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Abstract
Cycling is an environmentally friendly means of transport that reduces pollu-

tion, congestion, and noise. However, there is a lack of knowledge about the be-
havior of bicyclists. In this study, a bicycle route choice model is estimated in the
city of Amiens, located in the north of France. GPS data of bicycle trips collected
during the European cycling challenge in 2016 and 2017 are used for this purpose.
To understand why a route is preferred, other possible route alternatives need to
be enumerated for each recorded trip. The main originality of this thesis lies in the
choice set generation method. The choice set is composed of the observed routes
and several other paths, such as the shortest path and the path maximizing the cy-
cling infrastructures. The different routes are then characterized in terms of cycling
infrastructures, road type, land-use, and topography by using different sources of
open data. Finally, a multinomial logit model is estimated with 2,362 trips and in-
cludes a path-size factor to correct for route overlap. The results indicate that cyclists
prefer routes with bicycle facilities and fewer traffic. Routes with few intersections
and along water or green areas are especially attractive. The findings can be used
for a bicycle traffic assignment and can help transport planners to develop bicycle-
friendly cities.
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Chapter 1

Introduction

1.1 Background

Recognizing the environmental and social benefits of cycling, many countries and
cities are actively pursuing a strategy to increase daily bicycle-usage. Cycling can
help to reduce noise and air pollution, while avoiding congestion. It also provides
many benefits for human health. However, there is a lack of knowledge about the
behavior of bicyclists, and particularly about route choice. The traditional trans-
portation models and route planners were firstly created for cars and then adapted
to other modes, and travel time is often considered as the only significant param-
eter for selecting a route. For bicyclists, additional parameters play a crucial role,
such as the perceived safety, the cycling infrastructures, the topography or the land-
use. Moreover, bicyclists are more willing to take a minor detour to follow a more
pleasant route.

However, this behavior is currently neglected by transport planners, primarily
due to a lack of data. Thus, there is a significant need to better understand how bicy-
clists choose their route. This will help improve the bicycle traffic assignment of cur-
rent transport models. The results could be useful for transport planners to analyze
existing cycling conditions and to evaluate likely impacts of future projects, which
is essential for the development of a more efficient and sustainable transportation
system.

1.2 Research gaps

The emergence of GPS technologies has offered new opportunities to understand
real behaviors of cyclists. The first bicycle model using GPS data was estimated by
Menghini et al. (2010) in Zurich. Since then, several other authors have developed
bicycle route choice models in other cities. However, most of the time the considered
attributes are limited to trip length, traffic volume, grade and the presence of bicycle
facilities. Few studies have explored the influence of other land-use attributes such
as green and water areas, landmarks, or number of amenities.

Moreover, estimating a route choice model requires knowing the different op-
tions considered by a traveller to go from an origin to a destination. This is one
of the main challenges of route choice modeling. The actual choice set is unknown
from the modeler and can be extremely large due to the high number of links in a
network. Still under investigation, is a method on how to generate a relevant choice
set. Thus, both in the considered attributes and in the methodology, important re-
search gaps remain and leave space for further research.
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1.3 Project scope

In this master’s thesis, the study of bicycle route choice is performed at a city scale
with an emphasis on non-recreational trips. This project focuses on the city of Amiens,
located in the north of France in the Somme region and centered at the crossroads of
several strategic urban centers: Paris, located 140 km to the south, and Lille, located
180 km to the north (fig. 1.1). The territory was severely affected by the two World
Wars and faced important losses and emigration. While Amiens was the 10th largest
city in France in 1900, it is now the 27th largest city with 133,800 inhabitants living
within 49.5 km2 (INSEE, 2015). However, Amiens remains an area with a significant
influence on a larger scale and is especially famous for its cultural heritage with its
gothic cathedral and its traditional houses (Aduga, 2012). Originally well-known for
its textile industry and then for its automobile industry, employment is today based
on the service sector (healthcare, education, new technologies and logistics). Amiens
belongs to a larger group, called Amiens Metropole, composed of 39 municipalities
around Amiens that are mainly rural with only 19% of the area comprising artifi-
cial spaces. Amiens Metropole extends over 350 km2 and has 182,600 inhabitants
(Aduga, 2012).

City	of	Amiens

Amiens	Metropole

Grand	Amiénois

Legend

Amiens

Location	of	Amiens	Metropole

Source	:	OSM

Somme	Department

Hauts-de-France	Region

Cities

Land	Cover	:
Artificial	surfaces

Agricultural	areas

Legend

Amiens

Land	Cover	of	Amiens	Metropole	(CORINE,	2012)

City	of	Amiens

Forest	and	semi	natural	areas

Water	bodies	and	wetlands

FIGURE 1.1: Background information about Amiens Metropole
(Copernicus, 2012)

The choice of Amiens for investigating bicycle route choice was made for several
reasons.

Firstly, data revealing route preferences were required to study the factors influ-
encing bicycle route choice. Amiens Metropole had GPS data of bicycle trips, that
came from the European Cycling Challenge, a cyclist competition between cities.
Amiens took part in this challenge in 2016 and 2017. For one month, people were
invited to use their smartphone to record their track. The challenge had two main
objectives: encouraging people to cycle more and collecting GPS data for urban plan-
ning (CIVITAS, 2017). This enabled the city to record 4,452 bicycle trips. Amiens
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Metropole kindly allowed me to work on the anonymized data.

The second reason that explains this choice is that France and especially Amiens
are places where cycling conditions are a key issue. The most recent survey from
2010 revealed that only 2% of trips were made by bike in Amiens (Pays du Grand
Amiénois, 2013). Moreover, a survey conducted online in France between Septem-
ber and November 2017 by a cyclist association (Fédération française des Usagers
de la Bicyclette, 2018) ranked Amiens 20thout of 29 cities with between 100,000 and
200,000 inhabitants. The majority of the respondents believe that current cycling
conditions in Amiens are unsatisfactory and that they do not allow cycling in a com-
fortable and safe way. The average grades obtained for the different categories and
the general perception of the cycling conditions can be seen in figure 1.2.

FIGURE 1.2: Survey results about cycling conditions in Amiens
(Translated from Fédération française des Usagers de la Bicyclette

(2018))

The safety issue is one of the most important problems mentioned in the the sur-
vey. The cycling network of Amiens is incomplete and not continuous. In 2012,
there were 100 km of cycling facilities, mainly composed of bike lanes, mixed pedes-
trian/bicycle spaces or bus lanes. Since 2014, Amiens Metropole has worked on
a cycling plan aiming to reach 200 km of cycling facilities by 2025. However, the
quality of the infrastructures is highly criticized, especially by the cycling asso-
ciation Veloxygène, who regrets the lack of cycle paths separated from the traffic
(Véloxygène, 2019). Therefore, it appears interesting to apply our study to this city,
insofar as the potential improvements are big if the effects of the built environment
on bicycle route choice are better understood.

Thus, investigating the factors affecting bicycle route choice is a main motiva-
tion. By identifying why some roads are avoided or preferred by bicyclists, trans-
port planners could work on removing the bottlenecks and design better bicycle
networks.

Timothée Charmeil�
Figure removed due to possible copyright infringements
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1.4 Objectives and workflow

The objective of this master thesis is to estimate a bicycle route choice model from
revealed-preference data in the city of Amiens. The research questions are as follow:
what are the factors influencing the bicycle route choice on urban areas? How does
the built environment impact this choice?

In order to meet this objective, the recorded routes are first identified by using a
geographical information software. Then, the different links are characterized par-
ticularly in terms of cycling infrastructures, land-use, topography and traffic volume
by using different sources of open data. Lastly, a statistical analysis is performed to
compare the characteristics of the selected paths to other possible paths. A discrete
choice model is estimated to understand the magnitude of the effects of the various
factors affecting bicycle route choice.

In this thesis, first of all, previous studies related to route choice modeling are
presented in chapter 2. Then, chapter 3 provides a first analysis of the available data
and aims to verify that there are appropriate for this study. Chapter 4 is dedicated
to the methodology and all the different stages of the project are summarized: data
filtering, map-matching, model preparation and model estimation. The results are
presented and discussed in chapter 5. The conclusion in chapter 6 summarizes the
main contributions and provides recommendations for further research.



5

Chapter 2

Literature Review

2.1 Introduction to the route choice problem

The route choice problem consists of identifying the chosen route for a given origin-
destination pair.

2.1.1 Two modeling approaches

There are two main approaches to estimate a route choice model: a deterministic or
a stochastic one. The first approach, called deterministic utility maximisation, is
based on shortest path algorithms such as Dijkstra (1959). These algorithms select
the sequence of links that minimizes a cost function. Even if the results can guide
transportation investments, it cannot be used for prediction purposes as the model
will always predict the same path between a given origin and destination. It assumes
that all attributes leading to route choice can be identified and that drivers have a
perfect knowledge of the link utilities. For example, Kang and Fricker (2018) ap-
plied optimization methods to calibrate a deterministic link cost function including
distance and an indicator related to safety.

The second approach found in the literature is the use of random utility models.
A random part in the utility function is added to capture the heterogeneity of the
behaviors. These models are called discrete choice models. This chapter focuses on
these types of models because they are behaviorally more realistic than determinis-
tic ones.

2.1.2 Specific challenges of route choice modeling

In comparison to traditional discrete choice problems such as mode choice, the route
choice has specific features that require appropriate modeling answers.

Firstly, the choice set is very large and difficult to identify. Because of the high
number of links in a network, the number of possible routes going from an origin
to a destination is enormous, or even infinite if loops are allowed. Moreover, all the
feasible routes are not considered by travelers. Some alternatives may not be taken
into account by drivers due to their preferences or experiences. Several alternatives
may also be not perceived as distinct because they overlap (Prato, 2009). Thus, the
actual choice set is unknown, and assumptions are required to generate the choice
set.

Secondly, correlation among alternatives becomes a critical issue concerning
route choice modeling. Some paths can overlap on several links. Therefore, their
utilities share unobserved attributes, and the assumptions of independence of ir-
relevant alternatives cannot be made. This prevents the use of the simplest logit
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models. A nested logit model is also inappropriate as it does not allow one link to
be part of several nests (Frejinger and Bierlaire, 2007).

This chapter will first address the issue of choice set generation in part 2.2, then
the model estimation will be considered in part 2.3.

2.2 Choice set generation

Choice set generation methods were highly discussed in the literature and remain
an area under investigation. The actual choice set being unknown from the ana-
lyst, extracting the feasible alternatives is a main challenge in route choice model-
ing. Two types of common errors are not generating the observed route or including
irrelevant alternatives. This part concerns the choice set generation methods and is
decomposed into two parts. Firstly, path-generation algorithms are presented and
then new data-driven methods that ensure that the actual path is included in the
choice set are discussed.

2.2.1 Path generation algorithms

a. With explicit enumeration of the paths

Path-enumeration algorithms have been developed to extract the choice set from the
network. The classification of the different techniques presented in the following is
taken from Prato (2009). Choice set generation can be either deterministic or stochas-
tic.

Deterministic methods

Deterministic path generation methods always generate the same choice set for
a given origin-destination. Most of them are based on variations of the shortest
path algorithm. The exact extraction of the k-shortest paths according to a general-
ized link cost function is rarely used because it generates very similar paths (Prato,
2009). Instead, some modifications are applied before searching for the next shortest
path to increase the heterogeneity of the results. Three important techniques can be
mentioned: link elimination, link penalty, and labeling. These are considered com-
putationally attractive due to the efficiency of shortest path algorithms.

Firstly, the link elimination method initially proposed by Azevedo et al. (1993)
removes the links (or part of the links) of previously selected paths before searching
for the next shortest path The link penalty consists of penalizing the links included
in previously selected paths (De La Barra et al., 1993). This technique is usually
preferred to link elimination because it allows for further use of essential links and
maintains continuity in the network. The procedure is repeated until no more new
paths are obtained. However, this approach has an important drawback: the defini-
tion of the penalty rule is a crucial issue and highly influences the generated choice
set. Moreover, as in the link elimination method, the number of paths that must be
created is an arbitrary amount and the choice set does not depend on the individual
preferences and knowledge of the network. The last common deterministic method
based on the shortest path is called the labeling approach. It was first introduced
by Ben-Akiva et al. (1984), and multiple modified versions of this technique can be
found in the literature (Ramming, 2002; Broach et al., 2010). Instead of using a sin-
gle objective function and multiple iterations, the labeling method defines several
objective functions or labels, and one path will be generated for each criterion. This
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method is based on the idea that travelers have different objectives when choosing
their routes. For example, some drivers may want to minimize travel time, while
others may try to avoid intersections. However, the results are highly dependent
on how each label is defined, and the choice set is usually relatively small due to
limited data and knowledge about preferences (Prato, 2009). Recently, Chen used a
principal component analysis to create different cost functions of route alternatives
and generates the route choice set according to the labeling approach (Chen et al.,
2018).

To conclude, the deterministic path generation models are by far the most discussed and
used group in the literature. However, they have significant limitations. The selection of the
link elimination or penalization rules, the definition of the thresholds and the creation of the
labels are very subjective and depend strongly on the knowledge of the researchers (Prato,
2009).

Stochastic methods

A smaller group of path generation techniques is based on stochastic methods.
The advantage of these methods is the higher heterogeneity of obtained paths. They
are based on the idea that travelers perceive path costs with errors and that differ-
ent travelers have different perceptions. Variability is introduced in the network
attributes (Ramming, 2002) by drawing the link impedances from probability dis-
tributions. The shortest path is then introduced in the choice set, and the process
is repeated to generate other paths. Bovy and Fiorenzo-Catalano (2007) proposed
the doubly stochastic generation function where both the parameters of the utility
function and the attributes are stochastic. However, the selection of the probability
distribution depends once again on subjective elements (Prato, 2009).

b. Without explicit enumeration of paths

All the models presented just above rely on the assumption that the choice set con-
tains all the paths considered by travelers. However, due to the lack of an objective
definition of relevant routes, the correctness of paths choice set cannot be ascertained
(Prato, 2009). Due to this, conventional path-based models have important limita-
tions and cannot be used for prediction. Therefore, two main other approaches were
developed: a probabilistic method and a link-based approach.

