
TECHNICAL UNIVERSITY OF MUNICH

Optimization of Driver Shift (and Break)
Schedule using Simulated Annealing in

Ride-Pooling Services

Master Thesis

Submitted in partial fulfillment of
the requirements for the degree of

Master of Science,
Transportation Systems

by
Shivam Arora

Academic Supervisor: Qin Zhang
Professorship for Modelling Spatial Mobility

Technical University of Munich

External Advisor: Nico Kühnel
MOIA GmbH, Berlin, Germany

December 23, 2021

Contents

Acknowledgments iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 3
1.3 Research Question . 6
1.4 Thesis Overview . 7

2 Literature Review 8
2.1 Ride-pooling and its challenges . 8
2.2 Employee Scheduling Problem . 10
2.3 Shift Design Problem with Breaks . 12
2.4 Heuristics . 14
2.5 Simulated Annealing . 16

3 Methodology 18
3.1 Study Area . 21
3.2 Travel Demand - submitted requests per hour 22
3.3 Travel Supply (Shift Plan) - active shifts per hour 23
3.4 Shifts and Breaks . 24

3.4.1 Shift . 24
3.4.2 Break . 26

3.5 Travel Price - rejections per hour . 27
3.6 Simulated Annealing . 28
3.7 Encoding . 33
3.8 Initial Solution . 36

i

Chapter 0 – CONTENTS CONTENTS

3.9 Temperate and Cooling Schedules . 37
3.9.1 Temperature . 37
3.9.2 Cooling Schedules . 37

3.10 Objective Function - cost of solution . 41
3.11 Constraints . 43

3.11.1 Hard Constraints . 43
3.11.2 Soft Constraints . 45

3.12 Perturbation Strategies . 47

4 Results 56
4.1 Configuration Parameters . 57

4.1.1 Algorithm Specific Parameters . 57
4.1.2 Objective Function Parameters . 59
4.1.3 Perturbation Strategy Parameters 59

4.2 Model Evaluation Procedure . 63
4.3 Sub-Model Configuration and Description 64
4.4 Findings . 69

5 Conclusion 72
5.1 Model Limitations . 73
5.2 Future Work . 75

References 80
*

ii

Acknowledgments

This year, 2021, has been an exciting time of intellectual growth and rewarding, with many
learning opportunities for me. It has been a busy year, not just with professional or academic
pursuits but also with personal commitments. Despite the challenges, I would like to take
this opportunity to thank everyone who helped me complete these projects for their generous
contributions.

First of all, I would like to express my sincere gratitude to my external advisor, Dr Nico
Kühnel, for his continued support and expert guidance throughout the thesis. Along with
answering my questions patiently, he helped me improve the code and gave me plenty of new
ideas/suggestions to incorporate into my thesis. I am indebted to him for his generosity.

Secondly, I am grateful to my academic supervisor, Dr Qin Zhang, for mentoring my thesis,
giving me expert insights during the analysis of the results and thesis writing. Her constant
constructive feedback kept me motivated throughout. I, too, am grateful to her for the help
she provided in the last few days.

Thirdly, I would like to acknowledge the feedback I received from Felix Zwick, who helped
me shape my thesis, and I thank him for providing a detailed introduction to the topic.

Lastly, I would like to thank my family and friends for their love and support. Also, for
motivating and helping me throughout these years.

iii

Abstract

Ride-pooling is an on-demand service that offers convenient and cheap mobility solutions
to reduce traditional car traffic by pooling several trips together in a single-vehicle. Due to
the involvement of humans, they are not as efficient. Researchers have conducted several
simulation studies to examine and improve this current inefficient system with the help of
MATSim. This open-source Java application is helping them simulate large-scale ride-pooling
operations. However, the simulations did not consider operational challenges in the ride-pooling
studies until transport specialists developed an extension that incorporated the inefficient
human factors that form the driver shift (and break) schedule.

It is shift (and break) schedules that determine drivers’ working hours. A driver’s active shift
time is every working hour, while their non-working hours account for their breaks. The active
shift serves as a Travel Supply to the system, serving ride-pooling requests from customers
that impact the static Travel Demand. Due to the uncertainty of travel supply and demand
at any given moment, ride-pooling is inefficient. In order to eliminate uncertainty, demand
and supply must be balanced to maintain an optimal equilibrium. One can only manipulate
the Travel Supply, not the Travel Demand to achieve such optimality. The proposed model
aims to resolve this issue by optimizing the shift schedules of drivers to reduce excess demand
of unserved rides by a heuristic algorithm. Furthermore, the model ensures no excess Travel
Supply of driver schedules that could potentially increase operating costs.

Following a comprehensive literature review, the Simulated Annealing algorithm was adopted
as the heuristic algorithm in the model due to its various advantages, including its ability to
provide a globally optimal solution, its guarantee of convergence, and the lack of complicated
mathematical equations. Nevertheless, it raises the question of whether a heuristic algorithm
like Simulated Annealing can optimize drivers’ shift (and break) schedules in ride-pooling
services?

Having analyzed the model results, this thesis model is discerned for its potential, strength,
and weaknesses in answering the research question. The model seemed to produce promising
results under certain parametric conditions, so it was concluded that the model and its algorithm
have the potential to optimize driver shift (and break) schedules.

iv

Acronyms

AMoD Autonomous Mobility on-Demand

BS Break Scheduling

DRT Demand Response Transit

ESP Employee Scheduling Problem

GA Genetic Algorithms

GESP General Employee Scheduling Problem

IPU Iterative Proportional Updating

MATSim Multi-Agent Transport Simulation

MITO Microscopic Transport Orchestrator

MSB Multiple Solution Based

SA Simulated Annealing

SDP Shift Design Problem

SSB Single Solution-Based

TNC Transportation Network Companies

TS Tabu Search

VKT Vehicle Kilometres Travelled

v

Glossary

active shifts per hour A LinkedHashMap with keys as time in seconds and values as the
number of active shifts (1s) in a shift plan, in reference to 3.4. Serves the model as the
supply side.

average rejection rate Using the rejection rate per hour (LinkedHashMap), all the rate
values in it is summed up and divided by the number of values to get the average
rejection rate.

driver (shift and break) schedule A duty schedule or roster of a driver that contains the
work plan (shift) and break time.

maximum rejection rate Using the rejection rate per hour (LinkedHashMap), the maximum
rate value that is obtained from any of the index becomes the maximum rejection rate.

MOIA A ride-pooling operator company in Hamburg and Hanover

rejection rate per hour A LinkedHashMap with keys as time in seconds and values as the
ratio of rejections and submitted requests. A metric that measures how much supply
must be delivered to meet demand.

rejections per hour A LinkedHashMap with keys as time in seconds and values as the number
of rejected requests

submitted requests per hour A LinkedHashMap with keys as time in seconds and values
as the number of submitted requests from the travel demand. Serves the model as the
demand side.

vi

List of Figures

3.1 Study Area Network - Holzkirchen and surrounding areas 21
3.2 Plot of submitted trip requests per hour . 22
3.3 Shift Plan in XML format . 23
3.4 Example: active shifts per hour (3.4) (LinkedHashMap) for a Shift Plan with

10 shifts . 25
3.5 Flowchart of shift schedule optimization using Simulated Annealing 32
3.6 Encoded Shift - Shift with id: 5 in figure 3.3 35
3.7 Graphical representation of different Cooling Schedules 39

2 Plot of rejected rate per hour . 78
3 Plot of estimated rejection rate per hour 78
4 Plot of active shifts per hour . 79
5 Plot of dynamic submitted requests per hour 79

vii

List of Tables

3.1 Acceptance probability cases . 28
3.2 Value encoding description . 34

4.1 Example of a weighted perturbation type 58
4.2 Perturbation parameter descriptions and their rigid values 61
4.3 Perturbation parameter descriptions and their flexible values 62
4.4 Overview of Fixed or Not Fixed configuration parameters in the scope of the

thesis . 62
4.5 All sub-models with the different Fixed and Not Fixed parameter settings . 67
4.6 Model results of sub-models (37 to 54) with different initial solutions (5_shift,

30_shifts, 60_shifts) . 68

viii

Chapter 1

Introduction

1.1 Motivation
Due to technological advancements in the transportation sector, new transport options are
available to address traffic congestion, parking shortages, vehicular emissions, non-renewable
energy consumption, and expensive travel costs. Shared mobility companies or TNC like
(Uber Pool , 2021; Clevershuttle , 2021; MOIA , 2021) are emerging as the key players who
can change the transportation industry by offering ride-hailing and ride-pooling services. By
definition, ride-pooling is when several passengers are picked up from different locations and
dropped off to different destinations on the same vehicle, thus conserving resources, such as
energy and cost, and increasing vehicle occupancy, leading to fewer vehicles on roads. These
services reduce emissions because of smaller Vehicle Kilometers Traveled (VKT) value and
improve transport efficiency. To sustain such an efficient and intricate service, one has to
use another vital resource. Labour consists of professional vehicle drivers or operators to
transport passengers, software developers that develop apps to match passengers and drivers,
and transportation engineers and operations researchers like us to help maintain a seamless
and efficient mobility ride-sharing system. Hence, optimal resource allocation is of significant
interest to researchers and practitioners in the ride-hailing, ride-pooling service industry. A
loss of efficiency is inevitable when employees are not utilized or appropriately organized and
operation challenges are not resolved. Therefore, a vital component of effectively utilizing
them is scheduling the shifts and break times of the workforce that directly contributes to the
cost-effectiveness and efficiency of the system (Kletzander and Musliu, 2021).

From an economic perspective, vehicle drivers working in shift schedules can be considered
supply and passenger requests as demand. When the demand is higher than supply, prices tend
to increase. The price the system has to pay is the non-served rides or the rejected requests,
leading to a loss of profit for the ride-pooling company. However, when the supply is higher
than demand, the system loses efficiency, which is also not suitable for the company. Therefore,
to avoid increasing the system’s price or becoming inefficient, one must lead the system to

1

Chapter 1 – Introduction Motivation

an operational system equilibrium when supply is enough to meet the demand. The primary
factor influencing the active supply is the driver costs (hourly salary), which are influenced
by their shift schedule. So, in theory, an optimal system will equalize the operational supply
and demand that will reduce the prices and improve efficiency. As a transportation researcher,
this thesis study will apply a heuristic technique to help us search for the optimal operational
system that will benefit the ride-pooling industry.

2

Chapter 1 – Introduction Background

1.2 Background
In light of expected population growth, urbanization and traffic vehicles on roads, it is

likely that urban mobility will need to be reshaped to achieve a comparable level of mobility
(Wilkes et al., 2021). As a result, space will become a scarce resource in the future, leading to
an increase in traffic congestion on roads, overcrowding in public transport and a decrease
in parking space on streets. Ride-hailing and ride-sharing services, which bundle trips into
one and use a single vehicle to eliminate several trips, have been introduced that promise
to reduce traffic levels, reduce consumption in urban areas and remove the necessity to look
for parking (Henao and Marshall, 2019). In an environment with higher vehicle occupancy,
space on the roads will improve, leading to lesser congestion. There would be fewer emissions
per kilometre travelling with ride-pooling vehicles when compared to travelling with personal
vehicles. Therefore, (Chan and Shaheen, 2012) ride-hailing or ride-pooling services can reduce
congestion of vehicles, energy utilization, and emissions. Ride-pooling services scale positively:
as fleet sizes grow and demand increases, empty travel will decrease, and the potential for
pooling trips will increase. Large-scale ride-pooling systems can provide a reliable, convenient,
and sustainable transportation alternative to the current urban transport system.

Pooling vehicle journeys can be traced back to the 1920s in Los Angeles, when streetcar
passengers were picked up for a shared rate by vehicle owners (Shaheen and Cohen, 2019; MIT,
2009). The conventional methods of carpooling and ride-sharing resulted in unplanned trips
that would have occurred in a driver’s private car by chance, where the passenger may or may
not pay the driver. Whereas a pooled or shared-ride has become paid service, a company-hired
driver makes a trip because there is a demand for such trips. As the pooling industry has
evolved, riders and drivers were previously matched manually in bulletin boards or via the
telephone. Recently, they have been matched through app-based services using matching and
dispatching algorithms.

As for Germany, the authorities distinguish between services that offer ride-hailing and
ride-pooling services primarily to regulate passenger transport. Local governments usually issue
limited taxi licences in German cities and regulate their fares, forcing TNCs to hire drivers
privately as they are not subjected to the regulations set by the local governments. Nonetheless,
Germany will amend such regulatory practices in future and bring less stringent rules to attract
cheaper digital mobility solutions. As a result, many transportation and operation researchers
have started taking an interest in ride-pooling or ride-hailing studies for German cities (Zwick
et al., 2021; Ennen and Heilker, 2020; Kuehnel et al., 2021-05; Wilkes et al., 2021).

