest 

income bracket are more likely to fly than drive, and less likely to take ground transit modes. 

The coefficient for bus is more negative than for rail, meaning for high income earners, bus is 

the least attractive mode, followed by rail. 

5.5. Model constants 

All constants are negative in comparison to auto, which has a 0 constant. This indicates that, 

without comparing any other characteristics, auto is the most attractive mode. This is expected 

as auto is by far the dominant mode in the data. For the business model, air has the least 

negative constant, which is in line with the fact that air travel is the second most frequently 

chosen mode after auto. The ranking of air, rail and bus constants fluctuates between the other 

two trip purposes. This could be because the other two purposes are even more 

overwhelmingly auto dominated and all transit modes only make up a few percentage of the 

data.  

5.6. Model performance 

There are various ways to evaluate the performance of a model. During estimation, the log-

likelihood and McFadden’s R2 value are relied upon as comparisons between model iterations. 
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To check the overall fit, the model is used to predict mode choice probabilities, and the 

prediction is compared against the observed number of trips from the original data. The 

prediction was done using R on the TSRC dataset. To account for stochasticity, the prediction 

here is an average of 100 runs.  

5.6.1. Model fit by OD pair 

The number of trips per mode per OD pair was calculated. The predicted number of trips is 

plotted against the observed number of trips for the two dominant modes, auto and air. OD 

pairs of interest such as Toronto-Montreal, Toronto-Ottawa and Toronto-Windsor are 

highlighted.  

Figure 23. Number of observed vs. predicted trips by OD pair for modes (a) auto and (b) air 

 
(a) 

 
(b) 

Figure 23 show that the predicted versus observed trips correlate very strongly. The weakest 

correlation belongs to air mode trip number for leisure trips. However, do note that the leisure 

purpose has the smallest number of absolute trips by air by OD pair, only going up to 100 trips 

per day. The important OD pairs are also generally well predicted, with the exception being 

Toronto – Montreal business trips by air, which is underpredicted by 100 trips.   
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Figure 24. Absolute error in trip numbers by OD pair vs. trip distance for modes (a) auto and (b) air 

 
(a) 

 
(b) 

Figure 24 shows that the error is higher for short distance OD pairs and air trips tend to be 

underestimated for leisure and visit purposes. However, it is hard to interpret this plot on its 

own because there is no information on the number of trips per OD pair. The error be quite 

large in absolute numbers but only account for a small percentage error. To give context to the 

absolute error, the relative error is calculated and plotted against absolute error. 
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Figure 25. Relative vs. absolute error in trip numbers by OD pair for modes (a) auto and (b) air 

 
(a) 

 
(b) 

Ideally both absolute and relative errors would be small. In a relative versus absolute error 

graph, we hope to see that a large absolute error corresponds to a small relative error and vice 

versa. This would signify that a large absolute error is due to the OD pair having a large number 

of trips, and a large relative error could be due to the OD pair having a very small number of 

trips, thus tolerating a very small margin of error. In other words, the points should lie along 

the x or y axis.  

The graphs here show the clear majority of OD pairs, including the important OD pairs, have 

either low absolute or low relative error. For auto trips, the business model had the lowest 

relative error. For the other two trip purposes, the OD pair with the highest relative error is 

identified as Toronto to Newfoundland and Labrador. For air trips, two outliers were identified: 

leisure – London to Toronto, visit – Quebec (non-CMA) to Ottawa. Taking away these OD 

pairs, the rest of the OD pairs had relatively small relative errors or absolute errors with the 

exception of Toronto to Ottawa for the leisure model, which is overestimated. Nevertheless, 

keep in mind that, because the model is to fit a large range of trips for the entire province of 
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Ontario, the number of predicted versus actual trips by OD pair is perhaps the best indication 

that the model is correctly predicting overall mode choice trends.  

Figure 26. Relative vs. absolute error in trip numbers by OD pair for air without outliers 

 

5.6.2. Model fit by distance 

The number of trips per mode per distance is aggregated in 100 km distance brackets, with all 

trips above 1600 km in one bracket. The predicted modal shares are graphed against the 

observed modal shares.  

Figure 27. Distribution of modal share by trip length for trip purpose business 
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Figure 28. Distribution of modal share by trip length for trip purpose leisure 

 

Figure 29. Distribution of modal share by trip length for trip purpose visit 

 

These graphs indicate that the predicted modal shares follow the general pattern of the 

observed modal shares, especially for shorter distances. The pattern is not so closely matched 

at longer distances because there are very few actual trips made at such distances. The vast 

majority of trips are short-distance auto trips, and the model captures that behavior. 
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Figure 30. Actual vs. predicted number of trips by trip length for trip purpose business 
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Figure 31. Actual vs. predicted number of trips by trip length for trip purpose leisure 
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Figure 32. Actual vs. predicted number of trips by trip length for trip purpose visit 

 

Figure 30, Figure 31, and Figure 32 show the number of actual versus predicted trips using 

Model 2. Auto trips are very well matched for all three trip purposes. The other three modes 

are not as exact, but the general trends are picked up by the model. The peak at around 500 

km indicates trips between Toronto to Ottawa and Montreal. Some of the transit modal shares 

of these trips are underestimated. However, it is worth noting that the general bump in trips is 

shown in the predicted trips.  