Probabilistic approach

An alternative approach, known as the probabilistic approach, assumes that the
true choice set is the universal choice set. A probability of being included in the
choice set is attached to each route. However, a full probabilistic approach is very
complex and not suitable for real-size application due to the high number of poten-
tial choices (Frejinger et al., 2009). A simplified approach is proposed by Cascetta
and Papola (2001). A continuous variable representing the availability/perception
of an alternative is introduced in the utility function of the route choice model. By
doing so, the path-based model is restricted to more feasible routes. However, this
model fails to develop a membership probability that depends on attitudinal and
perception variables (Prato, 2009).

Frejinger et al. (2009) introduce a sampling approach from the universal choice
set to overcome the impossibility to generate all the paths explicitly. The probability
of selecting a link is calculated based on its distance from the shortest path. A subset
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of the paths is generated by random walk, and a sampling correction is then applied
to the paths to obtain unbiased parameter estimates.

A link-based approach

More recently, Fosgerau et al. (2013) proposed a new link-based approach. The
underlying assumption is that travelers choose the next link at each node recur-
sively. In other words, the route choice is modeled as a sequence of link choices.
By doing so, it avoids enumerating paths before estimation, and it does not require
any sampling of paths. The basic concept is the following: A traveler chooses the
next link recursively that maximizes the sum of instantaneous utility and expected
downstream utility at each node. The expected downstream utility refers to the ex-
pected utility for reaching the destination. Theoretically, Fosgerau et al. (2013) have
shown that the recursive logit model (RL) is equivalent to a path-based model with
unrestricted choice set.

The issue of this model is that it requires the calculation of huge (and often-ill
defined) inverse matrices for each OD pair. The model can lead to unstable estima-
tions if the network is large. Consequently, several modifications were proposed to
reduce the computational complexity of the model. Mai et al. (2018) developed a
decomposition method to evaluate multiple destinations more efficiently. Only one
system needs to be solved for all destinations to evaluate path-choice probabilities
instead of one system per destination. However, the computational complexity re-
mains problematic to apply this model to large-scale problems. Kaneko et al. (2018)
introduced the implicit availability/perception (IAP) factor, as proposed by Cascetta
and Papola (2001), into the recursive logit model to restrict the universal choice set to
more feasible alternatives. Mitigate results were obtained. The model including an
awareness term does not work well for travelers that are familiar with the network
and for short-trips.

2.2.2 New data-driven methods

None of the path generation algorithms succeed in including all the chosen routes
and many routes that are in practice not considered by travelers are often part of
the choice set. Moreover, these methods highly rely on the characteristics of the
network. In the bicycle context, errors due to the bad quality of the network repre-
sentation though, are very common. Bicyclists often use short-cuts or cycle against
one-way streets, but this type of information is usually not included in the model.
Recently, new data driven approaches were introduced to overcome these limita-
tions and create more realistic choice sets (Ton et al., 2017; Ton et al., 2018; Bernardi
et al., 2018).

Ton et al. (2017) proposed to include in the choice set all the chosen routes that
were observed in the collected data. One requirement for this empirical method is
that each OD pair contains multiple trips and more than two distinct routes. A clus-
tering method was applied to aggregate similar OD pairs and increase the number of
alternatives in the choice set for a given OD pair. However, the estimation model has
shown a worse fit than the methods based on link elimination and labeling because
of a lower variability between routes and their attributes (Ton et al., 2018). In par-
allel, Bernardi et al. (2018) developed an other data-driven approach for the choice
set generation. In order to introduce a higher variability between the alternatives,
similar routes are grouped together to constitute a unique alternative. This results
in a lower number of alternatives but more differences between the alternatives. In
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a first approach, Bernardi et al. (2018) used the trip length to create the different cat-
egories but a clustering analysis on multiple parameters is suggested by the authors
for further research. The attributes of the different groups are calculated by taking
the average of the attributes for all the trips belonging to the same category. For
each OD pair, the choice set is composed of five alternatives: four coming from the
aggregation of similar observed trips, and the shortest path.

To conclude, these two data-driven approaches used to generate the choice set
allow the creation of a more realistic choice set. They provide interesting insights
about travel behaviors and factors affecting route choice. However, several impor-
tant limitations must be mentioned. Firstly, the choice set depends on the data sam-
ple. In other words, another set of data will generate another choice set. This issue
may be reduced by using a higher sample size and a longer data collection period.
It may introduce more variability in the collected routes collected leading to a better
model estimation (Ton et al., 2018). Lastly, none of these models can be used for
prediction purposes. Bernardi et al. (2018) relies on a high level of aggregation so
that the model is only relevant for understanding behaviors, while the model of Ton
et al. (2017) does not perform well out-of-sample.

Conclusion: None of the existing methods completely overcome the problem of choice set
generation and this remains an area under investigation. Figure 2.1 summarizes the differ-
ent methods found in the literature. Deterministic path generation methods with explicit
enumeration of the routes are the most used group because of their efficiency. Among them,
labeling approaches are especially popular. However, with the increase of available data, new
data-driven methods could become new promising ways of finding the possible routes to go
from an origin to a destination.

FIGURE 2.1: Summary of choice set generation methods
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2.3 Route choice model estimation

In addition to the difficulty of enumerating the choice set, the problem of overlap-
ping paths between alternatives is a main challenge in route choice modeling. For
routes that have many links in common, the error terms cannot be considered in-
dependent and the independence of irrelevant alternatives (IIA) assumption is not
valid. As for the blue/red bus paradox, applying a simple multinomial logit model
(MNL) structure overestimates the probability of choosing similar alternatives, i.e.
similar routes. A nested logit model is also inappropriate as it does not allow one
link to be part of several nests (Frejinger and Bierlaire, 2007). To take correlations
among the alternatives into account, two main approaches are found in the litera-
ture. The first possibility, which is the most often used because of its simplicity, con-
sists of introducing a term in the deterministic part of the path utility that captures
the similarities with the other paths of the choice set (part. 2.3.1). The second option,
more complex, aims to capture explicitly the correlation through assumptions about
the error terms (part. 2.3.2).

2.3.1 Deterministic correlation in a multinomial logit model

Modifications in the multinomial logit models were proposed to release the IIA
assumption. The basic multinomial logit model is shown in equation 2.4.

Pk =
exp(Vk)

Âi2C PSi exp(Vi)
(2.1)

where Pk is the probability of choosing route k, C is the choice set of paths, and Vk
and Vi are the deterministic utilities of routes k and i, respectively. Vk can be written
as b.X, where X is a vector of route attributes and b a vector of coefficients to be
estimated.

a. C-logit model

Cascetta et al. (1996) were the first to propose a modification in the multinomial
logit model. They introduced a commonality factor that measures the degree of
similarity of each route with the other routes of the choice set. The correction is
made within the deterministic part of the path utilities. The new expression for the
probability of choosing route k within the choice set C is:

Pk =
exp(Vk + bCFCFk)

Âi2C exp(Vi + bCFCFi)
(2.2)

where CFk is the commonality factor and bCF is a parameter to be estimated.

Different formulations of the commonality factor (CF) were proposed in the lit-
erature. One possible specification is shown in equation 2.3.

CFkn = ln Â
i2C

(
Lkip
LkLi

)
g (2.3)
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where Lki is the length of links common to routes k and i; Lk and Li are the overall
length of routes i and j, respectively. The parameter g may be estimated or con-
strained to 1 or 2. Thus, here, the commonality factor value depends on the common
length between other routes within the choice set. The estimated parameter bCF
should be negative to reduce the utility of routes that share many links with the
other paths of the choice set.

Other possible specifications of the commonality factor are presented in Cascetta
et al. (1996). However, Cascetta et al. (1996) did not provide any guidance to select
the most appropriate formulation of the commonality factor.

b. Path-size logit

Another modification of the multinomial logit model was suggested by Ben-Akiva
and Bierlaire (1999). Similarly to the commonality factor, they introduced a path
size variable in the utility of the path. The path size variable represents the fraction
of the path that constitutes a full alternative. The contribution of a link is reduced
according to the number of paths that share the link. The probability of choosing
route k is

Pk =
exp(Vk + ln PSk)

Âi2C PSi exp(Vi + ln PSi)
(2.4)

where PSk is the path-size factor defined by

PSk = Â
a2Gk

la

Lk

1

Âi2C dai
L⇤

C
Li

(2.5)

with Gk the set of links in route k, la length of link a, Lk length of route k and L⇤
C the

length of the shortest path in C. dai is one if link a is part of path i and zero otherwise.

Ramming (2002) developed another formulation of the path size variable, called
generalized path-size. The aim was to reduce the influence of very long paths on
the utility of shorter, more reasonable paths.

PSk = Â
a2Gk

la

Lk

1

Âi2Cn dai(
Lk
Li
)g

(2.6)

where g is a parameter greater or equal to zero. However, the model requires the
estimation of more parameters and is computationally more costly.

The lack of theoretical guidance for the expression of the commonality factor and
the better results found for the path-size logit model (Ramming, 2002) probably ex-
plains why the path-size logit model became more popular in the following route
choice models estimation in the literature. These models that keep the logit struc-
ture are certainly easier to estimate but they are unable to capture all the correlation
between the alternatives.

2.3.2 Explicit modeling of the correlation

Another approach explored in the literature is the use of models that capture
explicitly the correlation in the error terms. However, due to their complexity, few
of them have been applied for real size problems.
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The cross-nested logit model, firstly applied by Vovsha and Bekhor (1998), is an
extension of the nested logit model. In contrary to the nested logit model, links can
be part of multiple nests. However, it is difficult to estimate because of the large
number of nesting coefficients. The multinomial probit model (Yai et al., 1997) can
also be used. However, this model lacks an analytical formulation of the probabili-
ties and is therefore complicated to estimate. The error component model has also
been proposed in the literature (Frejinger and Bierlaire, 2007).

Conclusion: Figure 2.2 summarizes the different options used in the literature to model
route choice. Despite its drawbacks, path-size multinomial logit model is by far the most
coomon model in the literature because of its computational efficiency and its simple struc-
ture.

FIGURE 2.2: Summary of route choice models

2.4 Bicycle route choice

While the previous sections reviewed how route choice has been modeled in the lit-
erature, this section focuses more specifically on the use of these models in a cycling
context.

2.4.1 Data collection

a. Stated-preference survey

The data used to study the factors influencing bicycle route choice have evolved over
time.

First studies were based on stated-preference surveys. In many studies, people
were put in hypothetical choice situations and were asked to choose a route be-
tween several options based on their main characteristics. As mentioned by Sener
et al. (2009), most of these studies rely on a descriptive analysis of the collected data,
and few multinomial logit or regression analysis methods were applied ( Hunt and
Abraham, 2007; Sener et al., 2009).

One of the advantages of stated-preference data is the relatively low effort re-
quired to collect and analyze the data. Notably, a generation of relevant alternatives
is not necessary. Moreover, non-existing or rare facilities can be evaluated, and a
large variety of attributes can be investigated. Hunt and Abraham (2007), Sener
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et al. (2009), and Casello and Usyukov (2014) offered a detailed review of the con-
sidered attributes in the bicycle context. Sener et al. (2009) classified the attributes
into six categories : individual characteristics, on-street parking, bicycle facility type,
roadway physical characteristics (pavement surface, grade, number of stop signs,
red lights, etc.), roadway functional characteristics (traffic volume, speed, etc.), and
roadway operational characteristics (distance, travel time, etc.).

However, the difference between claimed and observed behavior is a major lim-
itation of the stated-preference studies. It is difficult for the respondents to fully
imagine the situation described. Stated-preference studies can give interesting in-
sights about important factors affecting bicycle route choice but fail to represent be-
haviors accurately.

b. Revealed-preference data

Due to the important limitations of stated-preference surveys, the data collection
process has evolved toward revealed preference studies. The objective is to represent
more accurately the behavior by studying the actual chosen routes. Aultman-Hall
et al. (1997) were one of the pioneers in using geographic information system (GIS)
for bicycle route choice analysis. People were asked to draw their routes, and they
were then compared to the shortest paths.

Recently, the emergence of GPS technology has offered new opportunities for
data collection. The first model that used GPS data of bicycle trip was developed by
Menghini et al. (2010) and applied to the city of Zurich. A link-elimination method
was used to extract the alternatives. Results of the analysis suggest that cyclists are
sensitive to trip length, grade and presence of cycling facilities.

2.4.2 Bicycle route choice models based on GPS data

After the model of Menghini et al. (2010), many other studies based on GPS data
followed. They mainly differ by the location of the case study, the method used to
generate the alternatives and the considered attributes.

Traditional path generation techniques presented in part 2.2, such as link elim-
ination, link penalty, labeling, and stochastic path search, have been applied to the
bicycle context. In Hood et al. (2011), the model is based on a doubly stochastic
shortest path technique. Link attributes and generalized cost coefficients were ran-
domized before extracting the next shortest path. The case study is San Francisco
(USA), and socio-demographic and contextual attributes were included as well, such
as gender, age, rain, sunset and sunrise times, etc. However, most of them were
not significant, only the cycling frequency showed good results. Then, Broach et
al. (2012) estimated a model with a calibrated labeling approach and distinguished
themself by the large amount of road network attributes. The number of stop signs,
of intersections are examples of new parameters that were included. Recently, Chen
et al. (2018) also took advantage of a labeling method to extract possible other routes
in Seattle network (USA). A principle component analysis was performed to define
the objective functions for the labels. This aimed to increase the number of alterna-
tives. Moreover, Chen et al. (2018) were the first to include a large variety of land-use
attributes, such as city feature density, proportion of water and parks, or density of
street trees. Unlike the other studies mentioned above, the model was not estimated
with a multinomial logit formulation and a path-size factor but had a mixed logit
structure with a path-size.
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Alternative methods to generate the choice set have also been used for bicycle
route choice models. Zimmermann et al. (2017) used the recursive logit model (RL)
and the nested recursive logit model (NRL) that do not require enumerating alter-
natives. Finally, Ton et al. (2017) and Bernardi et al. (2018) employed a data-driven
approach and considered choice sets with the observed routes.