Small-scale pilot studies are being conducted in major cities with limited fleet sizes to
determine the effects of ride-pooling systems in Germany (e.g., (Münchner Verkehrsgesellschaft

3

Chapter 1 – Introduction Background

GmbH , 2021; Clevershuttle , 2021; ioki , 2021) from Munich, Berlin, and Hamburg respectively).
(MOIA , 2021), a recently founded company in 2019 that entered the Hamburg and Hanover
markets, operates the largest ride-sharing fleet in Europe, has a fleet of approximately 500
vehicles; several simulation studies were researched and analysed in (Multi-Agent Transport
Simulation , MATSim) implementing the ride-pooling services based on their demand data.
(Zwick and Axhausen, 2020) They compared the performance of the two extensions (DRT and
AMoD) in MATSim used in the study. To help study ride-pooling services more realistically with
the inclusion of operational challenges like driver shifts and breaks, (Kuehnel et al., 2021-05)
piloted a study where they modified the (Bischoff et al., 2017)’s (Demand Responsive Transit
, DRT) extension to implement the operational aspects and presented the influence that the
aspects have on the efficiency and performance of the system.

As (Bösch et al., 2018-05) reports, the high operational cost of ride-pooling services is
majorly due to the driver’s salary. However, it was also discovered that non-served passenger
rides or rejected passenger requests have an underlying cost, which should be considered
operational costs. These costs are vital in contributing to the cost of the solution (shift plan)
that needs optimization. This thesis proposes a heuristic model to optimize an initial solution
containing the driver shifts and breaks schedules, using the demand data from MOIA. The
optimization goal is to reduce the costs (driver hours and rejections per hour) by searching
for an improved neighbourhood solution with reformed schedules that achieve the desired
acceptance rate per hour and improve efficiency. The acceptance rate depends on the number
of pooling requests (served rides) upon the number of submitted requests (total requested
rides). The developed model is made to iteratively optimize the solution along with each
MATSim’s iteration, similar to the co-evolutionary algorithm in MATSim. By developing
and evaluating a distinctive model that performs in a ride-pooling setting. Additionally, it
utilized a fast heuristic algorithm that had not yet been implemented. In order to reduce the
computational time as it is an NP-complete problem (Widl and Musliu, 2014), the model was
applied to a small study area.

Since my thesis topic relates to shift and break scheduling using Simulated Annealing
in the context of a ride-pooling scenario, no relevant literature on the subject has been
found. There has been researched literature on scheduling problems, specifically in public
transportation (Wren and Wren, 1995; Ciancio et al., 2018), utilizing genetic algorithms to
solve them. Despite GA being another heuristic algorithm, it was deliberately not chosen
since it could not optimize a single solution. A population-based heuristic requires multiple
solutions as inputs and generates multiple solutions as outputs. In MATSim, (Kuehnel et al.,
2021-05)’s extension only incorporates a single shift plan for a day’s pooling service that
consists of all drivers’ shifts and breaks. After that, the extensive literature on shift design.
(Di Gaspero et al., 2007; Gaertner et al., 2001; Bonutti et al., 2017; Di Gaspero et al.,

4

Chapter 1 – Introduction Background

2013) and break scheduling (Widl and Musliu, 2014; Beer et al., 2008; Di Gaspero et al.,
2013; Widl and Musliu, 2010; Beer et al., 2010) matched what the model sought to achieve,
but their algorithms employed different approaches that did not apply to this case. As this
thesis looks at a unique optimization framework due to location-specific legal requirements
and company-specific workplace constraints, finding specific literature is also challenging.
Lastly, literature on Simulated Annealing was predominantly used in a hospital (Kundu et al.,
2008; Wong et al., 2014) setting for scheduling nurse shifts, in a university (Norgren and
Jonasson, 2016; Abramson, 1991) for course scheduling, and in a general or non-specific field
for scheduling personnel (Kletzander and Musliu, 2019; Catoni, 1998; Bailey et al., 1997).
Since SA uses several constraint parameters in its algorithm and is problem-specific, there
was no exact literature whose values could have been chosen for the model in the thesis. In
addition, perturbation techniques were also problem-specific to have inspired the algorithm
used in the thesis. In summary, the literature on Simulated Annealing was mainly used in
a hospital setting to schedule nurse shifts, a university setting to schedule courses, and a
non-specialized setting to schedule personnel. Researchers hardly focused on the transportation
sector, except for public transit as mentioned above (Xie et al., 2013) or freight transport
(Acuna and Sessions, 2017).

The Simulated Annealing algorithm was preferred over other algorithms for several reasons,
including its superior performance, ease of implementation due to not involving complex
mathematical formulae, and relative computational speed. A significant reason was that the
single-solution-based Monte Carlo method suits our scenario. Additionally, other reasons would
be its iteration dependency and improved hill climbing technique for accepting worse solutions
to escape local minima.

5

Chapter 1 – Introduction Research Question

1.3 Research Question
Based on improving the acceptance rate per hour and reducing driver costs, simulated

annealing, a heuristic algorithm, was applied to optimize shift schedules to an initial shift plan.
Utilizing MITO synthesized travel demand data for Holzkirchen city from (Zwick et al., 2021;
Kuehnel et al., 2021-05) the shift DRT extension of MATSim to simulate the model. As a result,
the model should eventually provide an optimal shift plan (solution), based on cost-effective
shift schedules, that can meet the requests generated during simulation while ensuring that
the rejection rate never goes over 20% at any time. Thus, asking the research question: Can
a heuristics algorithm like Simulated Annealing optimize shift and break schedules
of drivers in ride-pooling services? This thesis aims to successfully apply the (Simulated
Annealing) method on a small Study Area in Germany, to test its robustness, to find factors
that influence the quality of an optimized neighbour solution, and to devise ideas that may
lead to faster optimization convergence.

6

Chapter 1 – Introduction Thesis Overview

1.4 Thesis Overview
Introduction and Literature Review are covered in the first two chapters, allowing the reader

to familiarize themselves with the motivation behind the topic and provide information on
the current ride-pooling scenario, the research gaps, the objective of the thesis and reason
for the selection of Simulated Annealing algorithm in the model. After that, the thesis
reviews academic studies that have discussed and addressed employee scheduling problems in
various fields, problems that involve Shift Design Problem and Break Scheduling, explained
the advantages and disadvantages of meta-heuristics and explained the concept of Simulated
Annealing and how it could be modified for the study’s case.

The third chapter discusses the methodology, including terminologies such as shift plan,
shift, and break. An explanation of what basis requests are requested and how they affect
the objective function follows. The concept of Simulated Annealing was elucidated with an
illustration of a flowchart and distinguished various cooling schedules. Finally, encoding and
perturbation procedures were demonstrated with pictures.

The results of the three different scenarios are discussed in the fourth chapter and their
respective outcomes. Sensitivity analyses were performed on several variables that influenced
the algorithm’s solution quality and processing time. Additionally, it was hypothesized that
secondary heuristics involving regression of supply and demand might help accelerate the
run-time.

The last chapter analyzes the optimization model’s algorithm results and summarizes its
benefits and limitations. Furthermore, the study highlights the contributions made by the
study and recommends topics for future research that needs to be conducted to improve the
model.

7

Chapter 2

Literature Review

2.1 Ride-pooling and its challenges
Transport has been instrumental in forging the sharing economy revolution by introducing

mobility on demand’ platforms, which enabled new modes of mobility like ride-sharing, ride-
pooling, and ride-hailing. By using ride-hailing apps, people looking for a particular trip they
want to take are matched with drivers willing to serve their transportation needs making
it convenient for both parties. A ride-hailing platform can eliminate cash transactions and
adjust prices dynamically according to supply and demand without exchanging cash (Shaheen,
2018). Information and communication technologies are used for developing ride-hailing
applications that offer reliability, coverage, and operating costs superior to competing modes,
such as taxicabs on the street (Rodier, 2018). Likewise, the spread of digital communication
technology-assisted in improving dispatching of customers and vehicles led to the development
of Transportation Network Companies (TNC) and ride-pooling services that are available
on-demand, named by (Shaheen et al., 2016). Traditional ride-sharing programs differ in that
hired exclusive drivers offer the erstwhile while the latter is offered by non-contractual drivers,
who will not expect to be profitable by participating in these services.

Researchers have focused on ride-sharing services because they have changed mobility and
raised some debates. It has been hotly debated whether ride-sharing services may increase
traffic congestion. Those who support ride-sourcing argue that it complements current modes in
the transportation system, bringing down automobile ownership and reducing traffic congestion.
(Li et al., 2016) draw their conclusion from Uber and Urban Mobility Report data that the
introduction of (Uber Pool , 2021) reduces traffic congestion in American cities. Critics argue
that by providing more accessible and comfortable rides, Transportation Network Companies
increase traffic jams by diverting passengers away from space and energy-efficient modes to
less efficient ones. A recent report asserts that the industry is around 6 billion miles (Vehicle
Kilometres Travelled) to drive in several urban areas throughout the United States (Schaller,
2018).

8

Chapter 2 – Literature Review Ride-pooling and its challenges

Several TNCs have gained substantial market shares in the ride-hailing market worldwide,
but those companies face stringent regulations in the European and German mobility markets
for their business models. Many exclusive ride-sharing services are offered in Germany, such as
(Clevershuttle , 2021; Münchner Verkehrsgesellschaft GmbH , 2021; MOIA , 2021). These
ride-sharing systems must be simulated before they will be allowed without fleet size restrictions.
Before analyzing large-scale and long-term effects, a detailed demand and fleet control model
must be developed to capture the current situation (small fleet size) (Wilkes et al., 2021).

Many simulation frameworks and operational strategies have been developed to assess
the effects of (pooled) on-demand mobility, mainly in the context of autonomous vehicles.
(Zwick and Axhausen, 2020) claims it is difficult to compare different pooling strategies when
simulation frameworks and assignment and pooling strategies differ. MATSim by (W Axhausen
et al., 2016) was extended to include two of these frameworks. In his Autonomous Mobility
on-Demand (AMoD) extension, (Ruch et al., 2020) implemented different pooling strategies
and found that in urban environments, the (Alonso-Mora et al., 2017) strategy performs
the most efficient in terms of shared mileage and time savings. In 2017, (Bischoff et al.,
2017) introduced a second pooling strategy for demand-responsive transport called MATSim’s
Demand Response Transport extension (DRT). There is a difference between the DRT module
and the AMD module, in that the DRT module assigns or rejects requests immediately
after submission, whereas the AMD module keeps all requests for a predefined period, and
optimizations are made every 30 seconds; re-assignments are also possible. The advantages of
DRT outweighed AMoD in terms of VKT and computation time (Zwick and Axhausen, 2020).

On-demand systems were evaluated in some simulations using artificially generated demand,
such as scenarios (Zhang et al., 2015; Farhan and Chen, 2018). In the last several years,
more and more studies have been looking at real-world scenarios from synthetic populations
included in transport models (Zwick et al., 2021). The model demand was defined either by
the percentage of previous rides that were pooled or by the mode choice model used (Moeckel
et al., 2020). Therefore, there are few studies on taking shift schedule times of drivers into
account of these simulations. (Kuehnel et al., 2021-05) developed an extended version of
the DRT extension that included shift schedules and break times to study existing services
more realistically and to account for operational challenges, but come with their own set of
drawbacks. There is a concern that shifts do not necessarily end at the starting location such
that the starting location is only determined at the time of vehicle assignment, which may
lead to new driver assignments.

9

Chapter 2 – Literature Review Employee Scheduling Problem

2.2 Employee Scheduling Problem
Effective and efficient human resource management is the critical factor contributing to

an organization’s product or service quality. Considerable improvements in managing labour
and its associated cost are directly proportional to reducing a company’s expenditure and
increasing the productivity of its daily operations. Hence, many industrial sectors, especially
the labour-intensive manufacturing and service industry, have realized the potential of full
human capital utilization as a crucial factor in the company’s strategies to incorporate employee
schedules or costs.

This thesis focuses on optimizing the employees’ schedules, who have direct contact with
customers daily, thereby affecting their satisfaction. Optimization of personnel scheduling,
conceptualized by (Edie, 1954) and later formulated by (Dantzig, 1954) in the 1950s, primarily
deals with the development of systematic and logical timetables of all staff employees in a
particular department, taking into account their staffing requirements, the administration rules
of the company, and the terms defined by the labour regulations of the country. It had the
drawback of making the combinatorial problem challenging to solve if it allowed large degrees
of flexibility.