5.7. Nested logit 

For nested logit, the same explanatory variables and choice set was used. Three specific 

nest combinations were tested: 
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Figure 33. Nesting structures tested 

 

Each nest was tested for Models 1 – 4 travel time and price combinations. Models with the log 

of each travel time and travel price combination were also tested. Estimations with nesting 

coefficients of greater than 1 were ruled out, as that implies the alternatives correlated more 

with alternatives outside of the nest than within (Koppelman & Bhat, 2006, p. 163).  

Many combinations yielded unreasonable nesting coefficients or could not be estimated at all 

using the mlogit package. The only nesting structure and variable combination that yielded 

reasonable nesting coefficients across all three trip purposes was auto vs. transit nest with the 

log of travel cost and the log of travel time as variables. This is shown in Table 14. 

The variables used were similar to those discussed in the previous section. Though the 

coefficients here were technically under 1, they were very close to 1, implying an almost flat 

nesting structure and no great correlation between the alternatives within the nest. In addition, 

the log-likelihoods for these models were worse for the visit and leisure purposes compared to 

Model 2, though the business model had a slight improvement. Overall, the MNL model is 

preferable to the estimated NL. 
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Table 14. Nested logit model with log of travel time and log of travel cost 

 

Unfortunately R’s mlogit package does not allow any direct setting of the nesting coefficient. 

There is other software, such as Biogeme, that allows greater control over the estimation of 

nesting coefficients, but due to time constraints, this was not attempted.   

Mode Variable CoefficentSignificantCoef. Sig. Coef. Sig.

Air Intercept -1.69366 *** -4.92306 *** -3.23927 ***

Bus Intercept -2.87557 *** -4.45811 *** -1.97862 ***

Rail Intercept -3.18362 *** -4.56428 *** -1.16263 ***

Frequency 0.002438 *** 0.002964 *** 0.002718 ***

log(travel time) -1.99561 *** -1.26407 *** -1.52436 ***

log(travel cost) -1.33964 *** -1.02672 *** -1.22479 ***

Air Intermetro 0.512005 **

Bus intermetro 1.165862 *** 1.142403 *** 1.90861 ***

Rail Intermetro 2.230063 *** 1.778067 *** 1.033737 ***

Air Overnight 1.216991 *** 2.19534 *** 2.812266 ***

Bus Overnight 0.382717 ** 0.430963 *** 1.034165 ***

Rail Overnight 0.208304 * 0.499401 *** 0.433203 ***

Air Group size -0.24873 *** -0.35254 ***

Bus Group size -0.26815 *** -0.53389 *** -1.25256 ***

Rail Group size -0.53332 *** -0.69437 *** -1.04904 ***

Air Young (<25) -1.46499 *

Bus Young (<25) 0.938794 *** 1.380773 *** 1.692177 ***

Rail Young (<25) 1.647043 *** 1.639282 ***

Air Male -0.73333 *** -0.33965 . -0.44542 ***

Bus Male -0.93988 *** -0.30204 *** -0.44157 ***

Rail Male -1.27379 ***

Air High income -0.54501 . 0.267279 *

Bus High income -1.06275 ***

Rail High income -1.08642 ***

Air Low income 0.666573 *** 1.374713 ***

Bus Low income 0.696847 ***

Nesting Coef. 0.9005 *** 0.868582 *** 0.972912 ***

Log-likelihood

McFadden's R^2 0.49 0.34 0.46

Business Leisure Visit

-2013.4 -3987.3 -6092.2
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6. Remaining work 

The model must now be calibrated using the TSRC data. This would involve applying the model 

to destination choice model outputs and then adjusting the mode-specific constants to better 

match the TSRC mode choice pattern.  

The scope of the project is building a long-distance travel demand model of Ontario. This model 

assigns modes to domestic trips within Canada. Now remains the trips between Ontario and 

the rest of the world. Since Canada only shares a land border with the U.S., the majority of 

long-distance trips into and out of Ontario are from and to America. The other international 

trips can safely be assumed to be by plane. This part of the model can be derived from the 

Canadian International Travel Survey and the modal data from Rome2rio. A similar 

methodology for estimation could be applied since the travel characteristics were gathered for 

all zones in North America excluding Mexico. 

Finally, after the modes have been assigned to each trip, the trips must be disaggregated into 

TAZs and integrated into the short-distance portion of the Ontario province model for route 

assignment.  
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7. Discussion and conclusion  

This section gives a final summary of the model development process before diving into a 

discussion of model results. I then discuss the limitations, give suggestions for future research 

and give final conclusions.  

7.1. Summary 

This thesis documents the development of a multinomial logit long-distance mode choice 

model for the province of Ontario, Canada. The model is based primarily on the TSRC trip data 

and an open web-based aggregate data source.  

To achieve this, the spatial resolution was defined using the TSRC data.  The model was 

defined to only account for domestic trips with at least one trip end in Ontario, and trips that 

geographically cross Ontario. It was segmented by trip purpose into business, leisure and visit. 

I then analyzed the to explore the relationship between mode choice and possible explanatory 

variables.  

The lack of mode-specific data was addressed by utilizing the API of the multi-modal global 

trip planner Rome2rio. I defined the origin and destination trip positions as the centroids of 

zones and queried all possible mode choice data for all OD pairs.  

The variables considered were LOS variables, characteristics of the trip-maker and of the trip. 