Table 2.1 reviews the main bicycle route choice models found in the literature and
presents the attributes considered. Several comments can be made about the find-
ings of these studies. Trip length was an important parameter in most of the studies,
with a negative sign showing that bicyclists are discouraged by long routes. Bicy-
clists prefer routes with bike facilities and avoid streets with a lot of traffic. Routes
with important slopes are less attractive and bicyclists are ready to take a detour to
reduce the number of bridges, intersections, traffic signals, and turning movements.
Socio-demographic and contextual were not found significant (except the cycling
frequency in Hood et al. (2011) and morning peak hours in Ton et al. (2017)). Finally,
very few studies investigated the impact of land-use on bicycle route choice.

Conclusion: Thus, in the literature, several bicycle route choice models were estimated by
using different techniques to generate the choice set. Several important research gaps remain.
Few studies have considered a rich set of land-use attributes and research on how to extract
relevant choice sets from the network must be pursued.
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Road network attributes
Type of facility (proportion of
bike lane, bike path, etc.)

X X X X X X X X*

Gradient X X X X X X
Traffic volume X X* X X X X*
Number of traffic lights X X X*
Turning movements X X X
Speed limit X* X X
Presence of bridge X X
Number of intersections X
Number of stop signs X
Number of lanes X*
Street lights X

Trip characteristics
Trip purpose X* X X X
Trip length X X X X X X X
Cycling speed X X
Travel time X
Multimodal trip X

Socio-demographic attributes
Gender X* X* X*
Age X* X* X*
Cycling frequency X X*

Contextual attributes
Rain X* X*
Sunset and sunrise times X* X*
Crime rate X*
Morning peak hours X

Land-use attributes
Land use mixture X
City feature density X
Proportion of water and parks X
Proportion of beautiful links X
Average floor area ratio X
Density of street trees X

TABLE 2.1: Review of bicycle route choice model attributes (* : factor
not significant)
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Chapter 3

Data Description

3.1 Data source

3.1.1 Data collection

To study the factors influencing bicycle route choice, a sufficient amount of data in
a given location was required. As shown in the literature review, GPS data offer a
huge opportunity for observing real behaviors. Collecting data would have consid-
erably limited the sample size and time remaining for model estimation. However,
few bicycle routes can be found in open access. Some traces are shared by bicyclists
via cycling smartphone applications but are most of the time round trips for recre-
ational purposes. As the objective was to study route choice for utilitarian trips, this
data source was not appropriate.

The second idea was to identify events that could have led to a data collection
process. The European cycling challenge was one of them. It is an urban cyclists´
team competition to encourage people to cycle more. The challenge was initially
created by the city of Bologna in 2012 and took place every year in May from 2012
to 2017. Citizens could record their bicycle trips with a GPS-based smartphone App
and help their city to collect kilometers. In 2016, 52 cities from 17 countries joined
the game and four million kilometers were cycled in a month by 46,000 participants
(CIVITAS, 2017). The challenge had two main objectives:

• Encouraging people to change their mobility behaviors towards a more sus-
tainable mode

• Collecting GPS data for urban planning

In France, four cities have ever taken part in this challenge: Lille, Nantes, Amiens,
and Louviers. These French municipalities were contacted. In parallel, cycling apps
and cyclist associations were also approached. For privacy reasons, several organi-
zations were reluctant to share even anonymized data but finally, the municipality
of Amiens kindly accepted the use of their data for a research purpose.

3.1.2 Description of the collected data

Amiens Metropole took part three times in the European cycling challenge from
2015 to 2017. However, the municipality had only access to the results for 2016 and
2017. Table 4.1 shows the amount of data collected in Amiens. They are anonymous
and organized into two files (GENERIC and DETAIL file), written in a csv format.
The GENERIC file includes one line per trip with information about travel distance,
travel time, average speed and sometimes socio-demographic characteristics of the
participant. The DETAIL file contains the GPS data. It consists of one point per
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line defined by its latitude, longitude, altitude and the time stamp. Thus, a route is
represented by several points with the same ID.

2016 2017

Number of trips recorded 2,106 2,346
Number of GPS points recorded 424,910 904,274

TABLE 3.1: Amount of data collected

Between 2016 and 2017, the mobile application used to collect data was changed
(Cycling 365 in 2016, Naviki in 2017) and there are some variations in the variables
and the way they are coded. Table 3.2 and 3.3 summarize the variables included in
the GENERIC and DETAIL files of 2016 and 2017.

Name Definition Type in 2016 Type in 2017

TripID ID of the trip Character Integer
TimeStamp Starting time in seconds Integer Integer

from 01.01.1970
StartDate Date of the trip 2016-05-DD 05.DD.17
StartTime Starting time of the trip THH:MM:SS.000Z HH:MM:SS
Duration Trip duration in seconds Integer -
AvgSpeed Average speed in km/h Floating Floating
MaxSpeed Maximum speed in km/h - Integer
Distance/TotalLength Total length of the trip in km Floating Floating
TrackType Type of track Urban bicycle or other -
Sex Gender M or F male or female
Year/YearOfBirth Year of birth Manually written MM.DD.YY
Frequent User Frequent use Boolean -
Profession Job Manually written -
ZIP Zip Code of the participant Integer -
TypeOfBike Type of the bike MyBike owned bike

MyEBike owned e-bike
BikeSharing shared bike
EBikeSharing shared e-bike
– n/a

TypeOfTrip Trip purpose HomeToWork home-to-work
HomeToSchool home-to-school
Leisure leisure
Other other
– n/a

Source/Uploaded How the trip was tracked cy-mobile (Cycling365 ) No (Naviki)
cy-wep-gpx (as gpx) Yes
cy-web-manually (manually)

TABLE 3.2: Variables of the GENERIC table of 2016 and 2017



3.2. Representativeness of the sample 19

Name Definition

TripID ID of the trip
TimeStamp Starting time in seconds calculated from 01.01.1970
Latitude In degrees
Longitude In degrees
Distance Distance to the previous point
Altitude In meters
Speed In km/h
Type start (if first point), mid or end (last point)

TABLE 3.3: Variables of the DETAIL table of 2016 and 2017

3.2 Representativeness of the sample

In this part, the socio-demographic data are analyzed and compared to the 2010
mobility survey Enquête déplacements grand territoire réalisée dans le Grand Amiénois en
2009-2010 (EDGT, 2010) realized in Amiens Metropole (Pays du Grand Amiénois,
2013). This aims to examine the extent to which the sample collected during the
challenge is representative of the cycling population. However, the results should
be taken with some caution: first of all, these questions were optional and not all
the participants in the challenge answered to them (table 3.4) and secondly, the most
recent travel survey was in 2010 and the situation has probably changed since that
time. It is also important to mention that it is not possible to identify which trips
were made by the same person as the data collected are anonymous. Therefore, all
trips are considered independently.

Variables 2016 2017

Gender 75% 44%
Age 82% 38%
Trip Purpose 53% 50%
Type of Bikes 53% 50%

TABLE 3.4: Percentage of answers to the optional questions

The attributes that are investigated in the following are gender, age, trip purpose,
trip length and departure time.

3.2.1 Gender: a consistent overrepresentation of male among participants

Firstly, the gender of the participants was analyzed. More than 62% of the trips
collected during the challenges of 2016 and 2017 were made by men. A similar
trend was observed in the Amiens Metropole mobility survey of 2010. A comparison
of gender distributions is presented in figure 3.1. Thus, gender can be considered
representative. This overrepresentation of men among cyclists is common in other
low-cycling countries, such as the UK, the USA, and Canada. On the contrary, in
higher cycling countries, gender differences tend to be much less marked or even
reversed. For example, in Netherlands or Denmark, more than 45% of cyclists are
women (Aldred et al., 2016).
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FIGURE 3.1: Gender Distribution

3.2.2 Age: a majority of 25-49 years old

Concerning the age distribution, important differences can be observed as shown in
figure 3.2.

FIGURE 3.2: Age distribution

While in the mobility survey, the 18-24 years old are by far the most represented,
they are almost absent among the participants of the cycling challenge. The 25-
49 age group was the most involved (69%). This result is comparable to the one
observed during the European cycling challenge in Lille in 2016, where 70% were
between 25 and 49 years old (Drouaults, 2016). Thus, it was above all workers that
took part in the challenge. This could be due to a positive emulation in companies
that encouraged people to contribute to the challenge.
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3.2.3 Trip purpose: a majority of home-work trips

Trip purposes of the GPS data collected during the cycling challenge are presented
in figure 3.3.

FIGURE 3.3: Trip purpose

Nearly 60% of the trips collected during the 2016 and 2017 challenges are home-
work trips, whereas this category was the least represented in the travel survey
(21%). Moreover, there is an under-representation of trips to school (4% for both
challenges against 25% in the mobility survey). These results are in line with the age
distribution observed. Finally, the proportion of leisure trips and other trip purposes
is much smaller than in the mobility survey (38% against 55%).

3.2.4 Time of the trip: a typical time distribution

Information concerning the dates of the trips and the departure time confirms the
high proportion of home-work trips. The temporal distribution of the trips recorded
during the challenges is very similar to the one obtained by the mobility survey (fig.
3.4) and is typical of commuting trips. Three peaks can be observed. A first one very
concentrated between 8am and 9am, a second one smaller around 1pm and a last
one wider around 5pm. Concerning the trip dates, a big distinction between week-
ends and week-days is observed in figure 3.5. The number of trips was much higher
during the weekdays than the weekends. There are two public holidays in France in
May: on the 1st and the 8th of May, during which similar trends to weekends can be
observed.
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FIGURE 3.4: Temporal distribution

FIGURE 3.5: Trip dates

3.2.5 Trip length: a representative travel distance distribution

Finally, the observed travel distance distribution was analyzed in figure 3.6. The
results are affected by outliers and there is a significant difference between the mean
(4.1 km) and the median (2.9 km). The average distance is close to the one obtained
in the mobility survey (3.9 km). Therefore, it seems that the participants did not try
to increase their travel distance to collect more kilometers for their city. This is an
important result for the rest of the study on route choice.

Timothée Charmeil�
Figure removed due to possible copyright infringements
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FIGURE 3.6: Travel distance distribution obtained during the chal-
lenge

Conclusion : Thus, the analysis of the dataset shows a majority of home work-trips re-
alized by people between 25-49 years old. This overrepresentation of this group compared to
the mobility survey of 2010 is not problematic because it is consistent with the study objec-
tives consisting of analyzing non-recreational trips. Therefore, the dataset is suitable for our
analysis. Moreover, due to a representative trip length distribution, the following hypothesis
can reasonably be made: the participants of the challenge have similar behavior in terms of
route choice than they will have without recording their data.

3.3 Spatial analysis of the data

3.3.1 Spatial distribution of the collected data

After comparing the socio-demographic answers, a spatial analysis was performed
on the data. The spatial resolution depends on the year of the challenge. While in
2016 points were recorded every 5 seconds, in 2017 the new application allowed to
decrease the time step to one second. Figure 3.7 shows the density of GPS points,
while figure 3.8.a is a flow map showing the origin-destination of the recorded trips.
In figure 3.8.b, the flow is aggregated by districts and only arrows representing more
than 50 trips are displayed. It can be observed that the trips are highly concentrated
inside the city of Amiens and above all between three districts: Amiens Center,
Amiens South-West and Amiens South-East.
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FIGURE 3.7: Density of GPS points

FIGURE 3.8: Flow maps of recorded trips (a: all trips, b: aggregated
trips)

3.3.2 Comparison with the features of Amiens

These results are in line with the concentration of population of Amiens Metropole
within the city, as it can be seen in figure 3.9. Amiens Metropole is a very contrasted
territory characterized by a high concentration of the population (74%), jobs (84%)
and equipment inside the city of Amiens. The urban community is structured by
a central area of 10 municipalities representing 91% of the population of Amiens
Metropole. The other 28 municipalities are less densely populated and only four of
them have more than 1 000 inhabitants (INSEE, 2015).
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FIGURE 3.9: Population of Amiens Metropole (INSEE, 2015)

Conclusion: Thus, the data collected during the European cycling challenge are consis-
tent with the spatial distribution of Amiens Metropole.
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Chapter 4

Methodology

4.1 Introduction to the methodology

As seen in the literature review, estimating a route choice model especially requires
two key decisions: the way the choice set is generated and the way the model cor-
rects for overlaps between routes. For this study, a data-driven approach inspired
by Ton et al. (2017) was combined with a labeling method (Ben-Akiva et al., 1984)
to generate possible alternatives. For the model estimation, a path-size logit struc-
ture was selected as proposed by Ben-Akiva and Bierlaire (1999). The main origi-
nality of the methodology lies in the choice set generation method. A data-driven
method based on the observed routes is a very promising approach because of the
increase amount of available data. However, as mentioned by Ton et al. (2017), a low
variability of collected routes can be obtained that can lead to worse fits than other
generation techniques. To overcome this issue, this thesis combines the data-driven
approach with the labeling one. In other words, in addition to the observed routes,
for each origin-destination (OD) pair, the choice set contains several other routes,
such as the shortest path and the path maximizing the proportion of cycling facili-
ties.

To apply this methodology, the steps summarized in figure 4.1 were performed.
Firstly, the trips were filtered to eliminate irrelevant trips and they were clustered
to increase the number of possible routes for each origin-destination pair (part 4.2).
Trips with very close origins and destinations were grouped together in the same
cluster. Thus, one cluster contains possible routes to go from a given origin to a
given destination. Then, the GPS points were matched to identify the succession
of links that were taken by the bicyclists (part 4.3). After that, the different routes
belonging to the same cluster could be studied in detail and the number of different
routes per cluster was calculated. To increase the cluster size, some additional routes
were added in part 4.4 by using the labeling approach. In part 4.5, a large variety
of route attributes were defined based on the city characteristics and the literature
and calculated for each trip. Finally, a discrete choice model was estimated with a
path-size logit formulation (part 4.6).
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GPS data of bicycle trips

Data Filtering

Trip Clustering

Map-Matching

Choice Set Generation

Attribute Creation

Model Estimation

Bicycle route choice model in Amiens

FIGURE 4.1: Summary of the methodology
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4.2 Data filtering

This section describes the steps performed to prepare the data before identifying
routes used by bicyclists and estimating a model. First, a plausibility check was
performed on the 4,457 trips collected during the European cycling challenge in part
4.2.1. 424 irrelevant trips were eliminated because of implausible speed, very short
distances or round trips. Then, a spatial filtering was realized in part 4.2.2. The aim
of this step was to obtain clusters of similar trips that will be part of the same choice
set for model estimation. At the end, 2,919 trips remain.

