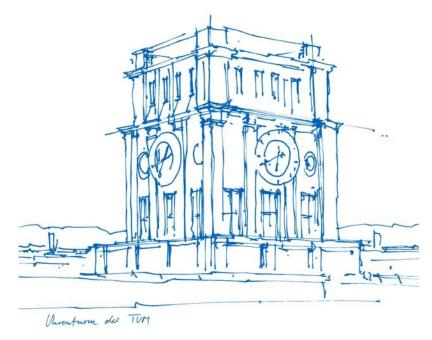


Traffic Noise Modeling in Agent-Based Land Use/Transport Models


Doctoral Defense, December 1, 2021

Nico Kuehnel

Examination Committee

Chairman: Prof. Dr.-Ing. Constantinos Antoniou Examinators:

- 1. Prof. Dr.-Ing. Rolf Moeckel
- 2. Prof. Dr.-Ing. Kay Axhausen
- 3. Prof. Dr.-Ing. Klaus Bogenberger

Introduction

(Road) Traffic Noise

- Caused by:
 - 1. Propulsion noise
 - 2. Rolling noise
 - 3. (Aerodynamic noise, negligible for speeds < ~130km/h)
- Usually described in dB(A)

Extremely Loud	120	Aircraft at take off		
	110	Car horn		
Very Loud	100	Subway		
	90	Truck, motorcycle		
	80	Busy crossroads		
Loud	70	Noise level near a motorway		
Moderate	60	Busy street through open windows		
	50	Light traffic		
Faint	40			
	30	Quiet room		
	20			
	10	Desert		
	0	Hearing threshold		
		1		

dB(A)

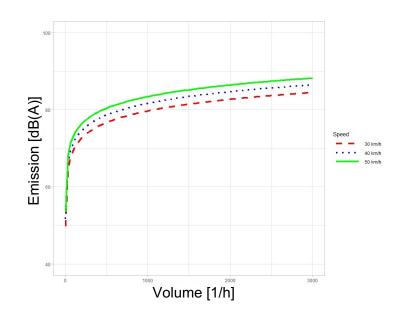
(Road) Traffic Noise May...

- Impair health of exposed residents
- Reduce quality of life and well-being
- Reduce neighborhood attractiveness
- Decrease value of real estate properties

Road noise disturbance in Germany

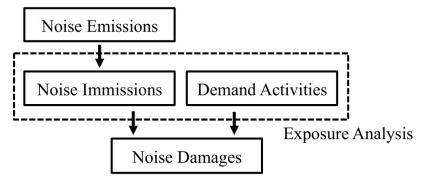
Source: Rückert-John et al. (2013) Umweltbewusstsein in Deutschland

• In addition, traffic noise is inherently a **negative external effect** in which the polluters and those affected can vary widely

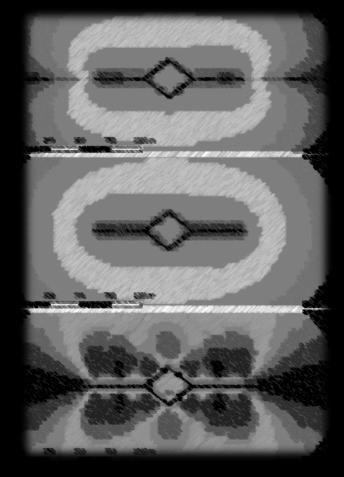


Noise Models

Noise Models

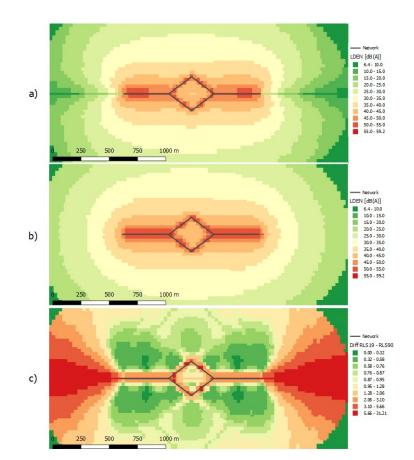

- **Emissions** are modeled per road segment, taking into account traffic volumes, speeds and other factors
- Noise immissions are calculated per receiver point, taking into account surrounding emissions and sound attenuation
- Results are often compiled and displayed in strategic noise maps
- In Germany: guideline RLS19 (prev. RLS-90)