Since these schedules tend to form the ”supply” aspect of a company, one needs to consider
their direct consequence on the demand of the product or service offered by the company.
Thus, sub-optimal scheduling may necessitate hiring temporary workers, raising costs, while
schedules that do not adhere to all regulatory requirements may result in penalties and employee
dissatisfaction. The (General Employee Scheduling Problem) is solved by considering a broad
range of constraints (Kletzander and Musliu, 2019). The authors also proposed a framework
that allows the specification of multiple requirements without introducing new formulations
for each variant of the problem. The formulation was specified using an XML format to make
it readable for humans and machines alike. Over a specific period, GESP enables employees to
schedule shifts, optional tasks, breaks and other activities.

It has become increasingly important to satisfy employee needs in scheduling decisions
and consider a fair and equitable distribution of work among employees and their workspace
constraints. The literature, therefore, provides a variety of different approaches to solving
such constrained and complex workforce scheduling problems, which have been executed in
an array of service spheres, including airlines, healthcare systems, law enforcement, and call
centers, among others (Ernst et al., 2004), as well as identifying several modules that can
be applied to rostering problems. Given the specific needs of different companies, planners
and managers of these companies are aided by these consequent diverse models in defining
schedules for their employees. In staff demand modelling (SDM) and staff scheduling (SS),

10

Chapter 2 – Literature Review Employee Scheduling Problem

authors of (Ernst et al., 2004) discussed a planning horizon that determines the level of staffing
required within constraints and, in particular, monetary constraints in order to achieve the
goals of an organization.

According to a new investigation study by (Van den Bergh et al., 2013), which examined
numerous articles and categorized problems into their various characteristics were published.
Casual, temporary, and full-time employment are frequently governed by contractual constraints,
including skill requirements as one of such categories. The scheduling process sometimes
includes crew assignments in addition to individual assignments. A typical planning decision is
when to schedule tasks, schedule groups, schedule shift sequences, or schedule time. There
are many options for arranging shifts throughout the day, such as reserving a specific start
and end time based on the shift design. It is commonly known that coverage constraints
are divided into hard constraints and soft constraints (Kletzander, 2018). Schedules must
adhere to strict rules and non-negotiable constraints, such as labour laws and the number of
employees employed each day. The computation usually takes longer under hard constraints
than under soft constraints, which indicates rostering rules that are less rigid and should be
met wherever possible. There are different ways to handle overstaffing and understaffing.

Another review (Bruecker et al., 2015) places its emphasis on the shift times of employees,
as well as their skills. Besides explaining the differences between hierarchical and categorical
skill classes, the author discusses skill substitution methods. The paper examines in detail
the way different papers define and assign skills. This paper (Glover and McMillan, 1986)
introduced (Employee Scheduling Problem), showing that a variety of common concepts can
be applied to problems of this type. It offers the advantage of removing limitations such as
lack of connections across periods and employee homogeneity. At the same time, it lacks
practical application for large-scale scenarios.

Decision support systems can help provide the correct amount of work time to the right
employees at a reasonable cost, a fit within a company’s budget while attaining a level of
contentment for employees at their workplace. It is possible to solve the problems optimally,
but numerous combinatorial explosions are associated with them (Laarhoven, Van and Aarts,
1987). As many of these problems are associated with NP-hard problems, solving the problems
becomes computationally expensive (Garey and Johnson, 1990). Although not all problems
will include various constraints, creating a new specific model and solver for every case is
challenging. It would be highly beneficial to have a framework that can be universal in its
creation of novel formulations. In such cases, heuristic solver algorithms usually prove the best
option. There are general heuristic frameworks such as hyperheuristics that were proposed by
researchers (Burke et al., 2013), but, as far as it is known, there is not yet a framework for
analyzing employee scheduling problems as a whole.

11

Chapter 2 – Literature Review Shift Design Problem with Breaks

2.3 Shift Design Problem with Breaks
An alternative form of the ESP, the shift design problem, was introduced in 2001 (Gaertner

et al., 2001; Akkermans et al., 2019) that focuses on the time constraint of the problem and
where it considers the shifts to be cyclic, i.e. shifts can have more than 24 hours. Additionally,
the objective should be to minimize the number of dynamic shifts, regardless of the company
be adequately or inadequately staffed. Various studies have demonstrated that shift scheduling
is a similar issue. Despite the similarities between shift design problems and shift scheduling,
shift design problems differ in several (Kocabas, 2015).

Shift scheduling involves the computation of shifts sizes, the assignment of employees to each
shift during a working day and scheduling them. A shift is typically assigned to few employees
without understaffing, so breaks are usually scheduled throughout the shift. (Moondra, 1976)
did develop a first implicit formula for the shift scheduling problem without considering breaks,
though he did not consider shift length. Another distinction is that in shift design, instead of
one single day as a planning horizon, it considers several consecutive days. Several authors
have discussed shift design problems and have developed many methods to deal with them.
These include Tabu Search (TS), SA, integer programming (IP).

For each shift, (Dantzig, 1954) developed an integer variable formulation for set-coverage.
Parameters like start time, length, and break times are predetermined, and feasible shifts must
be identified and integrated into the model. However, integer variables can be used more when
different break options are used. The (Bechtold and Jacobs, 1990)’s Integer programming
model differs from the set-covering model concerning implicitly modelled breaks. Every shift
is presumed to contain a single break window made up of contiguous planning periods, and
the break duration is the same for all shifts. In addition, it cannot schedule breaks within
their respective break windows if a significant overlap occurs in their respective break windows,
thereby reducing the combinatorial problem size substantially, reducing the time needed to
solve it. According to (Jacobs and Bechtold, 1993), it is one of the most critical factors
contributing to improved labour utilization if breaks can be placed at the right time. It is
flexible to set the break times at any location within a predetermined break window.

Similarly, the formulation of (Aykin, 1996) integer programming model was compared to a
similar model developed simultaneously. The IP model approach had fewer variables, whereas
the model from (Bechtold and Jacobs, 1990) had few constraints, and Aykin’s model was
deemed superior. Two other implicit models developed by (Widl and Musliu, 2010) were better
than previous approaches, such as Aykin’s first model, which involved multiple-break windows
with different duration.

12

Chapter 2 – Literature Review Shift Design Problem with Breaks

Previously, break scheduling was primarily addressed in conjunction with shift scheduling.
Problem formulations with a few breaks have been discussed in several different ways. Breaks
are scheduled as part of a shift schedule (Dantzig, 1954; Bechtold and Jacobs, 1990; Aykin,
1996; Beer et al., 2010); call centres, hospitals, transportation, and hotels have much more
significant problems with break scheduling than the problems formulated in previous shift
scheduling studies. Further, the lunch break schedules became more complex as time windows
for lunch breaks or time restrictions for breaks increased, which enlarged the search space for
optimizing such schedules (Musliu et al., 2004). (Rekik et al., 2010) fractionable breaks are
introduced, where shift breaks following the technique are restricted to a lower and upper limit
but lack robustness as impacts of multiple breaks are not considered. (Widl and Musliu, 2010)
evaluated the problems with break scheduling when staffing requirements and shift selection
are given. Their objective function minimizes deviations from demand in their model. The
placement and length of breaks are subject to several time constraints. An employee may not
schedule a break too soon after starting the shift; breaks must be scheduled appropriately
concerning the end of the shift.

For this problem, (Beer et al., 2010) developed a heuristic based on minimum conflict,
which has since been used by supervision personnel in a real-world setting. The main task is
to schedule break times efficiently to existing shifts, assuming that the shift assignment has
already occurred. They solved the scheduling problems in two phases, first by assignment of
shift and then by scheduling breaks, thereby increasing run time. A real-life benchmark example
with more than 10 breaks was also introduced by him, which was later on improved by memetic
algorithms presented in (Widl and Musliu, 2010). The formula combines a heuristic approach
with staffing demand coverage and ergonomic criteria to find a solution that diminishes the
aggregated amount of work regulation violations.

13

Chapter 2 – Literature Review Heuristics

2.4 Heuristics
(Osman and Laporte, 1996) states that ”The term meta-heuristic formally refers to an

approach that guides a subordinate heuristic towards finding near-optimal solutions using
multiple iterative strategies for investigating and leveraging the search space as well as learn
tactics to compile all the data collected in order to search near-optimal solutions”. Since
NP-complete problems are complex and demanding despite several attempts to solve them
mathematically, heuristic methods are the only viable option when solving such complex
problems. Typically, heuristic methods are evaluated by the output quality and the time taken
to reach this outcome. Regardless of the considered optimization problem, a compromise
must be found since these two criteria are opposing. Scheduling problems that are either too
complex or difficult to solve using an exact solution method has been solved mainly through
heuristics. Methods based on heuristics are typically robust and can produce reasonable
"good"results, albeit not ideal results. Heuristics cannot guarantee the quality of a solution or
its time efficiency. As heuristics can be categorized into"general"heuristics or meta-heuristics,
first coined by (Glover, 1986), are often realized for obtaining approximate optimal results
and are frequently used for various types of combinatorial optimization problems, whereas
"tailored"heuristics or specific heuristics are unique to a specific problem (Laarhoven, Van and
Aarts, 1987). These meta-heuristics rely on nature for inspiration (derived from physics, biology,
or ethology); stochastic elements are involved in some of them, and they need continuous
tuning of parameters to fit the problem.

Researchers have focused significantly on meta-heuristics over the past few years because
of their ability to reach optimality at a faster rate. A few steps can be outlined that have
characterized meta-heuristics throughout history, among the pioneer contributions (Kirkpatrick
et al., 1983)’s Simulated Annealing method. (Glover, 1986) proposed the Tabu Search
algorithm, and the first genetic programming patent was filed and published in (Koza and
Koza, 1992). The Genetic Algorithm was published by (Goldberg 1989). The evolution of
meta-heuristics is undoubtedly linked to the continuous improvement of computing power and
the emergence of massively parallel architectures. Meta-heuristics are CPU-intensive, but these
improvements relativize their costs (Talbi, 2009).

Optimizing processes require a balance between diversification, a method of exploring the
search space, and intensification, which can be achieved by exploiting the neighbourhood
(Blum and Roli, 2003). Utilizing the accumulated search experience is essential to increase the
intensity of the search. Differentiation between the existing meta-heuristics appears mainly
in how each of them tries to achieve this balance (Birattari et al., 2001). Meta-heuristics
can be categorized according to many factors. For example, consider the classification of
meta-heuristics based on their features, whether the search path they follow, the way memory

14

Chapter 2 – Literature Review Heuristics

is used, how neighbours are explored, or the number of solutions repeated from one iteration
to another. Some scholars and researchers classify and categorize meta-heuristics according
to their size of solution into single-solution or multiple-solution based meta-heuristics (SSB,
MSB), as an important distinction (Talbi, 2009).

In general, SSB meta-heuristics tend to be more exploitative, while MSB meta-heuristics
tend to be more exploratory. Meta-heuristics suffer from several drawbacks. They cannot
reduce the search space or define stopping criteria. In addition, scheduling problems with
highly constrained elements pose a challenge to meta-heuristics because infeasible ones often
separate feasible regions. Mathematics programming and exhaustive search are alternative
approaches that, although they will ultimately realize the optimality of a given problem, will
rarely do so within a reasonable time frame since the resources of typical machines are finite
(Burke et al., 2010). Thus, meta-heuristics are applied to general optimization problems when
finding near-optimal solutions in the shortest time.

Due to this thesis’ use case, the study focuses on SSB Meta-Heuristics, because of being the
single initial solution optimization, tend to discover a single optimal solution. The exploration
process can be traced using such meta-heuristic methods called trajectory methods. The more
commonly used trajectory search methods are Tabu Search, Simulated Annealing, variable
neighbourhood, and guided or iterated local search.

15

Chapter 2 – Literature Review Simulated Annealing

2.5 Simulated Annealing
Among many meta-heuristic algorithms, the (SA) algorithm is generally considered the

oldest and one of the first algorithms to include mechanisms for bypassing local optima through
the acceptance of worse solutions. The name derives from a metallurgical process called
annealing. Material is then subjected to high temperatures, changing its physical and chemical
properties and making it more ductile. After maintaining the temperature for a specific time,
the temperature is gradually lowered. The goal in both cases is to transform the material
into a well-ordered solid-state with low energy (thereby avoiding the instability found in local
minima), as metals are heated to achieve a well-ordered solid-state with low energy. If the
temperature is high, SA is more likely to discover new territory; it is more likely to exploit
existing territory at a lower temperature.