4.2.1 Elimination of irrelevant trips

a. Problem of multiple origins and destinations per ID

The study of the DETAIL file containing one line per GPS point shows some inac-
curacies. Some trips have multiple departure and arrival points. These points can
be identified by the variable “Type”, which is equal to “start”, “mid” or “end”. As
a result, several trips have the same trip ID. To solve this issue, it was necessary
to identify whether trips with the same IDs correspond to different portions of the
same trips or to different trips. Two situations were distinguished according to the
way the trip was recorded.

First of all, for routes that were manually drawn by participants, trips with the
same IDs were treated as different trips. It was assumed that the problem of multiple
ID was due to the fact that participants reported several trips one after another when
connecting to the website.

Secondly, trips collected directly via the app that have the same ID were treated
as unique trips. An analysis of a sample of these trips revealed that trip portions
were continuous over space and time. A manipulation of the phone while traveling
may have caused these inconsistencies.

b. Elimination of very short trips and round trips

After dealing with the problem of multiple ID, some other data filtering process were
performed to eliminate trips that cannot be used for route choice estimation. It is un-
likely that a route choice is possible for very short trips. Consequently, trips shorter
than 300 m were suppressed. Then, round trips were identified and eliminated. A
round trip was defined as a trip with a distance between its origin and its destination
less than 200 meters. Finally, only trips with speeds lower than 45 km/h were kept
in the dataset. This is intended to eliminate irrelevant trips or trips traveled by car.

The flowchart in figure 4.2 summarizes the different steps performed during the
plausibility check.
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Data collected during the ECC 2016 and 2017

Cutting of manually recorded trips with same IDs into multiple trips

Merging of automatically recorded trips with same IDs

Trip length

> 300 m ?

Round trip ?

(dOD < 200 m)

Speed

< 45 km/h ?

Data filtered

4 457 trips

4 511 trips

4 511 trips

4 449 trips

4 042 trips

4 033 trips

FIGURE 4.2: Flowchart of trip filtering steps during the plausibility
check

4.2.2 Trip Clustering

a. K-Mean

The data-driven approach for generating the choice set consists of considering the
observed routes between each OD pair. However, because of the high resolution
of GPS data, it is unlikely that two trips have exactly the same origin and same
destination. A clustering method was applied to gather trips that have similar OD
pairs. Ton et al. (2017) used K-Mean (Hartigan and Wong, 1979). Each cluster is
associated with a centroid and each point is assigned to the cluster with the closest
centroid. The intra-cluster distances are minimized whereas the inter-cluster dis-
tances are maximized. The number of clusters needs to be specified in advance. A
K-Mean clustering analysis was performed on the dataset with K=500. An example
of a cluster can be visualized in figure 4.3.
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FIGURE 4.3: Example of cluster obtained by K-Mean

It can be seen that the origins and destinations of trips in this cluster cannot
be considered similar for a route choice estimation. The trips towards Amiens Glisy
aerodrome (A) and Larmotte Brebière (B) and are gathered in the same cluster whereas
they are located 1.3 km away. One of the issues of the K-Mean method is that the four
coordinates of the origin and destination are treated as separate variables. Therefore,
a very close origin can compensate for a more distant destination. Distances between
points are parameters that are difficult to control. Moreover, K-Mean method has
problems when clusters have different sizes and densities, and when the data set
has outliers. The data used have a high heterogeneity of location densities and have
many outliers. The density of points is especially much higher in Amiens South than
in the rest of the region. As a consequence, K-Mean method does not perform well.
Therefore, another approach was preferred in the following.

b. Implementation of an alternative method inspired by He et al. (2018)

An alternative method for clustering origin-destination trips was implemented. This
method was inspired by He et al. (2018) and its Simple line clustering method re-
cently proposed. This intuitive approach searches for neighboring lines for every
OD trip within a certain radius. Two parameters are required: a searching radius
and a minimum number of lines in a cluster. With these parameters composition of
clusters can be carefully controlled. The searching radius applies to both origin and
destination. For example, a very close destination cannot compensate for a further
destination as it can be the case for K-Mean clusters.

This method is based on neighboring lines concept. Neighboring lines of a given
OiDi pair is defined as all the OD lines that have both origin and destination within
the searching radius d of Oi and Di (fig. 4.4). In other words, neighboring lines
NLs(Li) of a centerline Li are:
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NLs(Li) = {Lj 2 L|dist(Oi, Oj)  d \ dist(Di, Dj)  d}

FIGURE 4.4: Definition of neighboring line of a center line (He et al.,
2018)

Steps can be described as follows. The OD pair with the highest number of neigh-
boring lines and its associated neighboring lines will form a cluster. The related lines
are then extracted from the dataset and the next iteration is performed with the re-
maining OD pairs. The different steps of the clustering process are summarized in
figure 4.5. The code in R is available upon request.

In this study, the searching radius is a function of the trip length. If the trip is
very long, we may accept together in a cluster OD pairs that have origins or destina-
tions further away. On the contrary, if the trips are very short, considering a smaller
radius seems more appropriate. Expression 4.1 is considered for the searching ra-
dius.

Searching Radius = min(Ratio ⇤ tripLength, Dmax) (4.1)

where Dmax is the maximum searching radius. It is defined to avoid very distant
origins or destinations together in a cluster.
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Data Filtered

Initialize the searching radius for each trip

Identify the neighboring lines for each trip
Neighboringij =

true if Oi is in the searching radius of Oj and if Di is in the searching radius of Dj ,

false otherwise;

Select the Trip ID with the highest number of neighboring lines
(Trip ID corresponding to the row of Neighboring with the highest number of true)

Enough points to form a cluster ?
Neighboringlines >= MinLines

Stop

Create a new cluster

Remove clustered lines
from Neighboring

Parameter :

Dmax : Maximum searching radius

Parameter :

MinLines : Minimum number

of lines per cluster

no

yes

FIGURE 4.5: Flowchart of the clustering process

The methodology used in this study differs from the one proposed by He et al.
(2018) by the expression of the searching radius. He et al. (2018) proposed two
methods a basic one and a more advanced one. In the first basic method, the search-
ing radius is set as a constant. However, by doing so, He et al. (2018) showed that
it is impossible to cluster trips with length shorter than 0,83d because there is then
no guarantee that clustered trips will be in the same direction. Therefore, with this
method some trips must be excluded from the dataset. The second more advanced
method consists of iteratively decreasing the radius when all the remaining trips are
too short to be matched. Thus, when all the trips that could be clustered were clus-
tered, the algorithm is run again for the rest of the trips with a smaller radius. In
this study, the approach is different. Within one iteration, the searching radius is not
the same for all the OD pairs but depends on the trip length. It has the advantage of
using a clear and intuitive expression for the searching radius and requiring to run
the program only once.
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c. Parameters selection

The searching radius needs to be carefully selected. The objective is to minimize
the number of non-clustered trips, while having a reasonable distance between the
origins and between the destination within one cluster. The higher is the searching
radius, the further are the OD lines belonging to the same cluster. Several tests were
performed to evaluate the influence of the maximum searching radius Dmax and the
ratio of trip length that appear in the expression of the searching radius. The mini-
mum number of trips in a cluster is set as two. Table 4.1 presents the results obtained
in terms of cluster characteristics and mean distance within a cluster.

Parameters for clustering Cluster characteristics Mean distance (in m) within a
Dmax Ratio of % of lines Number of Average trips cluster between:

(in m) trip length in clusters clusters per cluster Origins Destinations O and D

300 10 % 79 % 445 12.5 53 36 89
300 20 % 84 % 442 12.8 75 59 134
400 10 % 80 % 454 12.7 64 48 113
400 15 % 85 % 449 12.4 86 74 160
400 20 % 86 % 429 12.7 100 84 185
500 10 % 81 % 450 12.8 67 50 117
500 20 % 88 % 394 13.4 119 102 222

K-Mean Clustering

k=500 99% 446 8.5 141 141 282

TABLE 4.1: Parameters selection for trips clustering and comparaison
with the K-Mean method

The objective was to keep an average distance between the OD lines within a
cluster of less than 160 m, while maximizing the number of OD clustered. The clus-
ters obtained with a ratio of 15% and a maximum radius of Dmax = 400 m are the
ones that meet the best these requirements. With these parameters, 3,414 trips are
clustered in a total of 449 groups. There is an average of 12.5 trips per cluster.

A comparison with the clusters obtained by the K-Mean method shows that
the method applied with the selected set of parameters outperforms the K-Mean
method. The characteristics of the nearly 450 clusters are very different. The per-
centage of lines clustered is much higher (+14%) for the K-Mean but the distances
are not accurately controlled. The average distance between two OD is equal to 282
m against 160 m for the Simple line clustering method. The most striking difference
concerns the maximum distance between two OD belonging to the same cluster. It is
equal to 14 km for K-Mean against 760 m for the selected method, i.e. 19 times more.
Thus, the method developed allows a more homogeneous and controlled composi-
tion of clusters compared to the K-Mean method.
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Figure 4.6 shows an example of a cluster obtained by the Simple line clustering
method containing four trips.

Example of routes within a cluster

Lorem	ipsum

Source	:	Amiens	Metropole
Map	:	OpenStreetMaps

Parameters
:
Dmax=400m,
Ratio=15%,
Cluster
Number
=
200

Origin

GPS
data
of
trips
belonging
to
the
same
cluster

TripID:
11989924

TripID:
573096dc88c53774157b23c9

Legend

Destination

Origin/Destination
of
the
cluster

Origin/Destination
of
trips

TripID:
573df74688c537560de0fec5

TripID:
5743746788c537591a92eee4

FIGURE 4.6: Example of trips belonging to the same cluster

4.2.3 Boundary definition

In the following, the boundaries of the study were adjusted. 77% the trips clustered
are located inside the city of Amiens. Only these trips were kept. This decision
avoids the estimation of a route choice model with very different alternatives that
are not easily comparable. The land-use of the city of Amiens differs significantly
from the rest of Amiens Metropole, which is mainly made of rural areas. By filtering
the clusters created, 780 trips that have their origin or their destination outside the
city were excluded. Several steps were performed in the following to decrease the
number of trips that must be eliminated.

a. Methodology to reduce the number of eliminated trips

The compromise consists of keeping in the dataset not only the trips inside Amiens
but also part of the trips crossing Amiens that have an origin or a destination located
outside the city. The trips that have at least 70% of their length inside the city were
cut and the parts inside Amiens were included in the data used for clustering. It is
assumed that the route choice for 70 % of the trip does not significantly differ from
the choice for the entire route. This process created some short routes, for which a
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route choice was unlikely. Therefore, the new trips shorter than 300 m were elimi-
nated. The same clustering algorithm as presented earlier was applied to the new
dataset. As a result, 403 clusters were found for a total of 2,919 clustered lines. Thus,
this compromise allowed keeping 285 additional trips. The two flowcharts illustrate
the differences between the initial methodology and the one with a compromise
found to reduce the number of eliminated trips.

Bicycle trips filtered

Clustering of trips with similar origin and destination

More than

two trips

per cluster ?

Trips inside

Amiens ?

OD pairs with multiple trips

4 033 trips

3 414 trips

2 634 trips

Bicycle trips filtered

Trips at 70%

inside Amiens ?

Cutting trips at the boundary of Amiens

Trips longer

than 300 m ?

Clustering of trips with similar origin and destination

More than

two trips

per cluster ?

OD pairs with multiple trips

4 033 trips

3 389 trips

3 381 trips

2 919 trips

FIGURE 4.7: Comparaison of spatial filtering methods : OD inside
Amiens (left), 70% of trip length inside Amiens (right)
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Table 4.2 presents the characteristics of the obtained clusters. They can be visu-
alized in figure 4.8. Trips belonging to the same cluster are represented in the same
color.

Clusters characteristics with Dmax=400 m and r=15%

Number of clusters 403
Number of clustered trips 2,919
% of clustered trips 86 %
Average number of trips per cluster 11.6
Maximum number of trips per cluster 99
Number of clusters with only two trips 134

Mean distance (in m) within a cluster between:
Origins 90
Destinations 74
Origins and Destinations 163

Maximum distance (in m) within a cluster between:
Origins 769
Destinations 771
Origins and Destinations 1,288

TABLE 4.2: Characteristics of the clusters obtained for trips with at
least 70% of their lengths inside Amiens

Clusters
of
bicycle
trips

Source	:	Amiens	Metropole

At
least
70%
of
the
trip
lengths
inside
Amiens

Information	:	403	clusters	
and	2	919	lines	clustered

Parameters
:
Dmax=400
m
and
Ratio=15%

Cluster	of	trips

Legend
City	of	Amiens

Amiens	Metropole

FIGURE 4.8: Clusters obtained for trips with at least 70% of their
lengths inside Amiens
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4.2.4 Socio-demographic analysis

Some of the bicycle trips recorded have additional socio-demographic information
such as age and gender of the participant or trip purpose and type of bike used (table
4.3). The last step of the data processing part consists of evaluating the number of
trips that cannot be considered if the socio-demographic attributes are included as
attributes in the model estimation. Table 4.4 shows the number of remaining trips.

Variables 2016

Gender 58%
Age 58%
Trip Purpose 49%
Type of Bikes 49%

TABLE 4.3: Percentage of answers to the optional questions among
the trips filtered

Remaining trips after elimination of trips without :

Type of bike, age, gender and trip purpose 624
Age, gender and trip purpose 632
Gender and trip purpose 685
Trip purpose 1,429

TABLE 4.4: Number of remaining trips after elimination of trips with-
out socio-demographic information among the 2,919 trips

Because the loss is consequent, it was decided as a first model estimation not to
consider socio-demographic attributes. Moreover, age and gender were not found
significant in the models reviewed in the literature (Hood et al., 2011; Chen et al.,
2018; Bernardi et al., 2018). Trip purpose was successfully included in Broach et
al. (2012), Ton et al. (2017) and Bernardi et al. (2018), and could be considered in a
smaller model in a second time.