Noise Model – Transport Model


- Since traffic noise models rely on average speed and aggregated flows, it is a natural step to couple them with transport models
- The transport simulation MATSim offers individual agents and a mesoscopic traffic flow representation that can be easily aggregated to flows
- A first implementation of the German RLS-90 has been implemented by Kaddoura et al. (2017)

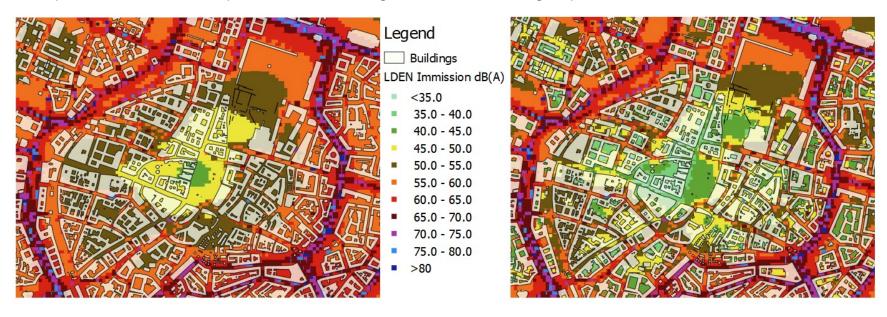
Kaddoura, I., Kröger, L., and Nagel, K. (2017). An activity-based and dynamic approach to calculate road traffic noise damages. Transportation Research Part D: Transport and Environment, 54:335–347.

Noise Model Updates in MATSim



Kuehnel, N., Kaddoura, I., and Moeckel, R. (2019). Noise shielding in an agent-based transport model using volunteered geographic data. In Procedia Computer Science, volume 151, pages 808–813. Elsevier.

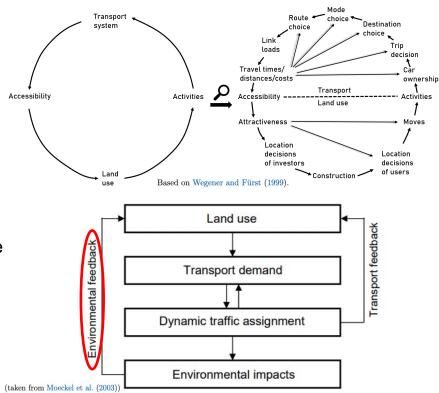
Noise Model Improvements


- During the course of this dissertation, the old RLS-90 has been updated with the RLS-19
- This update has been incorporated in MATSim
- In the process, some existing limitations were removed or reduced (finer segmentation of links, shielding and reflection effects, ...)

Shielding Impact of Buildings

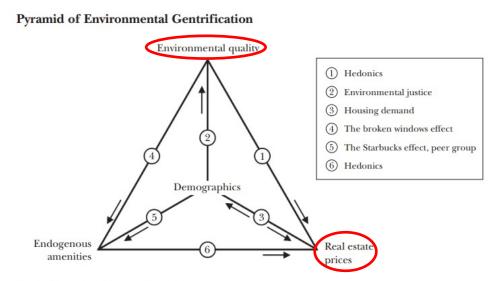
• In an application for Munich, the amount of external costs of noise resulted in a rough **decrease of 20%** compared to the initial implementation that ignores the shielding impacts

Integrated Land Use/Transport/Environment Model

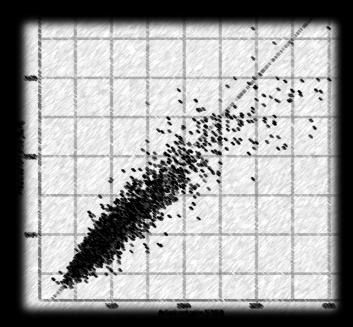


Kuehnel, N., Ziemke, D., and Moeckel, R. (2021b). Traffic noise feedback in agent-based Integrated Land-Use/Transport Models. Journal of Transport and Land Use, 14(1):325–344–325–344.