Exploring the search space is achieved by introducing a fictitious initial temperature T into
the acceptance equation that decreases with the search progress; the objective function is then
minimized. It is common in annealing schedules to keep the initial temperature as a function
of the iteration number, therefore

T = initial_temperature
iteration_number + 1

Temperature calculation avoids division by zero errors by adding one to the iteration number
as iterations usually start at zero. Reducing temperature is similar to how the energy of
the material is minimized. At 0 K, crystallized particles occur at their fundamental (lowest)
energy level. An ideal crystal is considered a global solution, whereas mass deformations
represent a local optimum. The simulation method was first found in statistical mechanics
in the Metropolis algorithm (Metropolis et al., 1953), who came up with it first and firstly
applied in (Kirkpatrick et al., 1983).

Applied to optimization problems, Simulated annealing (SA) is a stochastic process that
permits conditional acceptance of the worst solution. In this strategy, the objective is to escape
local minima and attain convergence to avoid potential suboptimality. After a solution and
a temperature parameter T have been established, the algorithm gets started by creating
a new neighbouring solution from the initial solution (either randomly or using a heuristic)
and then keeps generating these subsequent solutions with every iteration or decrease in
temperature. During each iteration, an alternative solution is randomly chosen near the
current one, keeping in mind that whenever possible, the alternative lowering the energy of
the substance (improvement of the objective function) is preferred. However, it is essential to
consider that the probability of adopting inferior solutions decreases over time as the objective
function deteriorates with the temperature decrease. Boltzmann distribution and Metropolis
function describe the likelihood P of an inferior solution being adopted and given by the ratio

16

Chapter 2 – Literature Review Simulated Annealing

of the difference in objective functions of the current and new solution to the ratio of the
difference in objective functions f(x), x being the current and new solution, and system’s
temperature.

P = f(current) − f(new)
temperature

< r

Where r ranges from 0 to 1 generated at random, thus, as T decreases during searching, poor
solutions have a higher likelihood of being accepted early in the search and a lower likelihood
of being accepted later in the search. Ideally, a high temperature at the start of a search will
aid the algorithm in finding the global optima, and a low temperature later will allow it to
refine its search for the global optima.

Similar to the paper in (Wong et al., 2014), constraints related to scheduling can be
categorized into hard and soft. Any feasible model must satisfy a constraint known as a
hard constraint generally governed by legal and administrative regulations; In contrast, a
soft constraint can be violated. However, it incurs a penalty on the objective function (the
more significant the penalty, the greater the violation). They are usually connected to the
quality of work, service quality, and employee satisfaction. Among the advantages of this
heuristic are that it can be implemented relatively quickly, that it can be administered to
theoretically any combinatorial optimization problem, and it can be combined with other
algorithms. (Elmohamed et al., 1997) It has some drawbacks, though it is still a robust
technique. For good results, the perturbation and all of the tune-able parameters (such as the
cooling rate) should be carefully selected, the runs can take a lot of computer time, and many
runs may be needed.

17

Chapter 3

Methodology

A simulation annealing technique is implemented in the thesis to optimize driver shift (and
break) schedules to reduce the number of driver hours and the non-served rides maintaining
an acceptance rate of served rides at 80%. The algorithm is written in java and simulated
within the open-source java application, (Multi-Agent Transport Simulation , MATSim), with
the help of its (Demand Responsive Transit , DRT) extension developed by (Bischoff et al.,
2017). The DRT extension that was modified to include driver shift (and break) (Kuehnel
et al., 2021-05) schedules to make ride-pooling simulations more real. In comparison, the
new shift and break extension allow the temporal constraint for the drivers that determine
their availability. With the help of (Microscopic Transportation Orchestrator , MITO), was
developed by (Moeckel et al., 2020), generated the travel demand or ride-pooling requests for
Holzkirchen (Zwick et al., 2021).

Requests for ride-pooling services are simulated using the DRT extension and assigned to
available drivers. A vehicle matching algorithm searches for the best vehicle to handle the
trip request based on the pick-up and drop-off location coordinates, the maximum wait time,
and the maximum waiting time for the passengers who wait outside and inside the vehicle. A
request inserted into a scheduled route is usually assigned to a vehicle that incurs the smallest
amount of additional operating time.

A ride-pooling service simulated using the DRT extension makes it possible to centrally
dispatch and match on-demand trip requests from passengers to the available drivers. The trip
requests attach pick-up and drop-off locations from the demanding passenger. The dispatching
algorithm searches for drivers near these passengers who do not violate their maximum wait
and detour time. If trip requests are accepted, keeping the travel time delay low for all onboard
customers, routes are assigned to that driver to transport all accepted passengers. The route
assignments are done by the insertion algorithm, an algorithm in the extension that keeps
travel time within a threshold. The travel time exceeding a certain threshold leads to the
rejection of submitted customers’ trip requests. A vehicle driver’s route assigned to a customer

18

Chapter 3 – Methodology Methodology

cannot be changed thereafter.

Additionally, trips can be rejected based on: vehicle seating capacity, vehicle’s availability
(driver shift), exceeding the maximum waiting time, or exceeding the maximum detour time
(Bischoff and Maciejewski, 2020). The extension uses two types of service operations (Zwick
and Axhausen, 2020): door-to-door, where all pick-ups and drop-offs are in the exact coordinate
location as requested by customers, and stop-based, where all customers access and egress
to an adjacent stop to get to the ride-pooling vehicle. According to (Bischoff et al., 2019),
door-to-door operations are better in terms of travel time during non-peak hours. For the
same reason, only door-to-door operations were considered in the shift optimizer model. A
draconian scenario also considered in the model is a scenario where all car trips change to
DRT trips, as opposed to a laissez-faire scenario where all DRT modes are autonomous.

With the help of (Kuehnel et al., 2021-05)’s extension, ride-pooling services are now studied
more efficiently and effectively as it takes schedules of drivers into account. All daily driver
shift (and break) schedules packed into an XML file are the initial solution, an input for
MATSim simulation. These drivers’ shifts (and break) schedules govern the availability and
non-availability of drivers, resembling a real-world scenario. A shift dispatching algorithm
is put into the extension that assigns these shift (and break) schedules to driver agents on
ride-pooling vehicles. Trips requests are now served only when a driver is available according
to his shift (and break) schedule, rejecting all other requests. A shift, in turn, is determined
by its start and end time. If the shift (and break) schedule’s duration is 8 hours, breaks are
also scheduled within them. During breaks, drivers are not available, and they do not serve
requests during this time. Given the different times of different driver schedules, the demand
may not be served efficiently, leading to many rejections of trip requests.

This thesis proposes a method to optimize the driver shift (and break) schedules to improve
ride-pooling service’s performance and efficiency, leading to minor rejections and low operational
costs. In the proposed methodology, a heuristic algorithm (Simulated Annealing) applied in
thesis mode brings improvements to these schedules. The reasons why Simulated Annealing is
implemented in the model:

1. The single-solution-based algorithm takes a single initial solution and produces a single
optimized final solution. It is important as the (Kuehnel et al., 2021-05) made extension
functionally works with single solution inputs.

2. The algorithm can create an objective function or cost to measure the quality of all
driver schedules based on their rejection rate and working hours. A low-cost solution
will have good schedules with minor rejections, and their rejection rates are well below
the desired value.

19

Chapter 3 – Methodology Methodology

3. The algorithm uses stochasticity to manipulate the schedules using different perturbing
operations, leading to different costs. Randomness helps search global optimums, whereas
greedy algorithms may even lead to failed searches.

4. The algorithm iteratively tries to search for globally optimal quality (low cost) neighbor
solutions using an improved hill-climbing that accepts worse solutions in early iterations
to escape local optima.

20

Chapter 3 – Methodology Study Area

3.1 Study Area
Located in Bavaria, a federal state in Germany, Holzkirchen is the largest populous town in

the Miesbach district (Landkreis), with over 16,000 (2008) persons. Situated at a convenient
location with excellent highway and rail accessibility, Munich District is also well connected and
is accessible by the S-Bahn (S3) that comes every 20 minutes. Holzkirchen and surrounding
areas were chosen as the study area for the thesis research as the city’s population was the
lowest among the other areas researched (Zwick et al., 2021). The main reason for this
scenario’s selection was due to the computational time of the algorithm. To test an algorithm’s
robustness and effectiveness, it is always better to start with small case scenarios (Gopakumar
et al., 2018). Therefore, Holzkirchen city’s scenario has a population of 16750 inhabitants (für
Statistik, 2019) and a service area of 34.1 km2. A draconian operation changing all mode trips
to only ride-pooling trips is considered for simulation within the service area. Figure 3.1 shows
Holzkirchen’s network area map, and the zoomed-in part shows the city center of Holzkirchen
to give an idea of the extent of the service area.

Figure 3.1: Study Area Network - Holzkirchen and surrounding areas

21

Chapter 3 – Methodology Travel Demand - submitted requests per hour

3.2 Travel Demand - submitted requests per hour
The static travel demand for Holzkrichen’s scenario was synthesized using the open-source

simulation model, MITO (Moeckel et al., 2020). MITO uses a modified four-step approach to
generate agent-driven trips, supported by two trip- and agent-based models. The population
synthesizer, an IPU-based method, was the input (Moreno and Moeckel, 2018). At the same
time, trips with six different purposes, destinations, modes, and times of day were generated as
output. MATSim is a simulation framework that iteratively and co-evolutionarily improves the
transport agent’s score consisting of daily activity plans. The score increases by working (doing
activities) and decreases by traveling (not doing activities). The score improvement ensures
that agents should work more than travel. So, after every iteration, MATSim changes the
agents’ plans in different routes or modes, leading to an equilibrium where no plans are changed
as final scores do not improve any further. For this thesis, MATSim (W Axhausen et al., 2016)
was used only for route choice to assign on-demand requested trips to the service network.
MITO aided in mode choice to mimic the draconian case of only ride-pooling trips within the
service area. Thus, MITO and MATSim generate the static demand for the shift optimizer
model (Zwick et al., 2021). Even though ride pooling requests are arbitrarily requested during
the service, the thesis uses a new variable submitted requests per hour for the static travel
demand to keep the cost within the exact temporal resolution. Since the cost of the solution
also incorporates the hourly salary rate of drivers that depends on the active shifts per hour.

Figure 3.2: Plot of submitted trip requests per hour

22

Chapter 3 – Methodology Travel Supply (Shift Plan) - active shifts per hour

3.3 Travel Supply (Shift Plan) - active shifts per hour
All the daily driver shift (and break) schedules are combined in an XML format, directly read

by MATSim’s shift and break extension. The shift plan is the model’s supply that serves the
ride-pooling submitted requests per hour demand for the Holzkirchen scenario. As a human
and machine-readable programmable format, XML allows for structuring large amounts of
specification information. Since, (Multi-Agent Transport Simulation , MATSim) is programmed
in (Java Library), the shift plan is converted into a DrtSolution or an Individual object. The
DrtSolution object is used by the extension, whereas the Individual object is used in the model
developed for this thesis. These objects are interchangeable, such that the DrtSolution can be
converted to the Individual and vice versa. This object conversion in the code is necessary to
ensure that the original code for the shift and break extension is not manipulated. However, to
avoid confusion, solution or shift plan is frequently used throughout the thesis to refer to the
Individual object or the DrtSolution object, containing the driver (shift and break) schedule. It
is evident from the screenshot of 10 driver shift (and break) schedules in the figure below 3.3.
Description:

• <shifts>..</shifts>: Shifts with ”s” is a list of driver shift(s).

• <shift>..<shift>: Shifts without ”s” is one single Shift defined here in subsection 3.4.1

• <break../>: Break is the break corridor defined here in subsection 3.4.2

Figure 3.3: Shift Plan in XML format

23

Chapter 3 – Methodology Shifts and Breaks

3.4 Shifts and Breaks

3.4.1 Shift

A Shift is made of:

• id: A unique identification value that distinguishes every shift

• start: Time at which drivers start working

• end: Time at which drivers stop working

A shift is defined by the period of work a driver executes by picking up and dropping off
customers to serve customers with ride-pooling ride requests. Shifts have pre-decided start
and end times that determine the duration of their working hours. A driver is only paid
his hourly salary during this time. Ride-pooling passenger requests are rejected beyond this
time for the particular driver. A shift may or may not have a break scheduled with them
based on the number of hours a driver works. Shifts with short duration may not have breaks
scheduled but will consist of break corridors. Break times are assigned within a particular
range of time, known as the Break Corridor. According to German Labour Laws (für justiz und
verbraucherschutz, 2021), two types of shift timings has been considered in this thesis:

• 8 hour shift schedule with 30 minutes break

• Less than 8 hour shift schedule with no break

It is essential to note that a driver shift (and break) schedule’s length must be at least 5.5
hours due to the legal regulations, so all shifts considered in the optimization model are also
modeled similarly. Shifts always start and end within the START_SERVICE_TIME and the
END_SERVICE_TIME fixed by the modeler. Therefore, different drivers may have different
shift and break schedules overlapping each other. Since the optimization model only takes the
shift plan as the input for simulation run, hence it is essential to understand the terms that
are crucial to objective function calculation:

1. Active Shifts: Driver’s active working period is known as active shift. Such that drivers
do not have breaks scheduled at this time. To calculate the value of active shifts per
hour parameter, refer to figure 3.4, describing the hourly summation of all drivers actively
working to serve on-demand requests. Active shifts are ”1” in the encoding given in
green. The summed up value of all"1s"gives active shifts per hour in purple.