The parameters were chosen based on theoretical consistency and statistical relevance (at 

least 95% interval). I tested many LOS variables such as in-vehicle time, transfer time, total 

travel time until an optimal configuration of generic coefficients across all modes of total travel 

time, travel price and frequency was reached. Other non-LOS variables, such as income 

bracket, gender, age, education level, travel group size, and whether a trip has metropolitan 

OD, were then added gradually.   

To achieve a theoretically consistent value-of-time, a generalized time variable was used. It 

was calculated by converting travel cost into travel time using a specific value-of-time. The 

model was re-estimated with this GT variable instead of separate travel time and travel cost 

variables. Three additional models with different configurations of GT were estimated for each 

trip purpose. To determine the right configuration of value-of-time, sensitivity tests were 

conducted on the four models. All four models showed the right signs in their sensitivities, but 

it was difficult to gauge which model demonstrated the most correct sensitivity. In the end, the 
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model with one VOT for all four modes was chosen, as it had the least amount of built-in 

assumptions and was the most parsimonious of the VOT models. 

A nested logit model was attempted, but discarded due to the nesting coefficient not being 

significantly different from 1.  

7.2. Discussion of results 

The model considers LOS variables of frequency of service, travel time, and travel cost, which 

were combined into one generalized time variable. The generalized time coefficient is negative 

for all trip purposes, meaning that the perceived utility of modes go down as travel time and 

travel cost rises. The positive frequency parameter demonstrates as frequency increases, so 

does utility. 

Explanatory socioeconomic factors in the model are age, income, gender, and for the business 

model only, education level. The youngest age group tends to travel less by air and more by 

bus and rail. Men have a propensity for driving. Higher income makes the traveler more likely 

to fly and less likely to take the bus and train. Having a higher education level makes transit 

modes more attractive to business travelers. 

The relevant trip characteristics are whether the trip is made between two metropolitan areas, 

whether the trip is completed on the same day or has at least one overnight stay, and the travel 

group size. The results show that trips made between two metropolitan areas are more likely 

to be made with transit options. Trips longer than one day also favor transit options, especially 

air. As group size goes up, the traveler tends to prefer auto to transit.  

The model closely matches the overall modal share. Predicted and actual modal share graphs 

show that the model correctly predicts the mode of the majority of trips. The modal share of 

relatively short distance trips and relatively long distance trips are very closely matched.  

The model underestimates the air modal share between certain mid-distance city pairs such 

as Toronto -Montreal and Toronto – Ottawa, especially for the business purpose. In his corridor 

city of Toronto-Montreal in 1997, Bhat utilized so-called large city indicators to identify a trip 

originating or terminating in a large city, which is similar to the intermetro variable employed in 

this model (1997). The California Statewide Model for High Speed Rail accounted for this with 

regional dummy variables for large metropolitan regions and calibrated to match the observed 

trips (Outwater et al., 2009). Since the scale of this model encompasses all of Ontario and trips 

to and from Ontario in all of Canada, it can be argued that the model cannot have the fineness 
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of a corridor study without incorporating specific dummy variables and geographic 

segmentation, as in the California model.  

7.3. Limitations and suggestions for future research 

Many studies have attested to the superiority of NL models over ones using MNL (Koppelman 

and Wen, 2000; Bhat, 1997) However, this study was restricted by the software employed and 

lack of time to explore more malleable software options such as Biogeme. Future research 

should explore the NL model more thoroughly, preferably by using software that allows direct 

manipulation of the nesting coefficient.  

Though Rome2rio is capable of detailed door-to-door, mode-specific data for all possible 

modes from and to any specific geographic location, it is limited here by the spatial resolution 

of the TSRC data. Since there are only 69 distinct zones in Ontario for the origin and 

destination of the trips, any additional refinement in the Rome2rio data went unused. It can 

readily accommodate data with a finer resolution and more specific trip start and end points. 

Future research with finer resolution, perhaps coupled with crowd-based network data 

sources, could take full advantage of this capability.  

Another shortcoming is the lack of access and egress modes modeled. Miller and the study 

conducted by Habib and Wong demonstrated the importance of modeling access and egress 

modes (2004, 2015). Habib and Wong could construct such a model because they had a 

targeted survey for the express purpose of building a model for that corridor (2015). The mode-

choice model here assumes simple single mode trips, since that is the data available from 

TSRC. Due to lack of information on access and egress, this model did not account for access 

and egress choice. Rome2rio is capable of building intermodal routes with alternative modal 

suggestions for some parts of a route. With more detailed data, Rome2rio could presumably 

be used to model intermodal mobility. Though this thesis attempted to use the provided 

complete route, including access and egress possibilities, this may be unreasonable due to 

the coarseness of zones. The access and egress routes chosen by Rome2rio may not be 

reflective of the real access and egress modes chosen by the trip maker.  

Some routes were not found on Rome2rio but reported in the survey. This could be due to the 

assumption that trips start and end at zone centroids. The centroids, though weighted by 

population, could still be in very remote locations, leading to incorrect travel times, costs or 

perhaps no possible route suggestions. Another possibility is updated transport networks – 

routes that used to operate may have changed since the time of the survey. It is important to 
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bear in mind that Rome2rio relies on a multitude of sources, both online and offline, for its data. 

It could have imperfect coverage of certain areas. For example, some less official bus services, 

such as the so-called Chinatown buses, and chartered planes, etc., may not be accounted for. 