Integrated Land Use/Transport/Environment Model


- Lately, MATSim has been coupled with the land use model SILO, which captures demographic and housing updates over multiple years (ILUT model)
- Recent studies point out the lack of environmental considerations in ILUT models (Acheampong et al. 2015, Gu et al. 2015)
- Land Use/Transport/Environment (LTE) aim to capture the complex interactions between these components

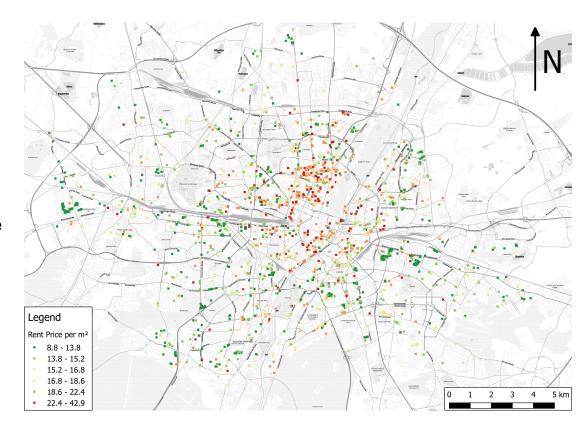
Integrated Land Use/Transport/Environment Model


- Traffic noise as a component which is known to interact with land use (i.e., neighborhood degradation and subsequent price decreases)
- Idea: add environmental feedback of traffic noise to the existing ILUT model of SILO and MATSim
- Prerequisite: identify reactions to traffic noise

Source: Banzhaf and McCormick (2012).

Road Traffic Noise and Rent Prices: A Hedonic Pricing Study

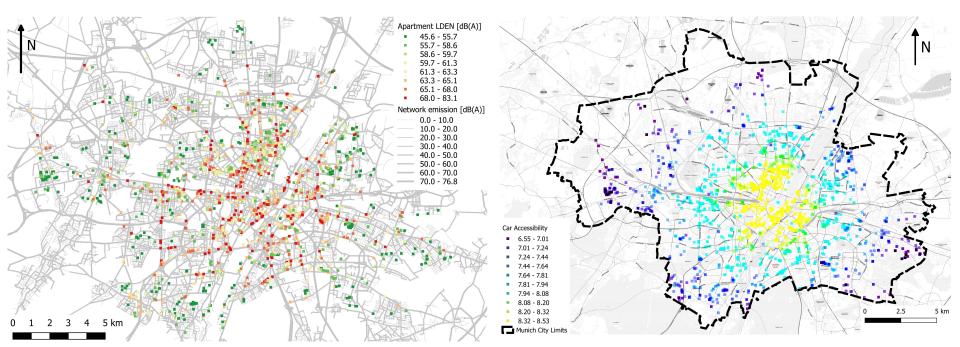
Kuehnel, N. and Moeckel, R. (2020). Impact of simulation-based traffic noise on rent prices. Transportation Research Part D: Transport and Environment, 78:102191.



The price of quietness

Noise sensitivity depreciation index:

$$NSDI = \frac{percentage change of housing price}{increase of noise}$$


- Hedonic pricing study by regression analysis for rent prices in Munich
- Data taken from immobilienscout24.de
- In total 3,144 geo-coded apartments (mean rent ~18€/m²)

Traffic Noise and Car Accessibility

Accessibility as a confounding variable to account for positive impacts of road infrastructure

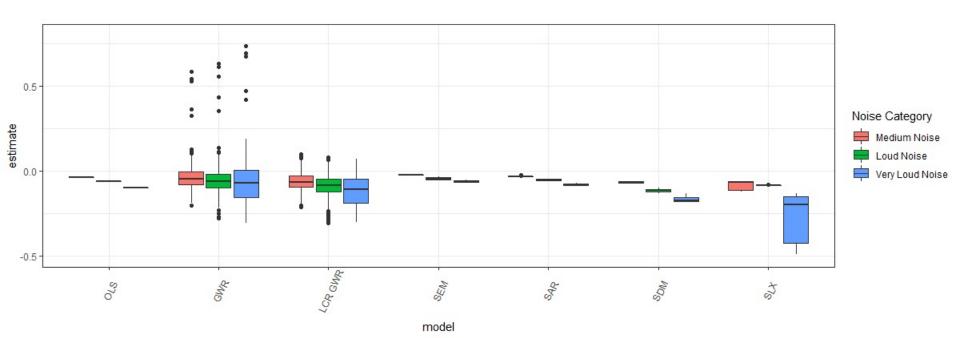
Results

- Highly significant negative impacts of noise
- Resulting NSDI: -0.46 %/dB(A)
- Categorical noise variable model for non-linear relationship and thresholds
- Up to 10% price discount for very loud apartments