2. Inactive Shifts: The drivers do not work during this time. These periods do not
contribute to the solution or the objective function. It can be represented as "0"in the
encoding colored in red.

24

Chapter 3 – Methodology Shifts and Breaks

Fi
gu

re
3.
4:

Ex
am

pl
e:

ac
tiv

e
sh
ift
sp

er
ho

ur
(3
.4
)(

Li
nk
ed
Ha

sh
M
ap
)f

or
a
Sh

ift
Pl
an

wi
th

10
sh
ift
s

25

Chapter 3 – Methodology Shifts and Breaks

3.4.2 Break

The relief period when drivers rest or eat at the hubs or in-field facilities. No pooling request
will be served during this time. Scheduling breaks and assigning them within their defined
time frame called the break corridor is necessary. It is only possible to pick up and drop
off customers before and after the end time of breaks. Similar to shifts, break corridors are
also characterized by earliestStartBreakTime and latestEndBreakTime, which, as the name
suggests, are bounding parameters. The model has fixed the duration of break corridors at 1
hour or 3600 seconds, like in (Kuehnel et al., 2021-05), so breaks can only be of 1/2 hour or
1800 seconds and be assigned to the first half or second half of the break corridor. The break
corridor determines the amount of freedom a scheduled break may have. In reference to the
figure 3.4, a Break Corridor is made of:

• earliestStartBreakTime: It is the earliest possible time at which a break can be
assigned. Before this time, a break can not be assigned and is given as the starting blue
colored ”2” in an encoded shift.

• latestEndBreakTime: It is the latest possible time at which a break can be scheduled.
Beyond this time, no break is scheduled. Given as the ending blue colored ”2” in an
encoded shift.

• duration: It is the time length of breaks. Fixed at 1800 seconds.

26

Chapter 3 – Methodology Travel Price - rejections per hour

3.5 Travel Price - rejections per hour
Since the extension can serve multiple requests simultaneously, it is handled by an abstract

dispatch algorithm called an optimizer (Bischoff et al., 2016). Firstly, When a user submits a
ride-pooling request, the optimizer will dispatch the request and assign it to one of the driver
vehicles closest to the requesting user with the least travel time, both in terms of pick-up
time and drop-off time. Users who do not meet the specific threshold of waiting and detour
times are rejected, and accepted onboard users are given priority by the dispatching algorithm
such that they are not removed from the system. In the second step, the user compares the
travel cost of all accepted vehicles and requests for the vehicle with the lowest traveling cost.
Requests that are not accepted by vehicles or users will appear in the system as ”rejected”.

In the optimization model, maintaining the exact temporal resolution (hourly) utilizes the
variables rejections per hour and rejection rate per hour to calculate the quality of the solution
in terms of cost. The object is generated after each MATSim iteration to track all the
submitted and rejected requests. The rejection rate is computed by the rejected and submitted
requests ratio. The algorithm in the study aims to achieve DESIRED_REJECTION_RATE of
20% or 0.2. The following can cause on-demand submitted requests to be rejected:

• vehicle capacity - A request may be rejected if the vehicle can not accommodate more
passengers

• vehicle availability - Rejection due to non-availability of close vehicles

• maximum wait time - Longer waiting times than the threshold for pick-up passengers

• travel time (either in pick-up of drop-off) - Rejection due to large travel times to
destination

27

Chapter 3 – Methodology Simulated Annealing

3.6 Simulated Annealing
Solving combinatorial optimization problems using such a method was first applied and

introduced by (Černỳ, 1985; Kirkpatrick et al., 1983) respectively. It is a heuristic algorithm
that has been in existence since the 1980s for solving NP-hard optimization problems. Sim-
ulated annealing originates from experiments done by (Metropolis et al., 1953). To imitate
thermal equilibrium with a fixed temperature based on the results of their studies on different
optimization techniques, researchers have created a probabilistic-based technique algorithm
to minimize the energy of the system’s state. In a physical system, the position of each
atom describes the energy state of the structure. After selecting a starting state, Metropolis
generated successive states of the system using the Monte Carlo method. A new state is
obtained whenever an atom engages in an infinitesimally small random movement. Let us
assume δE as the energy difference caused by a disturbance of this kind. In the case of a
decrease in system energy (δE < 0), the neighbor state is accepted. On the other hand, if
(δE > 0), a specific probability determines if it is accepted or not. The acceptance probability
is represented as P and characterized by this exponential Boltzmann acceptance equation:

P = exp(−(Enew_state−Ecurrent_state)
T

) = exp(−δE
T

) (3.1)

where T is the instantaneous temperature of the system and Ecurrent state being the energy
of the current state, Enew state is the energy of new neighbor state. A random value is generated,
let’s say r [0,1] at each temperature cycle, that will help to decide whether a new state with a
lower energy is accepted or not. The state is accepted if r is less than or equal to probability
equation 3.1, otherwise the state is rejected.

Table 3.1: Acceptance probability cases

Case Description
P > r Accept the new state
P < r Reject the new state

Since P depends on T, due to exponentiality, high T will make the fraction smaller bringing
P closer to 1. Therefore, if the temperature is high early on, it is more likely that the algorithm
will accept high energetic states or any new state for that matter. The randomness r along
with acceptance of worse states initially will ensure that the algorithm escapes local minima
and reaches global minima. Lower temperatures make it more difficult for a high energetic
state to be accepted. This type of rule of probability is used repeatedly while lowering the
temperature by Metropolis to lead the system structure to thermal equilibrium or the state
of lowest energy. Thus it became Simulated Annealing, a meta-heuristic technique used in

28

Chapter 3 – Methodology Simulated Annealing

solving complex problems for optimization.

In order to comprehend the acceptance probability formula, for example, the objective is
to optimize or minimize the cost of a solution. Suppose an initial solution that costs 100€,
an initial temperature of 1000, and a new neighbor solution that costs 180€. As it is known
that temperature should decrease in every iteration, let us also assume that temperature
decreased to 20 in the last iteration. For the first iteration, the acceptance probability P
would be0.92, increasing the likelihood to accept this high-cost new solution. At temperature
200 and iteration 10: the probability of acceptance of the worse solution goes down to 0.67,
lowering the chances of acceptance; in the last iteration at 100, where the temperature drops
to 20, the probability also drops to 0.018. This method ensures that with time the method
will lead to a minimized cost solution.

Since the algorithm has been described for a general use case, it has been applied slightly
differently in the thesis. For simplicity, let’s call it the ”shift optimizer”model. Solution or
Shift Plan is analogous to state in the system, and its energy is the cost of the solution. The
current state is the accepted solution, and the new state is the perturbed current solution.

So, firstly the shift optimizer initializes a reference solution called the accepted solution,
which is a copy of the current solution, which is the copy of the initial shift plan that is going
to be optimized. The reference solution is the one that stores the current low-cost solutions.
The costs of both the current solution and accepted solution are initially kept at positive
infinity to ensure that the algorithm starts minimizing after the first iteration. Before starting
the algorithm, the initial temperature, the cooling scheme, and the number of iterations should
also be decided. The model was calibrated by configuring parameters and running the model
with different initial shift plans, temperature, cooling rates, or iterations.

Secondly, after the initializations, the current solution is simulated in MATSim iteratively
using the shift and break extension (Kuehnel et al., 2021-05) that produces the rejected trip
requests data from the simulation. The DRT simulations use the ride-pooling demand data,
generated by MITO and based on submitted requests per hour, to produce ride-pooling
trip requests. If the travel supply active shifts per hour is not enough for the simulation
framework to meet the demand, the price of the system increases, inducing rejected trip
requests. This rejected data is transformed into the rejections per hour and rejection rate
per hour variables to calculate the cost of the solution (objective). The cost is a function of
active shifts per hour, rejected requests per hour, and rejected rates per hour. It is important
to mention that if the travel supply is more than enough, the cost of the solution will still
increase, making the solution less optimal. Bringing down the cost will help the shift optimizer
find the minimized solution. Therefore, to make that happen, accepted solution keeps
track of the low cost simulated current solution. The acceptance solution becomes the

29

Chapter 3 – Methodology Simulated Annealing

current solution whenever the current solution’s cost is low. However, in the early iterations, a
high-cost current solution is also accepted due to the model’s high-temperature value. This
Metropolis’ acceptance probability equation ensures that only a global minimized solution is
found ultimately. In the next step, the algorithm perturbs the current solution generating a new
neighbor solution. The perturbations are essential to explore the space of neighbor solutions.
This perturbed current solution is simulated in the next MATSim iteration, producing a new
cost. As mentioned before, in this new iteration, the accepted solution accepts or rejects the
new neighbor solution depending on its cost.

Lastly, the steps are repeated in every iteration till the last iteration has reached. The
disadvantage here is that the SA algorithm does not know how many iterations are needed to
find the minimized solution finally. Therefore, it is assumed that when the cost is not improved
after a while, optimality has reached, and the accepted solution is the optimized solution that
has the DESIRED_REJECTION_RATE and has the reduced number of driver shifts.
Characteristics of a general Simulated Annealing (SA) algorithm:

1. It is local Search method that is capable of reaching global minima and not getting
stuck in the local minima (Kirkpatrick et al., 1983)

2. No complex mathematical functions involved in the algorithm (Osman and Laporte,
1996)

3. It is an improved version of the hill-climbing algorithm, where it uses an iterative
approach to find new neighbor solutions, even worse solutions (to help escape local
minima) (Nikolaev and Jacobson, 2010a)

4. It solves combinatorial optimization problems easily where the solutions are in the discrete
search space (Garey, 1979)

5. It is a Markov Chain Monte Carlo method, that is, it uses stochasticity to perturb
solutions (Nikolaev and Jacobson, 2010a)

6. It is a Single Solution-Based (SSB) algorithm that optimizes a single solution (Banchs,
1997c)

7. It guarantees a convergence in infinite time (Nourani and Andresen, 1998)

8. It has a faster convergence rate than other heuristics - GA and TS (Sinclair, 1993)

Authors (Aarts and Van Laarhoven, 1985; Nikolaev and Jacobson, 2010b) state that the
SA algorithm stays more time in the low-temperature period than in the high-temperature
period slowing down the total run time. The success of SA is attributed to its fast run-time,
excellent solution quality, easy application, applicability, and flexibility. Despite this, creating a

30

Chapter 3 – Methodology Simulated Annealing

practical algorithm for a given problem is not always trivial, as the implementation is easy and
flexible; The efficiency of SA depends mainly on an excellent objective function and a cooling
schedule with a good speed.

Neighbor states of a current system include all the possible states that can be acquired by the
slight metallurgical changes of the system, similarly in the shift optimizer model, a solution is
changed by moving shifts (start and end) timings, moving break corridor (earliestStartBreakTime
and lastestEndBreakTime) timings, increasing the shift (and break) schedule’s duration,
decreasing the shift (and break) schedule’s duration, inserting a new driver shift (and break)
schedules, or by removing existing driver shift (and break) schedules. This process of generating
a new neighbor state is called Perturbation.

To find new solutions in the coding space, encoding of a solution to a genotype becomes
helpful, as the meta-heuristics algorithms usually operate on two types of spaces, coding space
(Genotype) and solution space (phenotype) (Kumar, 2013). Phenotype describes their outward
appearance in the initially kept format (read: shift plan in XML format), and Genotype presents
the encoded format used in the objective function to calculate the solution’s cost quickly.
Even though MATSim, can read the Phenotype (XML) format, Genotype (Encoded) format is
required to calculate active shifts per hour and perturb for new neighbor solutions. Overview
of the implementation (figure 3.5):

1. Set the model parameters, including initial temperature, cooling pattern (schedule), and
the number of iterations. Initialize the current or accepted solution to the initial shift
plan that needs to be optimized and the solutions’ costs to positive infinity. In the
first iteration, the current solution is simulated in every iteration in MATSim where it a
system is created to satisfy the demand (submitted requests per hour) with the supply
(active shifts per hour) increasing the price (rejections per hour and rejection rate per
hour) of the system. The algorithm’s objective (cost) function utilizes all the hourly
attributes to determine the solution’s cost in every iteration.