Conclusion: Thus, after the trips filtering steps, 2,919 trips remain. However, for creat-
ing a data-driven choice set for a route choice model, more than one route is required per OD
pair. This condition will be checked in a second step, after matching the GPS routes to the
network.
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4.3 Map-matching

4.3.1 Map-matching in the literature

The sequence of GPS points needs to be processed in order to accurately identify the
roads that were taken by its users. This process is called map-matching (Quddus
et al., 2007).

a. Map-matching problems

Map-matching is a challenging task for several reasons. Identifying the route is not
easy, firstly, because of the limited GPS accuracy and the sparseness and noise in the
data. Secondly, the digital road network is only a representation of the real world. It
can have missing segments and connectivity problems (Van Dijk and De Jong, 2017).
Moreover, networks can have complex road geometry with complicated intersec-
tions, multi-layer roads or parallel links close to each other (Dalumpines and Scott,
2011). All these cases make the identification of traveled routes especially difficult.

Moreover, map-matching of bicycle routes shows additional issues compared to
car routes. Bicyclists are much more flexible than car drivers and tend to behave
both like cars and pedestrians. For example, they can ride in parks, cross pedestrian
areas and ride in opposite directions in some streets. These aspects are often not
taken into account in network representations built for cars but these behaviors must
be allowed in order to get an appropriate map-matching.

b. Map-matching algorithms in the literature

Map-matching algorithms are classified by Quddus et al. (2007) into three main cat-
egories:

• Geometric methods: use geometric information of the spatial road network
data (point-to-point, point-to-curve, curve-to-curve, etc.) by considering only
the shape of the links.

• Topological methods: consider the connectivity of the network links and the
sequence of measurements in addition to links geometry.

• Other advanced techniques: probabilistic algorithms based on error regions
around GPS signals, Kalman Filter, Hidden Markov models, Multiple Hypoth-
esis Techniques, etc.

Map-matching algorithms are used in two different contexts: for real-time and
for post-processing applications. Real time algorithms associate the position of
drivers to the road network during the recording process, whereas post-processing
or off-line map-matchings are used after the end of the trips. This study of bicycle
route choice belongs to the second case because the analysis of routes is realized
after collecting data. The first type of map-matching is by far the largest group in-
vestigated in the literature because of its applications in navigations systems. This
explains why post-processing map matching problems often use the same algo-
rithms as for real-time applications. However, as mentioned by Dalumpines and
Scott (2011), the two problems have important differences. Firstly, unlike real-time
map-matching, a post-processing map-matching does not require identifying exact
locations of vehicles within links over time but only the list of traveled links. Sec-
ondly, post-processing map-matching enables the use of other methods. All points
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can be considered and slower performance in favor of accuracy is tolerated.

Dalumpines and Scott (2011) proposed to use a different approach than those
developed for real-time applications. They invented a GIS based post-processing
map-matching. The algorithm creates a buffer region around GPS trajectories, which
delimits the network in which a shortest path is searched between the first and the
last GPS points. With this method, 88 percent of 101 trips were accurately matched
by Dalumpines and Scott (2011) in Halifax, Nova Scotia, Canada with a buffer size
of 50 meters.

More recently, Van Dijk and De Jong (2017) reported two additional methods
based on a GIS environment. The first one is called Connected subset assignment pro-
cedure and connects consecutive GPS points by mini shortest path assignments. The
second one, called Impedance reduction method consists of counting the number of
nearest GPS-measurements for each road segment and adjusting the link impedance
accordingly before running a shortest path algorithm.

4.3.2 Map-matching method applied: shortest path search in subnetworks

The method developed by Dalumpines and Scott (2011) based both on a subnet-
work delimited by a buffer area around GPS points and on shortest path analysis
was selected for this study. It has the advantage of being easily implemented while
obtaining satisfactory results. It only requires combining available tools on GIS soft-
wares, like shortest route analysis and buffer creation. The different steps performed
for matching the recorded trips to the digital road network are presented in this part.
Figure 4.9 summarizes the workflow. Because of the high number of trips, it was
necessary to automate processes. Python was used for this purpose because of its ef-
ficient existing libraries dealing with graphs and geographical data frame (OSMnx,
NetworkX, geopandas). The code is available upon request.

FIGURE 4.9: Methodology for map-matching the routes
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The first step consisted of converting GPS points to lines. It was performed in
QGIS. Only the trips that were automatically recorded are used. Then, buffers were
created around the lines with QGIS. The buffer size is a parameter that had to be
given. The section 4.3.3 details how it was selected.

The rest of the steps were performed directly on Python. Street networks were
extracted from OpenStreetMap with OSMnx, which is a Python package developed
by Boeing (2017). It allows automating the download of streets from OpenStreetMap
and their construction into graphs. The network can be download by providing a
polygon of the desired street network’s boundaries. This functionality was used
to generate the street-network inside the buffer polygon created around the GPS
points. Thus, one subnetwork was loaded for each trip. The network type had to be
specified (drive, walk, bike, all, etc.). For this study, all non-private OpenStreetMap
streets and paths were loaded because the bike network did not include all the links
traveled by bicyclists in the collected data. Moreover, the graphs were transformed
into undirected graphs for map-matching. In an undirected graph, edges point in
both directions. This step was performed because it was observed that many streets
were used in the opposite direction by bicyclists.

Before applying a shortest path algorithms, an origin node and a destination
node had to be identified for each trip. A search for the nearest node along the near-
est edge was preferred to a basic nearest node function because the nearest nodes
may not be connected to the link were the bicyclists stops or starts as illustrated in
figure 4.10. Finally, the Python package NetworkX (Hagberg et al., 2008) was used to
compute the shortest path between origin nodes and destination nodes. It is based
on Dijkstra’s algorithm (Dijkstra, 1959). The link lengths were used as weights. As a
last step, the shortest route for each subnetwork was saved into a shapefile.

FIGURE 4.10: Difference between the nearest node and the nearest
node along edge
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4.3.3 Selection of the buffer radius

To apply this method, one parameter is required: the buffer radius. Based on the
results of a sensitivity analysis, Dalumpines and Scott (2011) recommends to use a
buffer equals to five to six times the horizontal accuracy of GPS data. However, the
adequate buffer distance also depends on the road network and on the distance be-
tween two consecutive GPS points. If the buffer radius is too small, some links used
will not be part of the subnetwork generated. On the contrary, if it is too large, the
subnetwork will contain many alternative routes to go from A to B and the shortest
path algorithm will probably not give as a result the real traveled route. Several ex-
pressions for the buffer radius were tested on a sample of 50 trips in order to select
the best parameter. The sample was randomly selected.

a. Definition of expressions for the buffer radius

Before matching the routes, additional filtering steps were performed on the data.
166 trips with too distant points where excluded from the dataset. In other words,
trips with points more than 500 m apart were not considered in this study. Moreover,
when the maximum distance was between 200 and 500 m, a distinction was made
according to the number of distant points. If only one or two pairs of points were
distant from each other (> 200m), a satisfactory map-matching was still expected
and the trips were kept, otherwise, they were excluded.

Three different expressions were tested for the buffer radius. Firstly, two expres-
sions depending on the distance between two GPS measurements were used. The
idea is that closer points can enable a smaller buffer size. The minimum buffer radius
was chosen according to the horizontal accuracy and the road network. An analy-
sis of the road network showed that a minimum buffer size of 25 m is required to
include the traveled links. This value was measured in a pedestrian street (Rue des
Trois Cailloux) where the bicyclists can ride over all the street width. The last buffer
radius that was tried corresponds to a constant size of 50 meters. This value is the
one used by Dalumpines and Scott (2011). The different expressions (in meters) for
the buffer radius can be visualized in figure 4.11 and have the following equations:

• Test 1 : Buffer Radius = min(100, max(25, max Dd
2 ))

• Test 2 : Buffer Radius = min(50, max(25, max Dd
2 ))

• Test 3 : Buffer Radius =50

with Dd, the distance between two consecutive GPS points.



4.3. Map-matching 43

0 100 200 300 400 500

0
20

40
60

80
10

0

 
 Max distance between two points (in m)

Bu
ffe

r r
ad

iu
s 

fo
r c

or
re

sp
on

di
ng

 tr
ip

s 
(in

 m
) TEST 1

0 100 200 300 400 500

0
20

40
60

80
10

0

Buffer radius for map−matching 

 
 Max distance between two points (in m)

Bu
ffe

r r
ad

iu
s 

fo
r c

or
re

sp
on

di
ng

 tr
ip

s 
(in

 m
) TEST 2

0 100 200 300 400 500

0
20

40
60

80
10

0

 
 Max distance between two points (in m)

Bu
ffe

r r
ad

iu
s 

fo
r c

or
re

sp
on

di
ng

 tr
ip

s 
(in

 m
) TEST 3

FIGURE 4.11: Tests of buffer radius

b. Error classification

Classifying the errors and counting the number of errors for different radius expres-
sions helped selecting the best buffer radius among the three tests. The errors are
mainly due to an inadequate buffer size, wrong network coding or complicated net-
work layouts. The points on the maps in the following pictures represent the GPS
measurements, while the lines are the route obtained by the map-matching algo-
rithm.

i. Problems due to a too large buffer radius

The first most common type of error is wrong matches caused by a too large
buffer radius. Another alternative route, shorter than the real one, is included in the
subnetwork and selected by the shortest path algorithm. This type of error espe-
cially happens when there are streets close to each other or intersections with pos-
sible short-cuts (fig. 4.12). They can be avoided to some extend by decreasing the
buffer size.

FIGURE 4.12: Examples of errors due to a too large buffer radius
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ii. Problems due to a too small buffer radius

The second type of error is on the contrary due to a too small buffer radius that
cannot compensate for the horizontal inaccuracy of GPS measurement. The route
used by bicyclists is not included in the subnetwork and the algorithm does not suc-
ceed in joining trip origin and trip destination and stops in the middle of the travel
(fig. 4.13).

FIGURE 4.13: Example of errors due to a too small buffer radius

iii. Problems due to parallel streets

Thus, a trade-off is required in the choice of the buffer size. It must be neither
too big nor too small. Parallel streets that are located at a distance of less than one
radius cannot be properly identified. Therefore, the method applied is not capable of
identifying the traveled lane. This is not problematic for estimating the effects of the
built environment on bicycle route choice when the lanes on a street have the same
properties but in some cases, the differences can be significant. For example, one
part of the lanes can be coded in OpenStreetMap as Secondary street and the others
as Residential streets. This is often the case in Amiens. An example of such situations
is presented in figure 4.14.

FIGURE 4.14: Examples of errors due to a too small buffer radius

Timothée Charmeil�
Figure removed due to possible copyright infringements
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The lanes are separated into two parts: one main part is in the middle of the
street, where there are multiple lanes in both directions, and another part next to
the sidewalk on each side, surrounded by on-street parkings. The two parts are sep-
arated by trees and parked cars. The bicyclists tend to use the side parts, where
the traffic is less important but the associated traces are often matched to the wrong
lanes. Therefore, manual corrections of routes along this type of road geometry will
be required in the following. This type of error is called problem of parallel streets.

iv. Problems due to a wrong network coding

Finally, some errors in map-matching are due to a wrong network coding. Some
links on which bicyclists can drive are not included in the OpenStreetMap network.
This is especially common on squares. As explained before, the bicyclists are much
more flexible than cars and behave sometimes like pedestrians. For example, some
of them cross streets in the middle of links, which is not allowed in the digital rep-
resentation of the network, or they take short-cuts where there is no path. Examples
of problems due to a wrong network coding can be visualized in fig. 4.15.

FIGURE 4.15: Example of errors due to missing links

Missing links are very problematic for map-matching. Either, the buffer is large
and another alternative route is selected, or the matched route fails in joining trip
origin and trip destination. In the second case, the problem occurs at step 3 of the
process (part 4.3.2) when the subnetworks delimited by the boundaries of the poly-
gons are downloaded. The graph generated via OSMnx only contains connected
links. If there is a missing link in the middle of a route, the subnetwork can become
discontinuous and only a continuous part of it will be generated. In this case, the
subnetwork does not have the same size as the buffer and either origin or destina-
tion is not included. Therefore, the shortest path algorithm will fail in linking true
origin and destination and only a subpart of the route will be obtained.

c. Analysis of the results for the sample

The routes obtained for the sample of 50 trips and the three different buffer expres-
sions (part 4.3.3) were analyzed and the errors were classified as described in part
2.3.3.b.. Table 4.5 shows the results for the three tests. Figure 4.16 represents the
percentage of errors due to a too large buffer radius among trips belonging to the
same distance group. It confirms the relevancy of adapting the buffer radius to the
distance between GPS points.
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Test number 1 2 3

Maximum buffer radius (m) 100 50 50
Minimum buffer radius (m) 25 25 50

Number of correct matches 25 33 20

Errors :
- due to a buffer radius too big 14 4 17
- due to a buffer radius too small 4 6 5
- due to network coding 4 4 4
- due to parallel streets 3 3 3

TABLE 4.5: Tests on a sample of 50 trips with different equations for
the buffer radius

FIGURE 4.16: Distance between two consecutive GPS points
(Group1:Dd  50m, Group2: 50 < Dd  200m, Group3: Dd > 200m)

Thus, test 2 has the best results with 66% of perfect matches. 14% of trips are not
correctly matched due to wrong network coding or problems of parallel streets and
must be partly manually corrected. Therefore, at the end, 80% of correct matches can
be expected. Moreover, test 2 also offers the lowest error rate in each distance group.
Reducing to 25 m the buffer size for trips that have a distance between two GPS
points smaller than 50 m succeeds in decreasing the error ratio by 60%. Moreover,
a maximum buffer of 50 m for trips with points more than 200 m away is more
appropriate than a radius of 100 m.

Therefore, for each trip, the buffer radius presented in equation 4.2 was selected
for map-matching.

Buffer Radius (max Dd) = min(50, max(25,
max Dd

2
)) (4.2)

where Dd is the distance between two consecutive GPS point in the recorded trip.