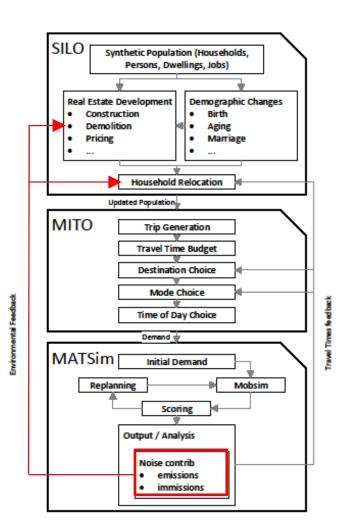
log(rent)			
	Model (1)	Model (2)	
log(area)	0.7705*** (0.0077)	0.7706*** (0.0077)	
noise	-0.0046*** (0.0006)		
low noise		0 (Base)	
moderate noise		-0.0360*** (0.0103)	
loud noise		-0.0583*** (0.0127)	
very loud noise		-0.1005*** (0.0243)	
microscopic car accessibilities	0.2272*** (0.0091)	0.2165*** (0.0091)	
Parking available	0.0183 ** (0.0070)	0.0180** (0.0070)	
r arking available	0.0163 (0.0070)	0.0180 (0.0070)	
Quality: Luxury	0.1666*** (0.0114)	0.1678*** (0.0114)	
Quality: Superior	0 (Base)	0 (Base)	
Quality: Average	-0.1433*** (0.0082)	-0.1430*** (0.0083)	
State: First time use	0 (Base)	0 (Base)	
State: New Building	-0.0340*** (0.0096)	-0.0298** (0.0097)	
State: First time use after restoration	-0.0817*** (0.0122)	-0.0815*** (0.0124)	
State: Restored	-0.1021*** (0.0214)	-0.1020*** (0.0215)	
State: Modernized	-0.1179*** (0.0151)	-0.1171*** (0.0152)	
State: Well-kept	-0.1589*** (0.0106)	-0.1580*** (0.0108)	
State: Renovated	-0.1694*** (0.0114)	-0.1697*** (0.0115)	
	, ,		
constant	2.4031*** (0.0753)	2.2390*** (0.0798)	
Observations	3,145	3,145	
R2	0.8597	0.8552	
Adjusted R2	0.8591	0.8545	
Residual Std. Error	0.1783	0.1757	
F Statistic	1,213	1,124	
Note:Signif. codes: '***' 0.001 '**' 0.01	1 '*' 0.05 '.' 0.1 ' ' 1 ro	bust SE in (brackets)	

Dependent variable:

ТШП

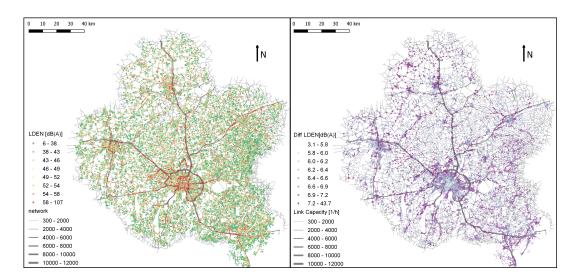

Results

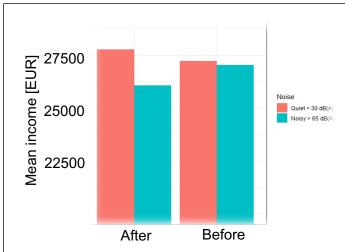
Results


Results stay stable also with spatial regression models

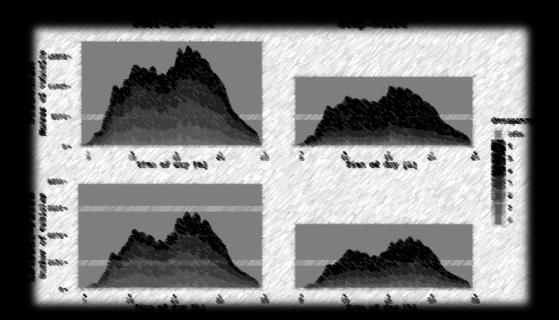
LTE Model

 Implemented a feedback from MATSim to SILO to provide noise values for each dwelling (~2.5 million)