2. The algorithm produces a new neighbor solution by perturbing (changing all or some
driver schedules) the current solution randomly. Now the current solution becomes the
perturbed solution simulated in every iteration subsequently. Whenever the new current
solution possesses a lower cost than the accepted solution, the shift optimizer accepts
it either by becoming the current low-cost solution or accepts it with the probability
P. If the P is greater than the random value [0,1], then it is accepted. PS: In the first
iteration, the accepted solution becomes the current solution due to the positive infinity
cost of the accepted solution. Later, whenever the cost of the new current solution is
lower than the previously accepted solution cost, they are accepted or rejected based on
temperature value and random probability.

31

Chapter 3 – Methodology Simulated Annealing

3. The above steps are repeated till the shift optimizer reaches the last iteration. The
model parameters, cooling schedule, initial temperature, and the number of iterations
have a vital contribution in finding a solution with the lowest cost in a short time.

Figure 3.5: Flowchart of shift schedule optimization using Simulated
Annealing

32

Chapter 3 – Methodology Encoding

3.7 Encoding
Traditionally, encoding is applied to solutions in Genetic Algorithms (GA), where they are

transformed to represent the solutions into a computer-compatible format. The mapping
of these transformations can either be done numerically or alphabetically to store the exact
information in the encoding. The GA borrows a lot of its terminology from genetics and is
inspired by the biological genetics evolutionary model. Hence, Genotype represents the encoded
solution in a machine-readable and code-formattable format. In comparison, the Phenotype
term describes the actual human-readable format. A chromosome is a code-formattable data
structure of a specific length containing all the necessary information of the actual solution’s
data structure. Here, the actual solution’s data structure is the XML format, which the
figure 3.3 shows. Even though XML is machine-readable, it is not code-formattable. A
LinkedHashMap was chosen as the code-formattable data structure efficiently representing the
driver shift (and break) schedules.

A LinkedHashMap is an alternative implementation of the Map structure with keys as an
index to an associated data value. Hence, a Map contains several unique unordered keys and
their corresponding values. With LinkedHashMap, the indexed keys are in an ordered format.
The order was necessary for the encoding as the keys were meant to store the temporal data.

The following properties are taken into account when choosing encodings:

• A chromosome’s structure should be well represented since only a good representation
will narrow the search space, whereas a poor representation widens it. Moreover, if coding
schemes are inappropriate, the convergence rate will be slower, and the computational
burden will be higher. (Banchs, 1997a).

• The genotype should provide a tractable way to map Genotype data to Phenotype data
and vice versa; that is, it should be easy to decode the encoded Genotype data. (Fox
and McMahon, 1991).

• The genotype should contain all the vital information from the actual data, as missing
information would lead to errors and widen the search space.

Encoding schemes can be classified into binary, value, octal, hexadecimal, 1D, or 2D based on
the structure (Kumar, 2013). For the shift optimizer model, a single shift schedule has been
encoded using a mixture of a 2D and value encoding scheme to a LinkedHashmap structure,
where the keys represent the time of day in seconds. The values represent the integer numbers
0 , 1 and 2 . Values are described as follows:

33

Chapter 3 – Methodology Encoding

Table 3.2: Value encoding description

Encoded Value Description
0 Non-active shift schedule or no shift
1 Active shift
2 Break corridor

The indexed keys are in the increasing order of time, starting from the START_SERVICE_-
TIME and ending at END_SERVICE_TIME, with every addition of TIME_INTERVAL. TIME_-
INTERVAL is the time bin size set for the model as it helps in representing the time for the
indexed keys appropriately. It was assigned to 1/2 hr or 1800 seconds. The chosen value
accommodates a break of 1800 seconds or 30 minutes set by German Labour Law. Therefore,
the number of unique keys depends on the START_SERVICE_TIME and END_SERVICE_-
TIME parameters set to 0 seconds (0 hr) and 108000 seconds (30 hr), respectively. Thirty
hours are chosen as it includes the ride-pooling trips and shift (and break) schedules after
midnight so that MATSim can simulate for trips starting very late in the day.

34

Chapter 3 – Methodology Encoding

Figure 3.6: Encoded Shift - Shift with id: 5 in figure 3.3

35

Chapter 3 – Methodology Initial Solution

3.8 Initial Solution
As SA is a trajectory-based algorithm applied to a single state optimization technique,

as it aims to achieve single solution modification to reach global minima. In contrast to
other trajectory-based algorithms, such as hill-climbing, neural network, or almost all greedy
algorithms have high chances of getting stuck in the local optimum (Tovey, 1985; Schmitt
and Wanka, 2015). An advantage of SA is that the fitness of an accepted neighbour solution
can have both high and low costs, preventing the confinement in the local minima (Abramson,
1991). An initial solution is intended to provide a good starting point for future processing,
influencing the potential processing time. When initializing shifts, it is imperative to ensure
that all the unfeasible shift schedules, having no constraint violations, are omitted from the
initial solution. It may cause the algorithm to fail in the future, as unexpected errors would
occur due to this flawed initialization and confuse the algorithm on understanding the solution’s
quality.

As mentioned before, the model refers to the initial shift plan or solution as the Drt-
Solution object or the Individual object, a representative of java codes in the model. A
DrtSolution is a collection of DrtShift objects. DrtShift, representing a shift (and break)
schedule, consists of their Id , start, end , and ShiftBreak, coded by the developers (Kuehnel
et al., 2021-05). ShiftBreak is also a java object used to represent the break corridor in the
shift, containing earliestStartBreakTime, latestEndBreakTime, and duration. Similarly,
the Individual object is a collection of SAShift objects which also contain the same variables
defined in the DrtShift object and the SABreak object like the ShiftBreak object that the
author of this thesis coded.

For the Holzkirchen scenario that is considered in the thesis, the authors manually and
arbitrarily prepared an initial shift plan in (Zwick et al., 2021). These researchers wrote a
shift plan with 30 number of driver (shift and break) schedule having various shift timings
and break corridors. To test the shift optimizer model’s robustness and efficacy, the model
makes use of manually created initial solutions with 5 and 60 numbers of driver (shift and
break) schedule. The results of these three scenarios have been classified into three categories,
namely 5_shift_plan scenario, 30_shift_plan scenario, and 60_shift_plan scenario,
which are configured with different parameters settings internally.

36

Chapter 3 – Methodology Temperate and Cooling Schedules

3.9 Temperate and Cooling Schedules

3.9.1 Temperature

Temperature is used as a control parameter in the SA algorithm that decreases to simulate
cooling. The cooling is usually done iteratively and at slow speeds. A slow-speed cooling
ensures an extensive solution exploration in neighbourhood space. It is also possible to simulate
heating in the algorithm, which rapidly increases the temperature at specific iterations to
further the exploration stage. Nevertheless, the model does not need to implement this sudden
heating behaviour as the search space is discrete and not too vast. However, it is imperative
to set the initial temperature to a high value in the beginning and decide a gradual rate at
which it should cool (Norgren and Jonasson, 2016).

3.9.2 Cooling Schedules

The specific temperature reduction over time defines a cooling schedule. It is a crucial
process in determining the algorithm’s speed (Bogdanov, 2015). Therefore, selecting an
appropriate annealing schedule is one of the most critical aspects of the simulated annealing
algorithm, and numerous efforts have been made in this direction.

A cooling schedule is needs the following parameters:

3.9.2.1 Initial Temperature

Because of Metropolis’s acceptance probability equations’ dependence on temperature, the
solution space is more likely to be explored at high temperatures. The neighbour solution
is expected to be exploited at lower temperatures. A high value should be set to the initial
temperature to increase the likelihood of accepting a worse solution in the early stages. Too
low of an initial temperature will lose the global minima of the neighbour space. However,
a very high starting temperature will cause the algorithm to go back and forth within the
investigation space repeatedly. The result of this high starting point is a waste of valuable
computing time, and also, if there are no sufficient iterations, it may lead to the search failing
(Banchs, 1997c). Thus, defining the initial temperature value is crucial so that any new
neighbour solution is accepted only during a few early iterations of the cooling scheme. In
practice, determining the initial temperature can be difficult, so an a priori understanding of
the problem can help resolve it. The initial temperature can also use the procedure of (Nourani
and Andresen, 1998), who suggested that the initial temperature should be such that at the
temperature, the expected cost is within one standard deviation of the average cost. Keeping
the procedure in mind and several preliminary test runs, 10000 was fixed in all configuration
sub-models.

37

Chapter 3 – Methodology Temperate and Cooling Schedules

3.9.2.2 Decrementing temperature function or a cooling pattern

Concerning the shift optimizer model, a cooling pattern is outlined by how initial temperature
reduction should take place with increasing MATSim iterations. The temperature reduction or
cooling scheme is crucial for a successful search, as it influences the time the SA algorithm
spends in the search space. A cooling schedule can be static or dynamic and fast or slow. An
algorithm with a dynamic cooling schedule can adapt its temperature parameters. At the same
time, it is being lowered, as opposed to a static cooling schedule which has a fixed reduction
process (Aarts et al., 2005). The thesis only implements a fixed cooling schedule, which may
make the algorithm too complex. Authors (Romeo and Sangiovanni-Vincentelli, 1991a) argued
in the paper that implementing a cooling schedule effectively is imperative to speeding up
the process to achieve an optimal solution. Hence, let’s observe the various static cooling
processes that are commonly used in research:

• Linear: Simulation annealing is commonly implemented using the linear approach to
apply the temperature reduction cycle. With a linear cooling schedule, the temperature is
reduced by the same amount during the annealing process instead of sudden exponential
or logarithmic cooling reductions. Each time the annealing process is iterated, it is
lowered by the linear_factor or α amount. It is generally considered to be a slow cooling
process. Whose equation is given by:

Ti = T0 + i

α
× T0 (3.2)

Where, Ti is the instantaneous temperature at ith iteration, α is the constant value
that determines the cooling speed and T0 is the initial temperature

• Exponential: Pioneer researchers of SA in (Kirkpatrick et al., 1983) have created this
cooling criterion, and it is used as an example for comparing the various cooling criteria.
As the temperature gets lowered in each iteration, the factor reducing the temperature
exponentially (α) is multiplied by the initial temperature T0. Cooling temperature using
this method is undoubtedly the most common as it can be fast and slow depending on the
α value. Higher values of α result in slowest cooling. Smaller values cause excessively
rapid cooling, which may get stuck in the local optima because of no exploration time.
Good α values usually lie between 0.8 and 0.99 (Bohachevsky et al., 1986; Romeo and
Sangiovanni-Vincentelli, 1991b). Which is given by:

Ti = αi × T0 (3.3)

• Logarithmic: Given by:

Ti = c

ln (1 + i) = T0

1 + α× ln (1 + i) (3.4)

38

Chapter 3 – Methodology Temperate and Cooling Schedules

Introduced by (Geman and Geman, 1984), where c is an iteration-independent constant
of the ith iteration. Authors have claimed (Hajek, 1988) that this schedule guarantees
convergence to the global optima in an infinite amount of time when c is greater than or
equal to highest energy state or when α =1. Thus, the schedule is entirely impractical
due to the prolonged and asymptotically temperature reduction. Moreover, it does not
fit the Metropolis acceptance function due to its prolonged speed. As a result, it is rarely
used in practice. Nevertheless, a trade-off generally is seen between the cooling schedule
rate and the quality of solutions explored. A slow reduction in temperature produces
superior results but at the cost of longer computation time.

The linear approach equally favours exploration and exploitation time. Due to slow tempera-
ture reduction, exploration time is preferred to exploitation time in a logarithmic cooling scheme.
In comparison, the exponential cooling schedule may change its exploration or exploitation
time according to its speed. It forces a transition from exploration to exploitation much faster,
which is mainly preferred by researchers (Nourani and Andresen, 1998; Peprah et al., 2017).
Additionally, combinatorial optimization problems like the shift optimizer perform better with
exponential cooling as they discrete neighbour solution space (Wegener, 2005). Figure 3.7
shows the graphical representation of the cooling schedules.

Figure 3.7: Graphical representation of different Cooling Schedules

39

Chapter 3 – Methodology Temperate and Cooling Schedules

3.9.2.3 Final temperature or Stopping condition

A final temperature is the last temperature that the cooling schedule needs to reach before
the algorithm stops. A simulated annealing algorithm uses different stopping criteria based it’s
the neighbourhood space. A more expansive neighbourhood solution space lets the stopping
criteria be more flexible. Flexibility means the stopping condition may become hybrid, changing
over time. Whereas narrow and discrete spaces have a fixed termination criterion (Banchs,
1997c).