Platforms like Rome2rio show promising potential. Since this travel platform and others like it 

have global coverage and APIs, relevant modal data could be gathered very quickly once the 

process to query and integrate data is automated. Traditionally, such data were either 

estimated, manually compiled, or at best partly automated via methods specifically targeted to 

different websites and data structures. If a similar long-distance model were to be built for 

another region, the same procedure of building a list of URLs out of all origin and destination 

points could be used to pull all necessary multi-modal data. This could alleviate the need to 

rely on an actual multi-modal network model that may not yet exist and take significant 

resources to build. 

The advantage to using Rome2rio is that it compiles all possible modes into one database and 

offers the ability of a free-to-try API key. Platforms such as Google, Qixxit, waymate, likely 

have similar capabilities. Future research should further explore the use of such databases in 

modeling, as it would significantly reduce the time and effort spent on data collection, and 

potentially increase the accuracy of the model.  

7.4. Conclusions 

Travel demand models, especially long-distance models, are often plagued by a lack of quality 

data. This thesis addresses an aspect of the data scarcity by utilizing a multimodal online trip 

planner platform to gather necessary mode-specific data. The API for Rome2rio allowed me 

to gather all mode-specific data for all modes within days, saving the effort required to gather 

data from other disaggregated sources. It avoids the difficulty of acquiring proprietary data 

from private enterprises, saves the man hours required to manually gather data from different 

specific information sources, and cuts out the effort and assumptions that would go into 

building a model of the network and extracting the skims. The data was then combined with 

the TSRC survey with data on trip and person characteristics to estimate an MNL mode-choice 

model for Ontario, Canada. The resulting model has a number of useful parameters and, as 

part of the Ontario provincial model, can help assess policy impacts. This thesis demonstrates 

the possibility and the viability of combining new data resources with traditional surveys in the 

estimation of a long-distance mode choice model.  
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Appendix B: Multinomial logit model call to mlogit for Model 2 

Business 

 

> B <- mlogit(bf,brun, weights = brun$wttp) 

> summary(B) 

 

Call: 

mlogit(formula = bf, data = brun, weights = brun$wttp, method = "nr",  

    print.level = 0) 

 

Frequencies of alternatives: 

       1        2        4        5  

0.651294 0.280856 0.021068 0.046782  

 

nr method 

49 iterations, 0h:0m:2s  

g'(-H)^-1g = 9.54E-07  

gradient close to zero  

 

Coefficients : 

                                                         Estimate  Std. Error  t-value  Pr(>|t|)     

2:(intercept)                                         -1.48627019  0.22965029  -6.4719 9.679e-11 *** 

4:(intercept)                                         -3.69359226  0.35196454 -10.4942 < 2.2e-16 *** 

5:(intercept)                                         -4.39053779  0.29592230 -14.8368 < 2.2e-16 *** 

I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq)  0.00282164  0.00042771   6.5970 4.195e-11 

*** 

impedence_op2                                         -0.00492942  0.00020656 -23.8643 < 2.2e-16 *** 

I(( == "2") * (age1))                                 -1.90308069  0.51758421  -3.6769 0.0002361 *** 

I(( == "4") * (age1))                                  1.04823547  0.31658764   3.3110 0.0009295 *** 

I(( == "2") * inc1)                                   -1.24280895  0.22449778  -5.5360 3.095e-08 *** 

I(( == "4") * inc1)                                    0.69402520  0.22186846   3.1281 0.0017594 **  

I(( == "2") * tp_d01)                                 -0.26629578  0.05039677  -5.2840 1.264e-07 *** 

I(( == "4") * tp_d01)                                 -0.44332138  0.13093985  -3.3857 0.0007100 *** 

2:intermetro                                           0.38274096  0.12592711   3.0394 0.0023706 **  

4:intermetro                                           0.47179440  0.23669703   1.9932 0.0462350 *   

5:intermetro                                           1.67272560  0.25585412   6.5378 6.243e-11 *** 

2:triptype                                             1.16023208  0.18137890   6.3967 1.587e-10 *** 

4:triptype                                             1.09719469  0.19812617   5.5379 3.062e-08 *** 

5:triptype                                             0.85533444  0.14343457   5.9632 2.473e-09 *** 

2:sex                                                 -0.52218018  0.11471618  -4.5519 5.316e-06 *** 
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4:sex                                                 -0.61757413  0.18899590  -3.2677 0.0010844 **  

5:sex                                                 -0.89436059  0.13261836  -6.7439 1.542e-11 *** 

2:edu4                                                 0.65799863  0.11866946   5.5448 2.943e-08 *** 

4:edu4                                                 0.86954461  0.20987524   4.1432 3.426e-05 *** 

5:edu4                                                 0.83134027  0.14420355   5.7650 8.164e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log-Likelihood: -2077.3 

McFadden R^2:  0.59954  

Likelihood ratio test : chisq = 6219.8 (p.value = < 2.22e-16) 

 

 

Visit 

 

> V <- mlogit(vf,vrun, weights = vrun$wttp) 

> summary(V) 

 

Call: 

mlogit(formula = vf, data = vrun, weights = vrun$wttp, method = "nr",  

    print.level = 0) 

 

Frequencies of alternatives: 