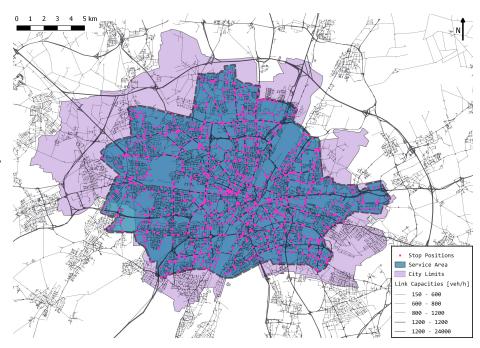

- 1. Price discount for noisy dwellings (hedonic pricing model)
- Noise sensitivity of relocating agents (stated preference study of Hunt et al 2010)
- Run from 2011 (base year) until 2030 to
 - Confirm sensitivity
 - Assess changes in noise exposure



LTE Model

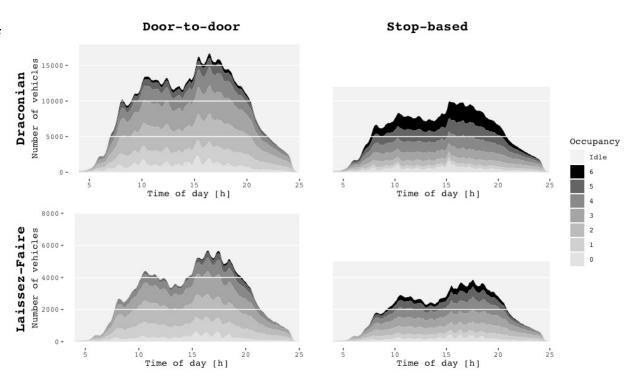

Proof of concept for an agent-based integrated LTE model on a microscopic scale

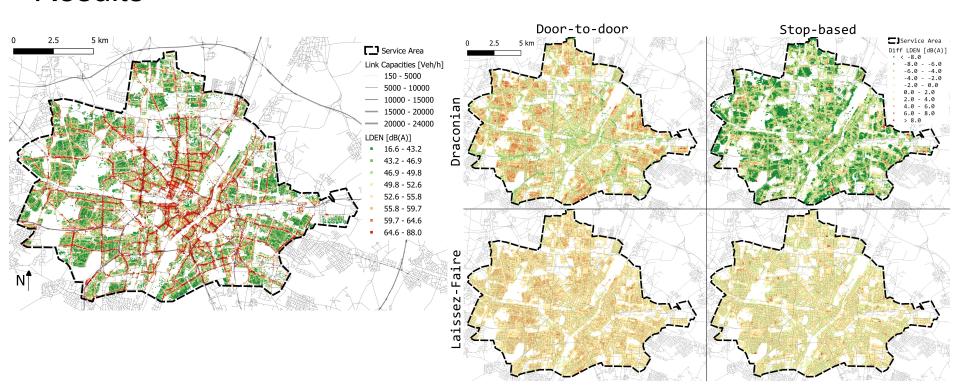
Electric Ride-pooling and the Impact on Traffic Noise



Zwick, F., Kuehnel, N., Moeckel, R., and Axhausen, K. W. (2021). Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. Transportation Research Part D: Transport and Environment, 90:102673.

Electric Ride-pooling and the impact on Traffic Noise


- Ride-pooling services as an emerging transport mode aim to reduce traffic volumes and may thus decrease traffic noise
- Agent-based models suitable to study ridepooling scenarios
- Radical and Laissez-faire scenario
- Stop-based vs door-to-door service


Electric Ride-pooling and the impact on Traffic Noise

- A comparably small amount of vehicles is required to serve all previous inner-city car trips
- Stop-based service more efficent than door-to-door service

Results

Conclusions

Conclusions

Contribution		Li	mitation
Updated ar model for N	nd improved open-source noise MATSim	•	Second order reflection Limited building height data Road traffic only
•	relationship between modeled s and rent price	•	Single municipality only Rent prices only
	ncept for a microscopic integrated ansport/environment model	•	Complex, requires more data and research
	pach for equity analyses in agentels using external costs as proxy	•	Lacks inclusion of sociodemographic attributes
,	le-pooling services may reduce cient settings	•	So far only synthetic demand Combine with accompanying policies