Since it has been established that the search space for a new driver shift (and break)
schedules solution is discrete and less expansive, a fixed termination condition is suitable. The
criteria for obtaining the desired accuracy must, however, be considered more carefully when
doing a stand-alone global search (Banchs, 1997c). As a result, the number of iterations
criterion was chosen as running simulations in MATSim iteratively was an essential process
in the model. Therefore, setting the final temperature criterion was not done explicitly. The
ITERATIONS parameter, which is a temperature-independent value, should be large enough
not to stop the search (Banchs, 1997b) prematurely. Hence, many iteration values have been
tested for this thesis to know which value yields complete results. As the run time of the
Simulated Annealing algorithm is highly influenced by the number of simulation iterations, the
small study service areas resulted in a run time of 1/2 hour for 200 iterations. It is not high in
itself, but because the model is not calibrated with the suitable parameters, it needs several
independent runs, making the total run quite huge. Also, testing the model’s performance on
a more significant area will increase the run time.

40

Chapter 3 – Methodology Objective Function - cost of solution

3.10 Objective Function - cost of solution
The objective (cost) function is a crucial component in determining the size of the neighbour-

hood space of the solution and influencing the speed for a successful search (Moscato, 1993).
It is defined as the fitness or quality of a solution. A neighbour solution space should resemble a
stable topological structure with several small local optima as irregular search space with more
minor deep local minima is not favourable to the SA algorithm according to (Eglese, 1990). In
the context of the shift optimizer model, the neighbour solutions of the driver (shift and break)
schedule should be close to each other in terms of their cost (defined later). New solutions
with several high and low costs aren’t beneficial for the algorithm efficiency. It requires that
the new neighbour solutions either be similar in nature, i. e., having minor adjustments, or
have an appropriate objective function definition to make them as such. Therefore, the model
kept the goal of the optimization algorithm in mind to create the objective function definition
and included the costs of:

1. active shifts per hour: It governs the travel supply of the system and is based on the
number of hours drivers work. Since ride companies want a sufficient and efficient supply
of drivers working for them, it was essential to include this term.

2. rejections per hour: It occurs when the values in submitted requests per hour are higher
than the values active shifts per hour. Higher rejections would lead to higher costs.
Therefore, it was included to bring it down ultimately.

3. rejection rate per hour or the maximum rejection rate: It is an indispensable measurement
factor that needs to be brought down to improve the efficiency of the ride-pooling system.
Therefore, it is included as a hard constraint.

Cost of solution is calculated using:

min : Cost =

∑
Solutiondriver_hours × βhourly_rate

+∑
Rejectionsper_hour × βhourly_rejection_cost

+∑
ρper_violation

(3.5)

Where, all these parameters are in a LinkedHashMap data structure for easy computation in
the code:

• Solutiondriver_hours is the number of hours all the drivers work on a given service day.
The value is similar to the active shifts per hour parameter but not the same. The

41

Chapter 3 – Methodology Objective Function - cost of solution

reason they are different is that, break corridor is not considered in active shift per
hour variable. Since it is an inactive shift (0 in encoding), active shifts per hour
only takes active shifts (1 in encoding) into consideration. Whereas, Solutiondriver_hours
variable the whole duration of driver shift (and break) schedule. The summation of
Solutiondriver_hours gives the total hours all the drivers have worked on that particular
day.

• Rejectionsper_hour are the non-served rides summed up for each hour based on the
ride-pooling simulation in MATSim. It is exactly the same as the rejections per hour
value. The summation of this value gives the total number of rejections during the
services day.

• rejection rate per hour value is not explicitly used in the objective function; it is
instead added a penalty: ρ which per_violation is a hard constraint added to increase
the cost of solution drastically whenever the rejection rate exceeds the DESIRED_-
REJECTION_RATE set at 0.2 (or 80% acceptance of requests). The PENALTY
value for such violations should be kept very large to increase the cost of the solution.
Discussed later in the thesis is why 9999 was set. And, summation of such penalties
gives the total number of violations exceeding the desired rejection rate value.

• βhourly_rate or DRIVER_COST_PER_HOUR: It is a configurable constant set to
30 €/hr. Due to privacy and legal reasons, obtaining actual driver salaries was not
possible. However, it was only possible to read from the advertisement (MOIA’s Driver
advertisement) that tells that driver’s are paid 12 €/hr as their base salary. But
then, considering the company’s social security payments and other overhead costs, it
was roughly estimated to be around 30 €/hr. It has been kept constant through the
configuration settings.

• βhourly_rejection_cost or COST_PER_REJECTION_PER_HOUR: It is also a config-
urable constant value set to 10 €/hr. The value accounts for the missed rides revenue
and some penalties due to reduced passenger satisfaction. It has also been kept constant
through the configuration settings.

Note that the set parameter (driver cost, rejection cost or penalty) values are changeable and
can be set to a different number. However, in the scope of this thesis, these numbers were
selected and fixed for sub-models .

42

Chapter 3 – Methodology Constraints

3.11 Constraints
It is impossible to assign employees to specific shift (and break) schedules across many

occupations. It is not easy to satisfy all employees as different employees have different priorities
and preferences. There are also legal, company-specific, and demand-specific requirements
to consider in creating the schedules. Hence, it is a nightmare for the people who manually
make employees’ schedules. However, researchers overcame this problem mathematically; they
classified such requirements as constraints in an equation and tried to solve them without
violating these constraints (Wong et al., 2014). Not only do they constrain the perturbation
strategy by narrowing the search space of neighbour solutions, but they also help in giving
weights to independent variables in the objective function.

Similarly, these hard and soft constraints are adopted in shift and break scheduling (Kletzander
and Musliu, 2019). The objective function must not violate hard constraints, but it is permissible
to violate soft constraints at a cost (Chen et al., 2020). Since values of these constraints were
not generalizable due to a lack of literature, the model had to be tested with many arbitrary
constraint values. Later in the thesis, it has been discussed what these values were and how
well they yielded results. The shift optimizer model took soft constraints to reduce rejections
per hour and remove bad quality driver (shift and break) schedule. In comparison to hard
constraints, that narrows the neighbourhood search space due to the perturbation parameters
and improves the efficiency of the ride-pooling system.

3.11.1 Hard Constraints

3.11.1.1 Hard Constraints implicitly included in objective function but explicitly
used in perturbations

1. TIME_INTERVAL: It is the time bin size that for important for encoding the shift.

2. START_SERVICE_TIME: It is the time when all drivers start working, or the ride-
pooling company starts its operations. Used as the starting point for key of an encoded
shift. The time helps in acting as a limiting (lower bound) the textbfmoveSAShiftTimings
perturbation. Set at 0:00 or 0 seconds or midnight.

3. END_SERVICE_TIME: It is the time at which all drivers stop working or the time at
which ride-pooling companies stop their service operation, such that no shift (and break)
schedule can be assigned to a driver beyond this time. It is also used in determining
the length of an encoded shift, and acts upper limiting bound for moveSAShiftTimings
perturbation. Set at 30:00 or 108000 seconds or 6 AM the next day. This constraint
has not been limited to 24:00 or midnight so that night shifts or trips during night times
can be included.

43

Chapter 3 – Methodology Constraints

4. SHIFT_TIMINGS_MAXIMUM_LENGTH: As the name suggests, the maximum
length of shift timings (difference between end - start) of a legal shift. The parameter
is set to keep all shift schedules for a length of Eight and a half hours (8.5 hr) as a
legal requirement from the German Law. The extra half an hour includes the half-hour
breaks in these shifts. The parameter is used in the increaseSAShiftTimings perturbation
function as the upper bound for increasing the shift (and break) schedule’s length if it
is feasible. In reality, shifts may sometimes be bigger than 8.5 hours due to excessive
demand, but they have not been considered in the shift optimizer model. It has been
set to 30600 seconds (8.5 hr) in all configuration sub-models as a legal requirement by
ride-pooling companies in Germany

5. SHIFT_TIMINGS_MINIMUM_LENGTH: The minimum length of a legal shift
(and break) schedule is required by German Law. Drivers must work a minimum of five
and half hours (5.5 hr), which is what was legally set by the German government (für
justiz und verbraucherschutz, 2021). The Perturbation strategy decreaseSAShiftTimings
uses the parameter as a lower cap for not decreasing the length of a shift (and break)
schedule if feasible. It has been set to 19800 seconds (5.5 hr) in all configuration
sub-models for the same reason.

6. BREAK_CORRIDOR_LENGTH: It is the relief-time length that is assigned within
the break corridor. It is set to a fixed value of 1

2 hr or 1800 seconds.

7. BREAK_CORRIDOR_BUFFER: It is the time from break corridor’s earliestStart-
BreakTime and lastestEndBreakTime beyond which a perturbation of moving break
corridors can not take place. The buffer parameter is set to 2 hr or 7200 seconds, as
shifts cannot have breaks starting before 2 hours after start time or after 2 hrs before
end time. This serves as a limiting bound for the moveSABreakCorridor perturbation as
a break corridor’s earliestStartBreakTime and lastestEndBreakTime values can not fall
within these 2 hrs.

8. SHIFT_TIMINGS_BUFFER: It is the time from shift’s start or end beyond which
moving shift time perturbation cannot take place. It is set at 0. The parameter
serves a limiting bound for moveSAShiftTimings perturbation as a shift’s start and end
times can not fall within this number. It has not been set to different number other
than 0 because drivers at ride-pooling companies can start working exactly from the
START_SERVICE_TIME and stop working exactly at the END_SERVICE_TIME.

3.11.1.2 Hard constraints explicitly utilized in the objective function

The PENALTY parameter is added to the cost function 3.5 whenever a violation exceeds
the DESIRED_REJECTION_RATE. The model wants to search for an optimal solution
where the rejection rate per hour, specifically maximum rejection rate, is below 0.2 (20%).

44

Chapter 3 – Methodology Constraints

The value of the penalty is kept high enough to increase the cost of the solution whenever it
occurs. High costs make the solution worse for the algorithm and reject it in the exploitative
stage. If the penalty value is set too low, the algorithm will not distinguish between a good
quality solution from a bad quality once, thereby not improving the system’s efficiency. The
objective function must realize the hard perturbation constraints to meet legal and workplace
regulations.

3.11.2 Soft Constraints

3.11.2.1 Soft constraints implicitly kept in the objective function and explicitly
used in perturbations

1. SHIFTS_REMOVAL: The maximum number of shift (and break) schedules a solution
can lose to get a new perturbed solution. Removals are based on the random number
between 0 and the set value.

2. SHIFTS_INSERTION: A parameter opposite to the removals parameter adds or
inserts new driver shift (and break(schedules to the solution to produce a new neighbor
solution. The number of insertions is based on the random number between 0 and the
set value.

3. SHIFTS_MAXIMUM: The upper limit of the number of shift (and break) schedules
that a solution (shift plan) can have. Used as an upper cap for insertSAShifts perturbation
strategy. It should be based on the fleet size or the number of available drivers. Useful
parameters to keep the neighbor solutions moving in a specific region may lead to faster
convergence.

4. SHIFTS_MINIMUM: The number of shift (and break) schedules lower than this value
cannot be permitted. The parameter is only useful when the optimal solution’s number
of shift (and break) schedules is known. Used an lower cap for the removeSAShifts
perturbation function. The parameter should be set to a number that reduces the search
space for optimal solutions, as very low values may lead to unnecessary processing time.
A wide difference between SHIFTS_MINIMUM and SHIFTS_MAXIMUM may influence
the exploration time.

3.11.2.2 Soft constraints explicitly utilized in the objective function

1. DRIVER_COST_PER_HOUR: The parameter denotes the hourly salary paid to the
driver for his work defines this value. It is used in the objective function in 3.5 to reach
a solution with fewer driver shift (and break) schedules by minimizing the operational
costs of a ride polling company. It is multiplied by the sum of total driver hours on a
working day which is, in fact, based on the active shifts per hour.

45

Chapter 3 – Methodology Constraints

2. COST_PER_REJECTION_PER_HOUR: The parameter is defined as the cost
of rejecting a request in a ride pooling simulation in the cost function in 3.5. It
was introduced because a ride-pooling company incurred an indirect cost when the
system rejected the passenger’s request. After all, completing requests is what majorly
generates revenue for the company. Since it is considered as a soft constraint, some
rejections are allowed to occur, keeping in mind that rejections per hour doesn’t
exceed DESIRED_REJECTION_RATE, which is chosen to be 20%.

46

Chapter 3 – Methodology Perturbation Strategies

3.12 Perturbation Strategies
The term perturbation strategy or function is used to modify a solution containing all

encoded driver shift (and break) schedules, with a slight manipulation in their encoded values
leading to new encoded driver shift (and break) schedules. New neighbour solutions are
generated due to the minor change. These manipulations are random but within the predefined
constraints. The stochasticity occurs at two different levels during the perturbations. In the
first level, a first random number is chosen between 0 and the number of shift (and break)
schedules that determine the number and strategies of perturbations that will take place
on the solution. Then, in the next level, a second random number decides the number of
manipulations per strategy for each perturbation strategy. Please note that the perturbations
don’t produce many solutions simultaneously but instead create a single perturbed neighbour
solution in every iteration.