       1        2        4        5  

0.867692 0.085780 0.026997 0.019531  

 

nr method 

51 iterations, 0h:0m:11s  

g'(-H)^-1g = 4.86E-07  

gradient close to zero  

 

Coefficients : 

                                                         Estimate  Std. Error  t-value  Pr(>|t|)     

2:(intercept)                                         -4.1792e+00  6.2781e-01  -6.6568 2.799e-11 *** 

4:(intercept)                                         -3.3034e+00  1.6746e-01 -19.7262 < 2.2e-16 *** 

5:(intercept)                                         -2.9024e+00  1.6052e-01 -18.0817 < 2.2e-16 *** 

I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq)  2.7695e-03  2.5197e-04  10.9913 < 2.2e-16 

*** 

impedence_op2                                         -4.2473e-03  9.5934e-05 -44.2731 < 2.2e-16 *** 

I(( == "2") * (sex))                                  -6.9495e-01  9.0618e-02  -7.6690 1.732e-14 *** 

I(( == "4") * (sex))                                  -4.5977e-01  7.7182e-02  -5.9569 2.570e-09 *** 

I(( == "4") * (age1))                                  1.6015e+00  8.3399e-02  19.2025 < 2.2e-16 *** 
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I(( == "5") * (age1))                                  1.5820e+00  9.3722e-02  16.8793 < 2.2e-16 *** 

I(( == "4") * (intermetro))                            1.7229e+00  1.1879e-01  14.5034 < 2.2e-16 *** 

I(( == "5") * (intermetro))                            6.9123e-01  1.0007e-01   6.9076 4.928e-12 *** 

2:triptype                                             3.5092e+00  6.2433e-01   5.6208 1.901e-08 *** 

4:triptype                                             1.5439e+00  9.5361e-02  16.1902 < 2.2e-16 *** 

5:triptype                                             9.9801e-01  1.0067e-01   9.9136 < 2.2e-16 *** 

2:tp_d01                                              -4.7254e-01  4.1858e-02 -11.2890 < 2.2e-16 *** 

4:tp_d01                                              -1.1634e+00  6.3263e-02 -18.3894 < 2.2e-16 *** 

5:tp_d01                                              -9.2223e-01  6.3409e-02 -14.5442 < 2.2e-16 *** 

2:inc4                                                 5.2600e-01  8.9575e-02   5.8722 4.301e-09 *** 

4:inc4                                                -9.0202e-01  1.1177e-01  -8.0704 6.661e-16 *** 

5:inc4                                                -8.9541e-01  1.1997e-01  -7.4635 8.415e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log-Likelihood: -6092.2 

McFadden R^2:  0.62236  

Likelihood ratio test : chisq = 20080 (p.value = < 2.22e-16) 

 

 

Leisure 

 

Call: 

mlogit(formula = lf, data = lrun, weights = lrun$wttp, method = "nr",  

    print.level = 0) 

 

Frequencies of alternatives: 

       1        2        4        5  

0.911542 0.056284 0.017360 0.014814  

 

nr method 

47 iterations, 0h:0m:10s  

g'(-H)^-1g = 3.49E-07  

gradient close to zero  

 

Coefficients : 

                                                         Estimate  Std. Error  t-value  Pr(>|t|)     

2:(intercept)                                         -3.8029e+00  3.3597e-01 -11.3193 < 2.2e-16 *** 

4:(intercept)                                         -3.4143e+00  1.6485e-01 -20.7114 < 2.2e-16 *** 

5:(intercept)                                         -4.2292e+00  2.0823e-01 -20.3101 < 2.2e-16 *** 

I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq)  2.2758e-03  3.1654e-04   7.1895 6.504e-13 

*** 
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I(( == "2") * (sex))                                  -3.8746e-01  9.5675e-02  -4.0497 5.128e-05 *** 

I(( == "4") * (sex))                                  -3.4750e-01  1.0361e-01  -3.3538 0.0007971 *** 

impedence_op2                                         -2.7695e-03  7.5949e-05 -36.4654 < 2.2e-16 *** 

2:intermetro                                           7.1408e-01  9.5866e-02   7.4487 9.415e-14 *** 

4:intermetro                                           8.6598e-01  1.1459e-01   7.5575 4.108e-14 *** 

5:intermetro                                           1.3069e+00  1.4592e-01   8.9563 < 2.2e-16 *** 

2:triptype                                             1.9594e+00  3.2166e-01   6.0916 1.118e-09 *** 

4:triptype                                             8.9448e-01  1.0536e-01   8.4895 < 2.2e-16 *** 

5:triptype                                             1.1964e+00  1.2760e-01   9.3756 < 2.2e-16 *** 

2:tp_d01                                              -1.6931e-01  3.6838e-02  -4.5960 4.306e-06 *** 

4:tp_d01                                              -3.7396e-01  4.8715e-02  -7.6765 1.643e-14 *** 

5:tp_d01                                              -5.4065e-01  5.8756e-02  -9.2016 < 2.2e-16 *** 

2:age1                                                -4.2832e-01  2.0459e-01  -2.0936 0.0362953 *   

4:age1                                                 1.0870e+00  1.3369e-01   8.1305 4.441e-16 *** 

5:age1                                                 1.3471e+00  1.3792e-01   9.7676 < 2.2e-16 *** 

2:inc4                                                 1.9520e-01  9.5738e-02   2.0389 0.0414647 *   