4.3.4 Post-processing

a. Analysis of the results

The steps presented in 4.3.2 were run with the selected buffer (equation 4.2). Around
10 hours were required to match 2,711 trips. Comparing manually each route with
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the measured points is impossible due to the high number of trips. Therefore, auto-
matic checks were imagined to eliminate problematic trips. True closest node from
origin and matched origins, and true closest node from destination and matched
destination were compared. Errors due to wrong network coding or too small buffer
radius can result in a partial path that does not join origin and destination. 72% have
exactly the same origins as expected and 67% the same destinations. In total, 49%
of matched trips have correct origins and destinations. This low percentage is due
to the difficulty of identifying the routes for the first and the last meters. Bicyclists
can park their bikes in private places that are not reachable with the OpenStreetMap
network. However, the difference can be sometimes insignificant compared to the
entire trip. For example, if the true destination differs from the matched one by only
a few meters, it is reasonable to consider that the trip is correctly matched and that
the characteristics of the route will stay unchanged for the model estimation.

Trips were considered properly matched if :

• DD  10%.TripLength

• or 10%.TripLength < DD < 15%.TripLength and DD  350 m

• or 15%.TripLength < DD  20%.TripLength and DD  250 m

with DD = DDo + DDd and DDo/d is the distance between the closest node from
origin/destination and matched origin/destination. By doing so, 78% of matched
trips were considered as properly matched, which represents 2,109 trips. Figure 4.17
shows the distribution of the difference of distance for problematic trips. The trips
that have the same true and matched origin/destination are not represented in the
graph.

FIGURE 4.17: Problems at origins/ destinations
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b. Correction of errors

Because correcting manually 602 trips is unrealistic, an automatic correction of the
errors was required. Eliminating completely the errors was not possible without
applying another map-matching method, but reducing the errors was still possible.
The idea consisted of allowing matched routes to be discontinuous. Until now, if the
GPS points could not be matched on a link, the matched route was stopped at the
problematic spot without reaching the destination even if the rest of the trip could
have been identified.

The same methodology as before was applied but only to the part of the GPS
points that was not correctly matched. Thus, another shortest path was generated
and then merged with the previous one. Examples of improvements can be seen
in figure 4.18. Figure 4.19 presents in detail the methodology applied to reduce the
missing part of the matched routes. The steps were repeated twice to allow two
discontinuities in a matched route.

FIGURE 4.18: Example of reduced errors
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FIGURE 4.19: Steps performed to correct the problematic trips
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c. Analysis of the corrected trips

After automatically correcting the problematic trips, matched origins and matched
destinations were compared one more time to the theoretical ones to evaluate how
well the correction process performed. The graphs in figure 4.20 compare the dis-
tances between true and matched origin/destination before and after the correction
step. It can be observed, that the errors were significantly reduced. 253 additional
trips meet the requirements defined in 2.3.4.a..

FIGURE 4.20: Comparaison between true and matched ori-
gin/destination

Conclusion: Thus, at the end, 2,403 trips could be successfully matched, which repre-
sents 82 % of the filtered trips. The method used has the advantage of being relatively easily
implemented and straightforward. However, it is very demanding in terms of network qual-
ity. Moreover, because bicyclists have flexible behaviors and do not always respect the rules,
obtaining a perfect match was not possible. Other more advanced map-matching methods
could be used for further research. Figure 4.21 summarizes the different steps performed for
identifying the routes.
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FIGURE 4.21: Summary of the steps performed for identifying the
routes
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4.4 Choice set generation

After map-matching the routes, the choice set composition was examined in detail to
ensure consistent results and additional plausible routes were included in the choice
set.

4.4.1 Choice set checking

The first step was to analyze the composition of the choice set. To estimate a route
choice model, each cluster of similar trips must contain at least two different routes.
These checks were performed thanks to the results of the map-matching process.
Two routes are considered different if they have at least a certain number of differ-
ent links. In other words, the sum of numbers of different links between routes A
and B and between routes B and A must be bigger than a threshold. The threshold
value (17) was defined based on an empirical analysis of several routes. It must be
sufficiently high to allow small differences at the origin or destination among the
trips in the same cluster.

A statistical analysis of the cluster composition after the map-matching can be
found in table 4.6.

Median Mean Range

Number of trips per cluster 3 6.42 1-76
Number of different routes per cluster 2 2.38 1-17

TABLE 4.6: Characteristics of the clusters after map-matching

In addition to that, figure 4.22.a shows the number of different routes in each
cluster, whereas figure 4.22.b illustrates the number of matched trips that can be
used for the model according to the minimum number of different routes allowed
per cluster.

FIGURE 4.22: a: Number of routes per cluster after map-matching,
b: Trips kept according to the minimum number of routes in a cluster

Two comments can be made. Firstly, a high heterogeneity in the number of differ-
ent routes per cluster can be noticed. Secondly, some clusters do not contain enough
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different routes for model estimation but excluding them will cause an important
data loss. Therefore, additional plausible routes must be included in the choice set.

4.4.2 Enrichment of the choice set

To increase the number of different routes in each cluster, the choice set was enriched
by using the labeling method introduced by Ben-Akiva et al. (1984). It consists of
defining several objective functions and generating one path for each criterion. A
new impedance is defined for each link before searching for the shortest path. Table
4.7 summarizes the additional routes that were created.

Label Link impedance

Shortest path Length

Shortest path in the car network Length

Path minimizing grade Length ⇤ f (Grade)
with f (x) = x if x  0 and f (x) = � 1

x
otherwise

Path minimizing the number of intersections Length + 200

Path minimizing the traffic volume Length ⇤ Road Category
where Road Category = 4 for a primary
link, 3 for a secondary road, 2 for a tertiary
road,1 for path, residential or living streets

Path maximizing bike paths Length ⇤ Bicycle Facility
where Bicycle Facility = 0.2 when the link
has a bicycle facility, 1 otherwise

Path maximizing green, water areas and Length ⇤ Nice Landscape
landmarks where Nice Landscape = 0.2 when the link

has either green areas, water or landmarks
in a 100m buffer, 1 otherwise

TABLE 4.7: Labels, by default the network used is the one with all
non-private links

This process was realized on Python with the OSMnx (Boeing, 2017) and Net-
workX (Hagberg et al., 2008) packages. Except for the shortest paths in the car
network and the paths minimizing grades, the network used contains all the non-
private links of OpenStreetMap. Unlike map-matching, the unidirectionality of roads
is taken into account to ensure the respect of traffic regulations. The elevation was
obtained by using Google Maps Elevation API (GoogleMaps, 2019). The elevation
could be obtained only for the driving nodes, which explains why the car network
was used for generating the path minimizing grades and not the entire network.
Route origin and route destination correspond respectively to the centroid of the
cluster origin and the centroid of the cluster destination. At the end, 7 new routes
were created for each cluster. Some may be identical or already included in the data-
driven choice set.
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Figure 4.23 shows the number of different routes for the enriched choice set and
table 4.8 presents a statistical analysis of the cluster composition.

FIGURE 4.23: Number of routes per cluster after enrichment of the
choice set

Median Mean Range

Number of trips per cluster 10 13.4 8- 83
Number of different routes per cluster 7 7.22 1-24

TABLE 4.8: Characteristics of the clusters after enrichment of the
choice set

Thus, the labeling method succeeded in introducing additional routes in the
choice set. In average, there are 7 different routes between each OD pair. Two clus-
ter contained only one route and were removed. At the end, 2,362 trips remains to
estimate a model.
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4.5 Attribute creation

This section presents the selected attributes for the model estimation. The choice of
the attributes to characterize each route were based both on the existing literature
on bicycle route choice and on the particularities of Amiens. A field trip was done
on the 19th and 20th of October in Amiens to help selecting relevant attributes.

4.5.1 Case study analysis

Attributes for the model estimation should take the characteristics of Amiens into ac-
count. The following part investigates the possible factors influencing bicycle route
choice in Amiens. Four main areas are explored: traffic volume, intersections, bike
facilities, and the land-use.

a. Traffic volume

Firstly, an emphasis was put on traffic analysis. In Amiens, car is by far the dominant
mode. In 2010, 56% of all trips were made by car (Pays du Grand Amiénois, 2013).
This high mode share generates an important traffic in the city. As suggested by
many authors, traffic volume plays an important role in bicycle route choice. In
Amiens, the road network has a radial pattern and four concentric roads structure
the territory. The bigger circular road called Rocade forms a bypass around the city.
However, the bypass does not fulfill entirely its function consisting in absorbing
the traffic outside the city centre (fig. 4.24) because the western part of the bypass
(A16) is charged. This causes a high traffic inside because the drivers tend to avoid
the charged section of the bypass. Two times less vehicles are counted on this part.
Consequently, some streets allowing crossing the city record a high average annual
daily traffic of more than 20 000 cars (Amiens Métropole, 2013).

FIGURE 4.24: a: Traffic map translated from Amiens Métropole
(2013), b: OpenStreetMap road network (2019)

Thus, traffic volume is an important parameter for Amiens. In this study, the traf-
fic volume information was included by considering the OpenStreetMap hierarchy.

Timothée Charmeil�
Figure removed due to possible copyright infringements
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As shown in figure 4.24, the different categories are comparable. Considering the
road type has the advantage of being easily reproductible in other locations where
traffic volume data are not available.

b. Intersections

Moreover, many large intersections were observed, where turning left can be partic-
ularly complicated for cyclists (figure 4.25). Bike markings at pedestrian crossings
were installed at some places but these imply waiting several traffic signals to turn
left. This safety issue at intersections were also particularly deplored in the online
cycling survey (Fédération française des Usagers de la Bicyclette, 2018) as shown in
figures 4.26.

FIGURE 4.25: Example of large intersection in Amiens

FIGURE 4.26: Category concerning safety (Fédération française des
Usagers de la Bicyclette, 2018)

c. Bicycle facilities

During the field visit, particular attention was also paid to cycling infrastructures.
In Amiens, cycling network is highly discontinuous and in many places confusing.
It is composed above all of bike lanes that are not separated from the traffic. Very
few bike paths were observed and there are most of the time located along the river
and have above all a recreational purpose. There are two common types of bike
lanes in Amiens, either shared with cars or with buses. Another very common type
of infrastructures are contraflow bike lanes. These are bike lanes that can be taken
in the opposite direction by bicyclists (figure 4.27). Contraflow bike lanes enable
many shortcuts. However, they create additional conflict situation with cars at in-
tersections. Reaching these links may be very difficult and dangerous for cyclists,
especially when they require crossing car lanes. Some colorful parts were installed
to overcome this issue but are not yet widespread everywhere.

Thus, three attributes regarding cycling infrastructures were included in the study:
the proportion of bike path, bike lane and contraflow bike lanes. For this, data from

Timothée Charmeil�
Figure removed due to possible copyright infringements
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FIGURE 4.27: a: bike lane shared with car, b: with bus, c: contraflow
bike lane

FIGURE 4.28: Conflicts at intersections due to contraflow bike lanes

GeoVelo (2019) were used and are shown in figure 4.29. For easiness, the current
cycling network of 2019 was considered and the changes made in the network are
neglected.

FIGURE 4.29: Cycling facilities (GeoVelo, 2019)
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d. Land-use

Finally, the visit of Amiens helped to quantitatively translate the notion of pleasant
landscape. Three main pleasant type of land-use were identified: water areas, green
areas and the pedestrian city center (figures 4.30 and 4.31).

Firstly, the field trip revealed that the areas closed to water were especially attrac-
tive. Amiens is crossed by the river Somme and the network of canals has always
been an important asset for the city. It led to the construction of textile mills and
the installation of draperies and dyes. The textile industry was the main activity of
the city until the 20th century. Today, the canals of Amiens and especially the dis-
trict Saint Leu with its colorful houses and its numerous restaurants are the historical
heart of Amiens. Thus, including the presence of water seems relevant for our study.

Amiens is also famous for its green areas and especially for the hortillonages
(floating gardens), located the east of the city and and in the neighboring munic-
ipalities. These are 300 hectares of marshland surrounded by a grid network of
man-made canals. These market gardens have been cultivated since the middle age.
Today only 7 market gardeners remain, the rest of the area is own for leisure pur-
poses. These market gardens have been cultivated since the middle age. A long path
called Chemin de Hallage is running along the hortillonage and is especially appre-
ciated by cyclists and pedestrian. Several other green areas are spread throughout
the cities.

Finally, a last important element concerning the land-use can be mentioned.
There is a large pedestrian zone in the city center of Amiens, where cyclists are
also allowed to ride.

FIGURE 4.30: Land-use of Amiens
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FIGURE 4.31: Example of green and water areas in Amiens

4.5.2 Considered attributes

Given the particularities of Amiens, the existing literature and the available data,
the attributes in table 4.9 were investigated. In addition to these attributes, more
detailed factors were tested such as the proportion of a given type of road with and
without bike path and the proportion of minor road taken in the opposite direction.

Timothée Charmeil�
Figure removed due to possible copyright infringements
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Variables Description

ROAD NETWORK ATTRIBUTES

Length Length of the trip (in km)

Cycling facilities (GeoVelo, 2019)
Proportion of bike paths Proportion of route on off-street bike path, separated from the

traffic
Proportion of bike lanes Proportion of route on an on-street lane, dedicated for bicycles

and marked with paint or on shared bus lane
Proportion of contraflow bike lanes Proportion of route on on-road painted lane added to one-way

street to allow cycling in the opposite direction of all other traffic

Proportion of link types (OpenStreetMap contributors, 2019)
Proportion of primary roads Major roads intended to provide large-scale transport links

within or between areas
Proportion of secondary roads Roads supplementing main roads, usually wide enough and suit-

able for two-way
Proportion of minor roads Residential roads or unclassified roads
Proportion of pedestrian street Proportion of route on pedestrian streets

Traffic signals density (OpenStreetMap contributors, 2019)
Traffic signals Number of traffic signals per km
Intersections Number of intersections per km
Crossings Number of pedestrian crossings per km
Roundabouts Number of roundabouts per km
Left turn Number of turning movements per km at an angle between 60�

and 179�

Comfort
Gradient Maximum or mean gradient on the route from Google Elevation

Model

LAND-USE ATTRIBUTES (OpenStreetMap contributors, 2019)

Design
Trees Number of trees per km in 25m buffers
Green Areas Proportion of green areas in 50m buffers, including parks, forests

and allotments
Water Proportion of water in 50m buffers, including rivers, wetlands

and lakes
Bridge Number of bridges per km
Landmarks Number of landmarks per km in 50m buffers, including churches,

memorial, monuments and museums.