4:inc4                                                -1.3484e+00  1.4902e-01  -9.0485 < 2.2e-16 *** 

5:inc4                                                -3.7241e-01  1.2455e-01  -2.9902 0.0027884 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log-Likelihood: -3923.9 

McFadden R^2:  0.60075  

Likelihood ratio test : chisq = 11808 (p.value = < 2.22e-16) 
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Appendix C: Nested logit call to mlogit 

Business 

 
Call:      
mlogit(formula = bf, data = brun, weights = brun$wttp, reflevel = "1",       
    nests = list(auto = "1", transit = c("2", "4", "5")), unscaled = TRUE,       
    constPar = c("iv.auto"))      
      
Frequencies of alternatives:      
       1        2        4        5       
0.651294 0.280856 0.021068 0.046782       
      
bfgs method      
25 iterations, 0h:0m:3s       
g'(-H)^-1g = 4.96E-07       
gradient close to zero       
      
Coefficients :      
       Estimate Std. Error t-value Pr(>|t|)  
2:(intercept)      -1.69366411 0.38760461 -4.3696 1.25E-05 *** 
4:(intercept)      -2.87556835 0.38225152 -7.5227 5.37E-14 *** 
5:(intercept)      -3.18362176 0.47995532 -6.6332 3.29E-11 *** 
I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq) 0.00243839 0.00030485 7.9986 1.33E-15 *** 
I(log(mmprice))     -1.33964195 0.06063587 -22.0932< 2.2e-16 *** 
I(log(tot_time))     -1.99561171 0.10355498 -19.271 < 2.2e-16 *** 
I(( == "2") * tp_d01)     -0.26814861 0.05685865 -4.7161 2.41E-06 *** 
I(( == "4") * tp_d01)     -0.53332322 0.0833556 -6.3982 1.57E-10 *** 
I(( == "2") * inc1)     -0.54500818 0.29888498 -1.8235 0.068232 . 
I(( == "2") * inc4)     0.66657311 0.1417679 4.7019 2.58E-06 *** 
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I(( == "2") * (age1))     -1.46499394 0.64469323 -2.2724 0.023063 * 
I(( == "4") * (age1))     0.93879389 0.14965185 6.2732 3.54E-10 *** 
I(( == "2") * (ruralrural))    -1.29969774 0.89690398 -1.4491 0.147311  
I(( == "4") * (intermetro))    1.16586168 0.17556687 6.6406 3.13E-11 *** 
I(( == "5") * (intermetro))    2.23006268 0.36545705 6.1021 1.05E-09 *** 
2:triptype      1.21699056 0.13175448 9.2368 < 2.2e-16 *** 
4:triptype      0.38271651 0.14218814 2.6916 0.007111 ** 
5:triptype      0.20830406 0.08845298 2.355 0.018524 * 
2:sex       -0.73333458 0.13360087 -5.489 4.04E-08 *** 
4:sex       -0.93988235 0.12448047 -7.5504 4.33E-14 *** 
5:sex       -1.27378964 0.0867736 -14.6795< 2.2e-16 *** 
iv.transit      0.90049422 0.0172857 52.0947 < 2.2e-16 *** 
---      
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1      
      
Log-Likelihood: -2013.4      
McFadden R^2:  0.61185       
Likelihood ratio test : chisq = 6347.6 (p.value = < 2.22e-16) 
 

Leisure 
      
>       
> Lnest <- mlogit(lf,lrun, reflevel="1", weights = lrun$wttp,  nests=list(auto="1",transit=c("2","4","5")), unscaled = TRUE, constPar = c("iv.auto"))
      
> summary(Lnest)      
      
Call:      
mlogit(formula = lf, data = lrun, weights = lrun$wttp, reflevel = "1",       
    nests = list(auto = "1", transit = c("2", "4", "5")), unscaled = TRUE,       
    constPar = c("iv.auto"))      
      
Frequencies of alternatives:      
       1        2        4        5       
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0.911542 0.056284 0.017360 0.014814       
      
bfgs method      
25 iterations, 0h:0m:25s       
g'(-H)^-1g = 5.46E-07       
gradient close to zero       
      
Coefficients :      
                                                             Estimate   Std. Error   t-value Pr(>|t|)          
2:(intercept)      -4.92305648 0.4501625 -10.9362< 2.2e-16 *** 
4:(intercept)      -4.45810759 0.34349182 -12.9788< 2.2e-16 *** 
5:(intercept)      -4.56427747 0.36682681 -12.4426< 2.2e-16 *** 
I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq) 0.00296394 0.00023369 12.683 < 2.2e-16 *** 
I(( == "4") * (age1))     1.38077287 0.0773644 17.8477< 2.2e-16 *** 
I(( == "5") * (age1))     1.64704327 0.0964155 17.0828< 2.2e-16 *** 
I(( == "4") * (inc1))     1.37471321 0.06739835 20.3968< 2.2e-16 *** 
I(( == "5") * (inc1))     0.69684736 0.09015406 7.7295 1.09E-14 *** 
I(( == "2") * (sex))     -0.33964816 0.179033 -1.8971 0.057811 . 
I(( == "4") * (sex))     -0.30203881 0.0698978 -4.3211 1.55E-05 *** 
log(mmprice)      -1.02672249 0.04470382 -22.9672< 2.2e-16 *** 
log(tot_time)      -1.26407268 0.08589163 -14.7171< 2.2e-16 *** 
2:intermetro      0.51200504 0.19492062 2.6267 0.008621 ** 
4:intermetro      1.14240252 0.10288291 11.1039< 2.2e-16 *** 
5:intermetro      1.77806699 0.11811622 15.0535< 2.2e-16 *** 
2:tp_d01      -0.24873355 0.05900466 -4.2155 2.49E-05 *** 
4:tp_d01      -0.53389461 0.03097914 -17.234 < 2.2e-16 *** 
5:tp_d01      -0.6943679 0.04179013 -16.6156< 2.2e-16 *** 
2:triptype      2.19533991 0.24928926 8.8064 < 2.2e-16 *** 
4:triptype      0.43096289 0.0841882 5.119 3.07E-07 *** 
5:triptype      0.49940127 0.08008667 6.2358 4.50E-10 *** 
iv.transit      0.8685816 0.02117763 41.0141< 2.2e-16 *** 
---      
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1      
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Log-Likelihood: -3987.3      
McFadden R^2:  0.5943       
Likelihood ratio test : chisq = 11682 (p.value = < 2.22e-16) 
 

Visit      

      
Call:      
mlogit(formula = vf, data = vrun, weights = vrun$wttp, reflevel = "1",       
    nests = list(auto = "1", transit = c("2", "4", "5")), unscaled = TRUE,       
    constPar = c("iv.auto"))      
      
Frequencies of alternatives:      
       1        2        4        5       
0.867692 0.085780 0.026997 0.019531       
      
bfgs method      
25 iterations, 0h:0m:15s       
g'(-H)^-1g = 4.3E-07       
gradient close to zero       
      
Coefficients :      
                                                             Estimate   Std. Error   t-value  Pr(>|t|)          
2:(intercept)      -3.23926699 0.37545727 -8.6275 < 2.2e-16 *** 
4:(intercept)      -1.97861545 0.21487784 -9.2081 < 2.2e-16 *** 
5:(intercept)      -1.16263205 0.1999649 -5.8142 6.09E-09 *** 
I((( == "2") | (alt == "4") | (alt == "5")) * mmfreq) 0.00271844 0.00013758 19.7586< 2.2e-16 *** 
log(mmprice)      -1.22478654 0.02476579 -49.4548< 2.2e-16 *** 
log(tot_time)      -1.52436438 0.05541078 -27.5102< 2.2e-16 *** 
I(( == "2") * (sex))     -0.44541877 0.12140193 -3.669 0.0002435 *** 
I(( == "4") * (sex))     -0.44157138 0.04190919 -10.5364< 2.2e-16 *** 
I(( == "4") * (intermetro))    1.90860989 0.11343231 16.826 < 2.2e-16 *** 
I(( == "5") * (intermetro))    1.03373735 0.05444647 18.9863< 2.2e-16 *** 
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I(( == "4") * (age1))     1.69217671 0.04460222 37.9393< 2.2e-16 *** 
I(( == "5") * (age1))     1.63928227 0.04993379 32.8291< 2.2e-16 *** 
2:tp_d01      -0.35253985 0.04219986 -8.3541 < 2.2e-16 *** 
4:tp_d01      -1.25255539 0.03066874 -40.8414< 2.2e-16 *** 
5:tp_d01      -1.04903882 0.02593269 -40.4524< 2.2e-16 *** 
2:inc4       0.26727929 0.12867235 2.0772 0.0377823 * 
4:inc4       -1.06274757 0.04635702 -22.9253< 2.2e-16 *** 
5:inc4       -1.08641702 0.06284829 -17.2863< 2.2e-16 *** 
2:triptype      2.8122663 0.32910207 8.5453 < 2.2e-16 *** 
4:triptype      1.03416495 0.04117335 25.1173< 2.2e-16 *** 
5:triptype      0.43320331 0.04347866 9.9636 < 2.2e-16 *** 
iv.transit      0.97291217 0.0120332 80.8523< 2.2e-16 *** 
---      
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1      
      
Log-Likelihood: -6506.3      
McFadden R^2:  0.59669       
Likelihood ratio test : chisq = 19252 (p.value = < 2.22e
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Appendix D: Model comparison for business and leisure 

 

Model comparison for trip purpose business (Significant codes: *** 99.9% significance level, ** 

99%, * 95%) 

 

Mode Parameter Coef Sig Coef Sig Coef Sig Coef Sig

Air Intercept -1.29338 *** -1.48627 *** -1.84871 *** -2.06995 ***

Bus Intercept -3.54818 *** -3.69359 *** -4.39378 *** -3.62479 ***

Rail Intercept -4.38082 *** -4.39054 *** -4.63684 *** -4.41808 ***

Frequency 0.00298 *** 0.002822 *** 0.002878 *** 0.002983 ***

Travel cost -0.00598 ***

Travel time -0.00445 ***

Generalized Time (4 VOT) -0.00474 ***

Generalized Time (1 VOT) -0.00493 ***

Auto Generalized Time (1 VOT) -0.00616 ***

Air Generalized Time (1 VOT) -0.00514 ***

Bus Generalized Time (1 VOT) -0.00216 ***

Rail Generalized Time (1 VOT) -0.00443 ***

Air Young (<25) -1.77715 *** -1.90308 *** -1.75492 *** -1.90554 ***

Bus Young (<25) 1.16305 *** 1.048235 *** 1.080331 *** 1.034022 **

Air Low income -0.87609 *** -1.24281 *** -1.21515 *** -1.21781 ***

Bus Low income 0.537287 *** 0.694025 ** 0.761155 *** 0.670685 **

Air Group size -0.27165 *** -0.2663 *** -0.30552 *** -0.24641 ***

Bus Group size -0.42832 ** -0.44332 *** -0.50434 *** -0.43642 ***

Air Intermetro 0.382814 ** 0.382741 ** 0.589983 *** 0.325084 **

Bus intermetro 0.436215 . 0.471794 * 0.686399 ** 0.425184 .