Density
Amenities Number of amenities per km in 25m buffers (bakery, restaurant,

shop, theater, school ...)
Buildings Proportion of buildings in 100m buffers

TABLE 4.9: Considered attributes
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Different sizes of buffers were used to calculate the land-use attributes. A small
buffer of 25m was used for characteristics that are expected to influence the per-
ception of a route if they are located really close to the road (amenities, trees) and
a bigger buffer of 100m for other areas like green or water areas that can be seen
from further away. Table 4.10 summarizes the different steps performed to calculate
the attributes. Most of them required the use of buffers, intersections and counting
functions in QGIS. R was used for some additional operations.

Variables Methodology

Road network attributes
Link types Intersection between routes and network edges (QGIS)

Node attributes Intersection between routes and network nodes (QGIS)

Turning Left - Extract vertices (to identify the order of nodes) (QGIS)
- Calculate angle between two consecutive nodes (R)
- Calculate angle between two consecutive links (R)

Grade - Extract vertices (to identify the order of nodes) (QGIS)
- Intersection with network nodes (QGIS)
- Calculate gradients (R)

Contraflow links - Extract vertices (QGIS)
- Intersection with network nodes (QGIS)
- Identify direction taken (R)

Land-use attributes
Amenities, Landmarks - Create Buffer around routes

- Count points in polygon (QGIS)

Green, Water, Building - Create Buffer around routes
- Intersection between green, water or buildings and
buffers
- Calculate areas (QGIS)

TABLE 4.10: Methodology for attribute creation
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4.6 Model estimation

Multinomial logit models were estimated using mlogit package (Croissant, 2019) in
R. As mentioned in the literature review in part 2.3, a path-size logit factor (PS) can
be included in the utility of a path to take the correlation among alternatives into
account. The probability of choosing route k is defined by equation 4.3.

Pk =
exp(Vk + ln PSk)

Âi2C PSi exp(Vi + ln PSi)
(4.3)

where C is the choice set of paths, Vk and Vi are the deterministic utilities of routes k
and i, respectively. Vk can be written as b.X, where X is a vector of route attributes
and b a vector of coefficients to be estimated. Their values should maximize the like-
lihood that the process described by the model produced the data that were actually
observed.

The path-size factor was calculated for each different route in R with equation
4.4 proposed by Ben-Akiva and Bierlaire (1999).

PSk = Â
a2Gk

la

Lk

1

Âi2C dai
L⇤

C
Li

(4.4)

with Gk the set of links in route k, la length of link a, Lk length of route k and L⇤
C the

length of the shortest path in C. dai is one if link a is part of path i and zero otherwise.
It reduces the utility of overlapping alternatives.

Before estimating a model, a correlation analysis was performed on the data.
In discrete choice modeling, high correlations between attributes must be avoided.
Thus, if two attributes were highly correlated, only one of them was kept in the
model estimation. All attributes were first included in the model estimation and
insignificant or correlated attributes were removed step-by-step based on the log
likelihood, p-values and AIC. The last indicator refers to the Akaike information
criterion and includes a penalty that is an increasing function of the number of es-
timated parameters. It aims to avoid overfitting. The model results estimated with
2,362 trips are presented in chapter 5.
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Chapter 5

Analysis and discussion

This chapter presents the results of this study. First of all, part 5.1 analyzes how
the actual routes differ from the shortest paths. Then, a discrete choice model is
estimated in part 5.2 to better understand the influence of each attribute. Finally, the
results are discussed and compared with other bicycle studies found in the literature
in section 5.2.3.

5.1 Comparison between the actual and the shortest paths

5.1.1 Trip Distance

Trip distance statistics are summarized in table 5.1 and present the comparison be-
tween actual routes and shortest routes generated in a car network. T-test is applied
to see if the actual routes lengths are significantly different from the shortest ones.
T-test relies on the assumption that both samples are random, independent, and
normally distributed with unknown but equal variances. The results below show a
p-value < 2.2e-16 supporting the alternative hypothesis that true difference in means
is not equal to 0 and that the route lengths are significantly different. The route ac-
tually taken was on average 0.89 km longer than the modeled shortest route [95%
confidence interval (CI): 0.75 to 1.0].

Route Median Mean Range Standard Mean 95% CI P-value
Deviation (SD) Difference

Actual route 3.6 4.3 0.37-16 2.8 0.89 0.75-1.0 < 2.2e-16
Shortest route 3.1 3.4 0.087-10 2.0

TABLE 5.1: Distances of shortest and actual routes (in km)

The ratio of actual trip distance to shortest trip distance is shown in figure 5.1.
This ratio can be interpreted as a detour factor. In other words, a ratio higher than
1 occurs when bicyclists use a path longer than the shortest one. A ratio smaller
than 1 results from the use of sidewalks, streets in the opposite direction or informal
shortcuts. The average ratio is 1.34 which means the actual trip was on average 134%
of the distance of the computer-generated shortest path (table 5.2).

Moreover, it is also interesting to mention that the modeled shortest route in a car
network is on average 0.34 km longer than the observed shortest route (95% CI: 0.22
to 0.45). However, this study used the model shortest route and not the observed
shortest path as a reference route, because it provides a fixed comparaison point
that does not depend on the collected dataset and for which the traffic regulations
are respected.
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FIGURE 5.1: Shortest path ratio

Median Mean Range SD 95% CI

Detour factor 1.2 1.3 0.32-9.5 0.55 1.32-1.36

TABLE 5.2: Analysis of the detour factor (ratio of actual route and the
shortest route

Thus, an important willingness for detours can be observed in the data. This
trend was also observed in other studies. However, the deviation from the shortest
path observed in Amiens (1.34) is significantly higher than in the literature (1.09
in Winters et al. (2010), 1.11 in Broach et al. (2012)). The reasons for detours can be
multiple, including the lack of acceptable infrastructures in the area or the preference
for a given land-use type. The following section aims at investigating the possible
explanatory factors for such detours.

5.1.2 Road attributes

Table 5.3 shows the comparison between the means of the attributes for the actual
and the shortest route.

The results clearly highlight the preferences for bike facilities. Whereas the short-
est route in a car network predicted that 18% of the trip is along bike facilities, the
actual route is at 25% along bike paths, bike lanes or contraflow bike paths (95%
confidence interval for the mean difference: 6.5% to 8.7%). Another important dif-
ference was in the appeal for low traffic streets. Thus, actual bike trips had signifi-
cantly less proportion along primary ( -4.1% to - 2.5% with a 95% confidence level)
and secondary roads (-13% to - 10% with a 95% confidence level) than predicted
by shortest-route models and significantly more along pedestrian streets (+8.5% to
+9.9% with a 95% confidence level). Moreover, the results show that cyclists tend
to choose routes with fewer intersections (signalized, non-signalized, roundabouts)
and turning left movements than in the shortest routes.
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Attributes Actual Route Shortest route T-test
SD mean mean p-value

propBikePath 0.086 3.6% 1% ***
propBikeLane 0.16 17% 15% ***
propContraflowBikeLane 0.058 4.9% 0.0% ***

propPrimaryRoad 0.11 4.9% 8.2% ***
propSecondaryRoad 0.19 15% 26% ***
propMinorRoad 0.26 53% 53%
propPedestrianStreet 0.17 9.2% 0.0% ***

nbSignalsPerKm 0.86 0.95 5.8 ***
nbIntersectionsPerKm 3.9 12 41 ***
nbCrossingsPerKm 1.2 1.0 3.2 ***
nbRoundaboutsPerKm 0.37 0.20 0.67 ***
nbLeftTurnsPerKm 0.59 2.4 1.9 ***

maxGrade 0.025 5.0% 5.9 % ***
meanGrade 0.012 -0.014% 0.037 % .

TABLE 5.3: Comparison between the actual and the shortest route
significance level p: <0.0001 ’***’, <0.001 ’**’, <0.01 ’*’, <0.05 ’.’ , <1 ’ ’

5.1.3 Land-use attributes

Concerning the land-use characteristics, seven attributes were evaluated but five
from them show significant differences between the actual and the shortest routes
(table 5.4). A higher proportion of green, water, bridges and denser areas are pre-
ferred. However, the number of trees along the road shows surprising results with a
smaller proportion for actual routes than for shortest routes but the mean values are
very small in both cases.

Attributes Actual Route Shortest route T-test
SD mean mean p-value

nbTreesPerKm 2.7 1.6 2.3 ***
propGreen 0.060 4.9% 4.0% ***
propWater 0.042 2.0% 1.5 % ***
nbBridgesPerKm 0.00058 0.00044 0.00021 ***
nbSightsPerKm 0.36 0.32 0.34
nbAmenitiesPerKm 20 18 18
propBuildings 0.10 30% 29% ***

TABLE 5.4: Comparison between the actual and the shortest route
significance level p: <0.0001 ’***’, <0.001 ’**’, <0.01 ’*’, <0.05 ’.’ , <1 ’ ’

Thus, a first analysis comparing the observed routes with the shortest route al-
ready give some insights about how cyclists choose their routes. However, a more
detailed analysis is required to understand the influence of each parameter. For this,
a discrete choice model is estimated in the next section.
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5.2 Discrete choice model

The results of the discrete choice models are presented in this section. They are
discussed and compared with other studies.

5.2.1 Correlation analysis

The correlation matrix is presented in figure 5.2. Positive correlations are displayed
in blue and negative correlations in red. The intensity of the color and the size of the
circles are proportional to the correlation coefficients.

FIGURE 5.2: Correlation between the attributes

Several groups of attributes presenting a correlation higher than 0.5 are identi-
fied. The attributes in italics have a correlation coefficient between 0.5 and 0.6.

• Group 1: Proportion of pedestrian streets + Number of amenities per km +
Proportion of buildings + Number of landmarks per km

Correlation among the variables of group 1 is easily understandable. It can be ex-
plained by the concentration of amenities, buildings, and sights in the city center,
where many of the streets are reserved for pedestrians or bicyclists (figure 5.3).
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FIGURE 5.3: City center with pedestrian streets and a high number of
amenities and sightseeings

• Group 2: Number of traffic signals + Number of intersections + Number of
crossings

The number of traffic signals is highly correlated with the number of intersections
(0.80). Another trial was done by replacing the number of intersection by the num-
ber of intersections without traffic signals, but the correlation value remains high
(0.71). Thus, routes with many non-signalized intersections tend to have many traf-
fic signals as well. Finally, the proportion of water along the route and the number of
bridges crossed on the one hand and maximum and mean grade on the other hand
are as expected highly correlated.

• Group 3: Proportion of water + Number of bridges per km

• Group 4: Mean grade + Max grade

Finally, the proportion of water along the route and the number of bridges crossed
on the one hand and maximum and mean grade on the other hand are, as expected,
highly correlated. To overcome this issue, only one attribute of each group was kept.
Only the group concerning the intersections had a different treatment because the
number of intersections with and without traffic signals provides different informa-
tion. It was decided to keep the number of intersections without traffic signals in the
model but to add an interaction term with the number of traffic signals. Different
combinations were tested to choose the model with the highest log-likelihood and
the highest significance of the coefficients.

5.2.2 Model results

The best path-size logit model in terms of significance of the coefficients, sign co-
herence and log-likelihood is shown in table 5.5. The coefficient associated with the
logarithm of the path size variable has as expected a negative sign to decrease the
utility of similar alternatives. It corrects for route overlap.
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Attributes Estimate Std. Error z-value p-value

length (km) -0.181 0.0374 -4.844 1.28e-6 ***
propBikeLane 0.632 0.201 3.148 1.65e-3 **
propContraflowBikeLane 8.08 0.651 12.4 < 2.2e-16 ***

propPrimaryRoad -2.02 0.316 -6.39 1.65e-10 ***

nbIntersectionsNoSignalsPerKm -0.0695 0.00989 -7.03 2.12e-12 ***
nbIntersectionsNoSignals*nbSignals -0.0237 0.00288 -8.15 4.44e-16 ***
nbLeftTurnsPerKm -0.566 0.0633 -8.95 < 2.2e-16 ***

meanGradeInPercent -0.131 0.0423 -3.10 1.95e-3 **

propWater 6.09 1.06 -5.74 9.24e-09 ***
propGreen>36% 2.44 0.982 2.49 1.29e-2 *
nbAmenitiesPerKm 0.0147 0.00302 4.87 1.09e-06 ***

log(path-size) -1.03 0.0771 -13.5 < 2.2e-16 ***

TABLE 5.5: Model estimation
significance level p: <0.0001 ’***’, <0.001 ’**’, <0.01 ’*’, <0.05 ’.’ , <1 ’ ’

Log-Likelihood: -3916, AIC: 7855

All parameters estimated have the expected sign. Cyclists prefer shorter routes
with fewer intersections and fewer turning left movements. They are also highly
put off by important slopes and prefer to ride on bike lanes. Contraflow bike lanes
are especially attractive for cyclists in Amiens. Finally, in terms of land-use, the
number of amenities along the route and the proportion of route along the river are
important parameters that influence positively the route choice.

5.2.3 Analysis of the coefficients

a. Trip length

Trip length is as expected negative, on average cyclists prefer to ride on shorter
routes. However, the disutility of riding one additional kilometer is rather low com-
pared to other studies (Menghini et al., 2010, Hood et al., 2011, Broach et al., 2012).
Ton et al. (2018) explained that data-driven choice sets provide lower parameters
than link elimination methods or labeling approaches. The reason is the lower vari-
ability in the choice set because no irrelevant routes are included. All the routes were
selected at least once. The absence of unrealistic route with very high distances can
cause a lower model fit and lower parameter values. For example, Ton et al. obtained
a coefficient for the distance 1.5 times higher in absolute value for link-elimination
choice set and 8.2 times more for the labeling method. In our case, a data-driven
approach was combined with a labeling method but despite the enrichment of the
choice set, the parameters estimated remain low. The coefficient for trip length in
this study (-0.18) is of the same order of magnitude of the one obtained by Ton et al.
(2018) (-0.23) in their data-driven study.
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b. Road attributes

There are different types of bike facilities in Amiens : bike lanes shared with cars or
with buses, contraflow bike lanes and bike paths (figure 5.4).