Rail Intermetro 1.667601 *** 1.672726 *** 1.710404 *** 1.670637 ***

Air Male -0.54193 *** -0.52218 *** -0.59915 *** -0.50546 ***

Bus Male -0.58231 ** -0.61757 ** -0.68941 *** -0.61777 **

Rail Male -0.8882 *** -0.89436 *** -0.92698 *** -0.89737 ***

Air Highly educated 0.608756 *** 0.657999 *** 0.73448 *** 0.622664 ***

Bus Highly educated 0.807337 *** 0.869545 *** 0.895217 *** 0.865331 ***

Rail Highly educated 0.834334 *** 0.83134 *** 0.824757 *** 0.833025 ***

Air Overnight 1.144804 *** 1.160232 *** 1.081526 *** 1.165753 ***

Bus Overnight 1.055228 *** 1.097195 *** 0.464027 * 1.170732 ***

Rail Overnight 0.885267 *** 0.855334 *** 0.64353 *** 0.851077 ***

Log-likelihood

McFadden's R^2

-2096.2

0.46

-2077.3 -2034.4

Model 4

4VOT1COEF1VOT1Coef 1VOT4Coeftime & price

0.47 0.48

Model 1 Model 2 Model 3

-2074.8

0.47
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Model comparison for trip purpose leisure (Significant codes: *** 99.9% significance level, ** 

99%, * 95%) 

Mode parameter Coef Sig Coef Sig Coef Sig Coef Sig

Air 2:(intercept) -5.05459 *** -3.80291 *** -5.73302 *** -4.50578 ***

Bus 4:(intercept) -4.12423 *** -3.41434 *** -3.84903 *** -3.36843 ***

Rail 5:(intercept) -3.89237 *** -4.22924 *** -4.55696 *** -4.24733 ***

Frequency 0.003086 *** 0.002276 *** 0.002467 *** 0.002276 ***

Travel Cost -0.00197 ***

Auto Travel Time -0.00318 ***

Air Travel Time -0.00084 *

Bus Travel Time -0.00109 ***

Rail Travel Time -0.00201 ***

Generalized Time (4 VOT) -0.00255 ***

Generalized Time (1 VOT) -0.00277 ***

Auto Generalized Time (1 VOT) -0.0028 ***

Air Generalized Time (1 VOT) -0.00067 ***

Bus Generalized Time (1 VOT) -0.00098 ***

Rail Generalized Time (1 VOT) -0.00156 ***

Air Interrural -1.05603 ***

Bus Interrural -1.14432 ***

Rail Interrural -3.7477 **

Air Intermetro 0.714077 *** 1.03073 *** 0.670497 ***

Bus Intermetro 0.865981 *** 0.981001 *** 0.846755 ***

Rail Intermetro 1.306913 *** 1.3723 *** 1.314138 ***

Air Overnight 1.712379 *** 1.959414 *** 1.757376 *** 1.990293 ***

Bus Overnight 0.448488 *** 0.894484 *** 0.543838 *** 0.933818 ***

Rail Overnight 0.902908 *** 1.196368 *** 0.966236 *** 1.19345 ***

Bus Male 1.216964 *** -0.38746 *** -0.37698 *** -0.3702 ***

Rail Male 1.450933 *** -0.3475 *** -0.32956 *** -0.35181 ***

Air Young (<25) -0.42832 * -0.41844 *

Bus Young (<25) 1.086986 *** 1.112197 *** 1.083143 ***

Rail Young (<25) 1.347141 *** 1.362606 *** 1.347479 ***

Air High income 0.195196 * 0.206705 *

Bus High income -1.34843 *** -1.35628 *** -1.34684 ***

Rail High income -0.37241 ** -0.38643 ** -0.37264 **

Bus Low income 1.324296 ***

Rail Low income 0.561899 ***

Air Group size -0.17414 *** -0.16931 *** -0.17081 *** -0.16806 ***

Bus Group size -0.40425 *** -0.37396 *** -0.38645 *** -0.37191 ***

Rail Group size -0.57824 *** -0.54065 *** -0.5561 *** -0.5411 ***

Log-likelihood

McFadden's R^2

-3923.7

0.35

-3923.9

0.35

Model 4

Time & Price 4VOT1Coef1VOT 1Coef 1VOT4Coef

-3826.3

0.37

Model 1 Model 2 Model 3

-3923.7

0.35



Declaration concerning the Master’s Thesis 

91 

 

Declaration concerning the Master’s Thesis 

I hereby confirm that the presented thesis work has been done independently and 

using only the sources and resources as are listed. This thesis has not previously been 

submitted elsewhere for purposes of assessment. 

Munich, June 2nd, 2017 

 

Joanna Yuhang Ji 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