FIGURE 5.4: a: bike lane, b: contraflow bike lane, c: bike path

Bike facilities are all associated with positive signs, showing that cyclists prefer
routes with more bicycle facilities. The variable related to the proportion of route
on a bike path was not found significant. This can probably be due to the relatively
small amount of bicycle paths in Amiens that are reserved for bicycles and separated
from the traffic. On the contrary, contraflow bike lanes and normal bike lanes are
significant parameters to explain the route choice. Contraflow bike lanes are espe-
cially attractive and are even associated with a higher coefficient than traditional
bike lanes. Contraflow bike lanes are 13 times more attractive than normal bike
lanes. This result might seem surprising at first sight but is easily understandable by
the important advantages of such facilities. They allow cyclists to use streets in the
opposite direction and provide important shortcuts in the city center where most of
the roads are one-lane streets. The presence of contraflow bike lanes is one of the
main strategies of the cycling plan of the municipality to encourage cycling. This
result is also consistent with the choice set composition. All the new routes added
to the data-driven choice set were generated with a network respecting the street
directionality, and only the chosen route could use streets in the opposite direction.
It explains the significantly high parameter estimate for contraflow bike lanes.

Concerning the road type, three attributes were tested: the proportion of pri-
mary, secondary or minor road (figure 5.5). Only the parameter associated with the
proportion of primary roads was significant and has a negative sign. It proves that
this road type with high traffic volume and many lanes are avoided by cyclists. The
current model shows that to compensate for one additional percent on a primary
road, 3.2 percent needs to be traveled on a bike lane or 0.25 on a contraflow bike
lane. The proportions of minor roads and secondary roads were not significant.
Concerning the minor roads, the non-significance of the parameter can be due to
the high proportion of residential streets in Amiens. The differences in means for
the observed paths and the shortest paths were also not significant when applying a
t-test in the previous section. On average, 53 % of the observed routes are on minor
roads and the standard deviation is relatively small (0.26). Thus, it is not a decisive
criterion for route choice in Amiens. It would have been interested to have access
to traffic volume data to enable a better and more precise distinction between the
different streets of Amiens. Moreover, other more detailed parameters were tested

Timothée Charmeil�
Figure removed due to possible copyright infringements
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such as the proportion of a given link type with and without bike facilities in order to
investigate the impact of bike facilities according to the link type but the results were
not significant. A bigger data set is necessary to perform such a detailed analysis.

FIGURE 5.5: a: primary road, b: secondary road, b: minor road

Finally, the coefficient associated with the number of intersections without traf-
fic signals was highly negative indicating that cyclists prefer routes with long streets
and fewer conflict points. Turning left at an intersection is perceived 8.1 times more
painful than crossing a junction without traffic signal. The number of traffic signals
was included as an interaction term with the number of intersection without traffic
signals. The negative coefficient shows that bicyclist try to avoid routes with many
intersection with and without traffic signals.

The slope also affects the way cyclists perceive the route. Several parameters
were tested for the gradient: the maximum gradient, the mean gradient, and the
mean up-slope. The mean gradient showed higher significance and a negative sign
as expected. Cyclists are highly discouraged by important grades.

c. Land-use attributes

After eliminating the non-significant and highly correlated attributes, four param-
eters concerning the land-use remain: the proportion of water, the proportion of
green along the route and the number of amenities per kilometers. The first variable
indicates that routes along water are very attractive. This result is not surprising
given the characteristics of Amiens. Amiens is crossed by the river Somme and the
river is an important part of its identity. Many streets run along the river and offer a
pleasant perspective on the Somme.

The second attributes related to the proportion of green along the route showed,
first of all, a surprising result with a negative sign. It meant that routes along green
areas are less attractive. This result was not in line with previous studies (Chen et
al., 2018, Ghanayim and Bekhor, 2018). Therefore, the definition of this attribute
was slightly changed. The variable was set to 0 when the proportion of green was
less than 36%. This percentage was the lowest value that results in an estimated
parameter with a consistant sign and a good significance. With this variable, it is
considered that green areas have a significant influence only when the proportion
along the road is high. This variable definition is consistent with the characteristics
of Amiens. There is a big heterogeneity in the park sizes. In the city center, most of

Timothée Charmeil�
Figure removed due to possible copyright infringements
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green areas consist of small parks distributed everywhere. Due to their small size,
going along them does not probably worth the detour. However, bigger parks like
les hortillonages (at the east of the city) and Parc-Saint Pierre at the west may be
very attractive. This new variable definition was a success and a positive sign was
obtained for the proportion of green areas along the route. It was obtained that going
1% along green areas is 2.5 times less attractive than going 1% along water.

Finally, the number of amenities per kilometer shows a positive sign, which in-
dicates that dense areas with many shops and restaurants are very attractive. This
parameter among the correlation group 1 with the proportion of buildings, the pro-
portion of pedestrian streets and the number of landmarks is the one that showed
the higher significance and the highest likelihood for the resulting model. 7.4 ameni-
ties per km can compensate for one intersection.

5.2.4 Analysis of marginal rates of substitution

a. Marginal rates of substitution

In this part, the model coefficients are first compared with each other. The equiv-
alent percent changes of different attributes that are obtained when the trip length
is increased by one kilometer are calculated in 5.6. For example, it was found that
the disutility of one additional kilometer can be compensated if 29% of the route is
ride on a bike lane. However, the effects of an additional kilometer must be studied
carefully because if a cyclist ride an extra kilometer, the proportion of route on the
different type of links can change too, as well as the number of a given facility per
kilometer. This issue appears because the attributes are divided by length for the
model estimation. Nevertheless, to facilitate the interpretation of the results, it is
considered in the following that the other attributes remain unchanged.

Table 5.6 also shows additional marginal rate of substitution (MRS) when the
number of intersections or the proportion of primary road is increased by one unit.
For example, the model predicts that the disutility of 1% on a primary road can be
compensated by 3.2% on a bike lane and one additional intersection per kilometer
can be compensated by 11% on a bike lane.

MRS Present study
blength

bpropBikeLane
[%/km] -28.7

blength
bpropContra f lowBikeLane

[%/km] -2.24

blength
bpropPrimaryRoad

[%/km] 8.97

blength
bnbIntersectionsNoSignalsPerKm

[1/km /km] 2.61

blength
bnbLe f tTurnsPerKm

[1/km /km] 0.320

blength
bmeanGrade

[%/km] 1.38

blength
bnbAmenitiesPerKm

[1/km /km] -12.3

MRS Present study
bpropPrimaryRoad

bpropBikeLane
[-] -3.20

bpropPrimaryRoad
bpropContra f lowBikeLane

[-] -0.250

bnbIntersectionsNoSignalsPerKm
bnbAmenitiesPerKm

[-] -7.43

bnbIntersectionsNoSignalsPerKm
bnbLe f tTurnsPerKm

[-] 0.123

bnbIntersectionsNoSignalsPerKm
bpropBikeLane

[% / (1/km)] -11.0

bnbIntersectionsNoSignalsPerKm
bnbAmenitiesPerKm

[-] -4.71
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TABLE 5.6: Marginal rates of substitution

b. Comparison with other studies

Then, the results are compared with other bicycle studies in figure 5.7. Trade-off
values between the trip length and the proportion of route on a bike facility vary a
lot in the different studies found in the literature. The MRS obtained by Hood et al.
(2011) is 52 times higher than in Casello and Usyukov (2014). In the present study,
the trade-off value between distance and bike lane (-22) is closed to the average
value found in the literature (-30). These important differences in model estimations
show that the parameters highly depend on the location of the case study and on the
choice set.
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blength
bpropBikeLane

[%/km] -22 -78 -4.2 -1.5 -36

blength
bpropBikePath

[%/km] -2.3 -89 -3.1

blength
bpropContra f lowBikeLane

[%/km] -1.7

TABLE 5.7: Comparisons of marginal rates of substitution

Other parameters commonly included in the literature are traffic volume and
gradient. Traffic volume was not directly included in our study because of a lack of
data and was replaced by the road hierarchy of OpenStreetMap that gives an indica-
tion about the traffic but it prevents the comparison with other studies. In the litera-
ture, grades are considered with various forms: mean gradient, maximum gradient,
average up-slope or as a categorical variable. The trend observed is consistent with
our observations: cyclists prefer to avoid important slopes but a more detailed com-
parison of coefficients among studies is delicate due to the different type of gradient
variables included in models and the different topographies among case studies.

For the rest of the parameters, only Chen et al. (2018) included such a large vari-
ety of land-use variables. Our results are coherent with their study in terms of sign
coefficients. More other studies including land-use parameters are required to com-
pare the results, but as for the slope, the land-use is extremely dependent from the
city characteristics and comparisons between models are difficult.
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5.2.5 Limitation: overrepresentation of trips

Some routes are included many times in the dataset. On average a route is repeated
2.7 times and the maximum number of repetitions is 51. In total, 14 routes are re-
peated more than 20 times. An overrepresentation of one route selected by the same
user is problematic because the estimated model will be highly influenced by the at-
tribute characteristics of the chosen route. However, because of data privacy, it was
not possible to identify if the repeated trips were done by the same person. Never-
theless, analyzing the socio demographic data and the time of the trips could help to
make a hypothesis on the number of travelers that made these repeated trips. This
analysis revealed that 9 out of 14 routes with more than 20 trips seem to come from
the same users.

Several attempts have been made to solve this problem but without achieving
satisfactory results. The idea was to reduce the weight of the overrepresented trips.
Trips repeated more than 15 times were investigated in detail and a hypothesis was
made on the number of different persons that traveled. This hypothesis was based
on two elements: the socio-demographic data, when they were provided, and the
time of the trips. For example, if all the repeated trips were done by persons with the
same date of birth, it is very likely that they were done by a single person. However,
It is impossible to analyze all the trips in detail and defining weights and thresholds
are arbitrary decisions. This method added a certain level of uncertainty and was
not improving the model. Thus, the overrepresentation of certain persons is one of
the limitations of this study but is difficult to control without a person ID.
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Chapter 6

Conclusion

6.1 Main contributions

This thesis presents the findings of a bicycle route choice model estimated for the
city of Amiens. The objective was to investigate the effects of the built environment
on bicyclists’ preferences. It succeeds in evaluating the impacts of a variety of land-
use characteristics in addition to the commonly included road features. Thus, green,
water areas and amenities along the route are shown to be attractive for bicyclists.
In terms of methodology, this study adopted an innovative approach with a data-
driven method to generate the choice set, as proposed recently by Ton et al. (2017). It
is a very promising method because it gathers real, observed routes between a given
origin-destination pair and does not require an artificial enumeration of possible
paths. In this study, the choice set was enriched with labeled routes (Ben-Akiva
et al., 1984). By doing so, limitations of both techniques can be overcome: the low
variability of the data-driven method due to the relatively limited number of cyclists
that took part in the challenge, and the low number of labeled routes due to the
difficulty of defining relevant objective functions. Another particularity of this study
is the data source for the attribute calculation. All the considered attributes come
from an open-data source, mainly OpenStreetMap. Therefore, the methodology can
easily be reproduced in other cities.

6.2 Limitations and further research

However, the model is based on several assumptions and the different steps of the
methodology have important limitations that will require further research.

Firstly, concerning the data filtering process, the study focuses on trips within
Amiens but to decrease the data loss, trips that were at least 70% within Amiens were
also kept. They were cut at the city boundary and included in the model. By doing
so, it was assumed that the route choice for 70 % of the trip does not significantly
differ from the choice for the entire route. A second assumption was made during
the clustering of trips with similar origin-destination pairs. It was considered that
small differences at the origin and the destination only have a minor impact on the
resulting route attributes.

Secondly, the map-matching process also had some limitations. The method,
which consists of searching for the shortest path in a subnetwork, provides good
results but is very demanding in terms of network quality. However, bicyclists have
a flexible behavior and the digital network representation does not take this into
account. This issue led to an important data loss: 18% of the filtered data were
not properly matched. Further research on how the network could be adapted to
bicyclists, especially by a data-driven method, is an interesting area of investigation.
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For the choice set generation, another important limitation is the overrepresen-
tation of certain persons in the data. As the trips were not linked by a person ID,
correcting for this issue is difficult and future research on another dataset that in-
cludes this information is necessary.

Concerning the attribute creation, several aspects can be mentioned. First of all,
changes in Amiens network from 2016 to 2019 were not taken into account in this
thesis due to the time constraints of this project. Furthermore, it would be interest-
ing to include other variables in the model, such as socio-demographic characteris-
tics, road pavement, road width and the number of lanes. Unfortunately, the socio-
demographic variables were not available for all the trips and considering only those
trips would have caused an important data loss. Moreover, in Amiens, many land-
use attributes such as the number of landmarks, the proportion of buildings, and
the proportion of pedestrian areas were highly correlated and it was not possible to
estimate their effects. A model estimation in another city may provide additional
results.

Finally, the discrete choice model was based on a multinomial logit formulation
with a path-size factor. This additional term is not able to capture all the correlation
among alternatives, more complex models, such as the cross-nested logit model or a
multinomial probit model, could be estimated in further research. The recently de-
veloped recursive logit model that does not require generating the choice set would
also be interesting to consider but is very computationally expensive.

6.3 Recommendations

Despite these limitations, the estimated model provides significant insights into the
preferences of bicyclists for choosing their route. The model can be used by the mu-
nicipality to improve the existing infrastructures. Based on the results, cyclists pre-
fer bicycle facilities and avoid streets with high traffic. In addition, contraflow bike
lanes that allow cyclists to ride in the opposite direction are especially attractive be-
cause they offer shortcuts. Therefore, the efforts of the municipality towards bike
facilities must be continued. Creating these facilities along green and water areas or
in the historical center, where many amenities are concentrated, is relevant. Another
important aspect affecting bicycle route choice are intersections, they have a very
negative impact. In Amiens, there are many large intersections, making it difficult or
cyclists to cross and turn left. Moreover, intersections linking contraflow bike lanes
require special attention. For example, colorful painting on the road could be gen-
eralized to enable bicyclists to reach and leave safely these contraflow links. Thus,
this study has highlighted several actions that could be taken by the municipality to
improve cycling conditions in Amiens. Adapting the road network to bicycle users
is a huge opportunity to create a more sustainable transportation system.
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