To explain the levels of randomization, let take an example, a 30 shifts solution is to
be perturbed. A first random number, let say 4, is taken. Then, 4 random perturbation
functions are applied to the solution, let say, 1) removeShifts 2) moveShift 3) moveShift
4) decreaseShiftTimings. After that, for each function type, a second random number is
selected, let us say 20, 6, 3, 15. Then 20 random shift (and break) schedules in the solution
are manipulated with removeShifts, 6 random shift (and break) schedules are manipulated
with moveShift perturbation, 3 random shift (and break) schedules are again manipulated with
moveShift perturbation, and lastly, 15 random shift (and break) schedules are manipulated
with decreaseShiftTimings. Note: The number of shift (and break) schedules is randomly
selected in any order, and the perturbation strategies are replaceable; they can be selected
more than once.

Perturbations occur at the end of every iteration so that the new solution perturbed on
the current solution can be taken as the following input for the MATSim iteration. Only the
current solution is perturbed and simulated. The accepted solution acts as a tracker to store
only those solutions with low cost compared to the previously accepted solution.

Perturbations affect the performance of the algorithm because it searches for neighbour
solutions. If perturbation strategies are not minute in nature, it may lead to a failed search.
However, no changes or minor changes may only increase the computational time and effort.
Therefore, these changes are problem-specific. Perturbation type is defined later in Section
4.1.1.

The following functions are the various strategies in pertubating a solution:

1. insertSAShifts: It creates a new neighbour solution with an increased number of shifts.
The new shift (and break) schedules inserted into the solution are the manipulated (with

47

Chapter 3 – Methodology Perturbation Strategies

other perturbations) shifts schedules already present in the solution. With an increase in
shifts, the number of active shifts per hour will have a value increase, thereby increasing
the cost of the solution; however, if a certain number of good shift (and break) schedules
are added, keeping the demand static, the cost may also decrease. Since the algorithm
is in its developing stage, shift (and break) schedule(s) inserted are flawed (as it is
taken from the solution itself) shift (and break) schedules. One can later improve this
technique. For example, in figure 3.8b the shift 6 and 7 (marked in red and randomly
selected) are added to the Shift Plan in figure 3.8a.

2. removeSAShifts: The function removes a random number of shift (and break) schedules
from the solution by significantly affecting the active shifts per hour. As a result, the
cost of a solution that depends on this value is susceptible to such manipulation. There
are chances of removing good quality shift (and break) schedules from the solution,
leading to increased cost. However, shift (and break) schedule removal generally leads
to decreased cost because of its direct influence. For example, in figure 3.9b, shift 3 ,
marked in green and randomly selected, is removed from the Shift Plan in figure 3.9a.

3. moveSABreakCorridor : The function is intended to relocate the whole break corridor
(from earliestStartBreakTime to lastestEndBreakTime) to shift to a new location and
place it within the bounds of BREAK_CORRIDOR_BUFFER. With this perturbation, a
minor change arises in the active shifts per hour thereby influencing the cost of the
solution. This minority in change is because a break corridor (2s in the encoding shift) is
smaller compared to the active shift. For example, in figure3.10b, the marked blue shifts
2 , 4 , 5 (randomly selected are perturbed by moving their break corridors to new timings
(locations), concerning figure 3.10a, resulting in changes in the earliestStartBreakTime
and lastestEndBreakTime values in them.

4. moveSAShiftTimings: The function relocates the shift (and break) schedule (from
start to end) to a new location, not violating SHIFT_TIMINGS_BUFFER or the service
time (from START_SERVICE_TIME to END_SERVICE_TIME). Major changes occur
in the active shifts per hour with this perturbation, directly influencing the number of
active shifts (1s in the encodings). For example, in figure 3.11b, the marked blue shifts
4 are shifted to new timings (locations), concerning figure 3.11a, resulting in changes in
the start and end times.

5. increaseSAShiftTimings: This perturbation increases the shift (and break) schedule’s
length by elongating the duration of shift (and break) schedule times only if it is under the
SHIFT_TIMINGS_MAXIMUM_LENGTH parameter. The elongation is done through
bringing the shift’s start time closer to START_SERVICE_TIME and shift’s end time
closer to END_SERVICE_TIME. Concerning the encoded shift, more number of 1s are
added to shift (and break) schedule SHIFT_TIMINGS_BUFFER. The elongation length

48

Chapter 3 – Methodology Perturbation Strategies

or the number of 1s are also based on randomness. The influence on active shifts per
hour is that it increases the number of active shifts on a few time bins indexes during
the service time. For example, in figure 3.12b, all the blue-marked shifts from 1 to 5 are
perturbed by elongating (if possible) their original timings (locations) in figure 3.12a,to
new timings resulting in an increase in the duration of the shift (and break) schedules’
timings

6. decreaseSAShiftTimings: This perturbation is directly opposite to the perturbation
mentioned above, where it randomly decreases the length of the shift (and break) schedule
or removes number of random 1s from the shift. The SHIFT_TIMINGS_MINIMUM_-
LENGTH parameter is kept into consideration, as shift’s duration cannot be lower than it.
The effect on active shifts per hour is the opposite of what increaseSAShiftTimings
perturbation has on it. For example, in figure 3.13b, the blue-marked shift (and break)
schedules 2 and 5 are perturbed by shrinking (if possible) their original timings (locations)
in figure 3.13a to new timings resulting in a decrease in the duration of the shift (and
break) schedules.

Note that colour schemes in the figures below are just for explanation and have no importance
in the model.

49

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
In
se
rt

Sh
ift
s
Pe

rt
ur
ba
tio

n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

50

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
Re

m
ov
e
Sh

ift
s
Pe

rt
ur
ba
tio

n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

in

51

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
M
ov
e
Br

ea
k
Co

rri
do
rP

er
tu
rb
at
io
n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

52

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
M
ov
e
Sh

ift
Ti
m
in
gs

Pe
rt
ur
ba
tio

n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

53

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
In
se
rt

Sh
ift

Ti
m
in
gs

Pe
rt
ur
ba
tio

n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

54

Chapter 3 – Methodology Perturbation Strategies

(a
)
O
rig

in
al

Sh
ift

Pl
an

-U
np

er
tu
rb
ed

(b
)
D
ec
re
as
e
Sh

ift
Ti
m
in
gs

Pe
rt
ur
ba
tio

n
on

th
e
ab

ov
e
O
rig

in
al

Sh
ift

Pl
an

55

Chapter 4

Results

This chapter presents the results of the Shift Optimizer Model that was specifically
designed using a Simulated Annealing algorithm to optimize driver shift (and break) schedules
in ride-pooling situations.

Since MATSim and the Shift and Break extension are written in Java, it was also used to
generate output data. Meanwhile, (Python) was used to analyze the output results and plot
them. Iterative simulations of MATSim and outcome analyses were executed on a 32 GB
RAM, 3.00GHz Intel(R) Xeon(R) ES-1660v3 processor, where every iteration lasted for around
15 seconds. Thus, it meant that for 200 iterations, it took approximately 1

2 hour, which was
not too slow individually, but when combined with several other sub-model runs, it was.

The chapter also discusses the numerous configuration parameters necessary for the conver-
gence rate, quality of solutions, and neighbourhood solution search space in the model. After
that, the sub-model scenarios are described and compared to evaluate the model’s performance
and resiliency (ability to produce a similar final optimized solution from different starting
solutions). Later, all the findings are presented.

56

Chapter 4 – Results Configuration Parameters

4.1 Configuration Parameters
Several researchers from different fields have concluded that simulation annealing requires

fine-tuning the various parameters involved in the algorithm to achieve good results (Banchs,
1997c; Park and Kim, 1998; Catoni, 1998; Kundu et al., 2008; Bellio et al., 2016; Jackson
et al., 2017). As is true with any SA algorithm, the SA algorithm in this thesis uses numerous
parameters that must be adjusted and set. It is imperative to set these simulated annealing
parameters appropriately to reduce run times and reduce the neighbourhood search space. The
various parameters can be categorized into two groups:

4.1.1 Algorithm Specific Parameters

Specific parameters, such as these, are common to all implementations, i.e., they are unique
to SA algorithms and have a certain influence on the quality of the optimal solution (Arenas
et al., 2010).

• INITIAL_TEMPERATURE: A temperature value equal to this parameter determines
the system’s thermal energy in annealing thermodynamics. As mentioned in the previous
subsubsection 3.9.2.1 a relatively high value should be set (Alrefaei and Andradóttir,
1999). The temperature should be reduced at an appropriate rate in an adequately
scheduled cooling process. To set this parameter, we fixed a random temperature value
and checked the acceptance ratio for early iterations to determine if we should keep the
randomly fixed temperature. The acceptance ratio was the number of accepted worse
solutions. The SA algorithm needs to accept less optimal solutions in early iterations
to escape local minima. For all initial shift plan scenarios and their sub-models, the
parameter was set to a fixed value: 10000.

• COOLING_SCHEDULE: This parameter indicates how gradual the temperature
decrease should be at each simulation iteration. Thus, the temperature should be close
to 0 or the predefined final temperature upon completing all simulation iterations. Since
Exponential cooling schedule is a commonly chosen scheme because of its robustness,
malleability, and fast performance (Gonzales et al., 2015; Catoni, 1998), it was also
chosen for the shift optimizer model. The thesis study also acknowledges the exponential
cooling scheme’s capabilities and uses the scheme with varying cooling speeds. The
speeds were altered by changing the ALPHA values, which were within the range 0.85
and 0.99. The lower the ALPHA value, the faster the cooling and vice versa. Therefore,
EXPONENTIAL cooling schedule with different cooling speeds was chosen for the
Shift Optimizer model. Furthermore, it was also assessed later in the chapter what value
of ALPHA gave the best results.

• PERTURBATION_TYPE: Perturbation describes changing an existing solution by

57

Chapter 4 – Results Configuration Parameters

moving within its physical system or changing its state. Since each movement was
governed by stochasticity (randomness), a new solution could be optimal or less optimal
based on the cost function. The parameter described here is a method of using several
perturbation techniques simultaneously in a single iteration. The method types are
described as the following:

– WEIGHTED: The probability of selecting a particular perturbation strategy is
influenced by its weights. The weights are pre-assigned by the user so that this
method can perturb the solution majorly with strategies that higher weights and
minorly with lesser weighted strategies. Therefore, larger weights will increase the
likelihood of a perturbation function being applied to the current solution in every
iteration and vice versa. Because all weights have to be assigned to each Perturba-
tion Strategies method as percentages, the sum of their cumulative weights has to
be equal to 100. Several WEIGHTED sequences with varied weights are discussed
later in the chapter. Example: 4.1, that the last weight is the cumulative weight of
100, telling us that the chances of removeSAShifts is 10%, insertSAShifts is
10%, moveSABreakCorridor is 25%, increaseSAShiftTimings is 25% and so
on.

Table 4.1: Example of a weighted perturbation type

Perturbation Strategy Weights
REMOVE_SHIFT_WEIGHT 10
INSERT_SHIFT_WEIGHT 20

MOVE_BREAK_CORRIDOR_WEIGHT 45
MOVE_SHIFT_TIMINGS_WEIGHT 70

INCREASE_SHIFT_TIMINGS_WEIGHT 85
DECREASE_SHIFT_TIMINGS_WEIGHT 100

– RANDOM: With this method type, perturbation techniques are applied randomly
to the current solution. They do not have weights attached to any of the per-
turbation methods, as any strategy could perturb the solution. It would not be
useful to use this method type as the many perturbations would result in useless
neighbourhoods since they are influenced by specific perturbations techniques. It
is only appropriate to use the method if the user is uncertain where the optimal
solution lies in the neighbourhood.

(Hentschke and Reis, 2003) stated that the standard SA algorithms use random pertur-
bations, but greedy perturbations were aimed at a particular search space and converge
faster in them. Despite producing faster convergence, the results may worsen after
getting stuck in a local minimum. WEIGHTED is a mix of both types, random and
greedy. Perturbations weights in the sub-model were not derived from literature but

58

Chapter 4 – Results Configuration Parameters

taken after trial and error. The WEIGHTED is also greedy in some sense because
when the model is calibrated after several runs, appropriate weights can lead to faster
convergence.

• ITERATIONS: This parameter specifies when should a new neighbour solution be
generated to substitute the current solution. (Lundy and Mees, 1986) describes it as a
state where it should be of some decreasing temperature value. The shift optimizer model
in the thesis needs a relatively high number of iterations values to ensure convergence.
Later in the chapter, the iteration values are analyzed for their importance in convergence.
The number of iterations that yielded the best result is also identified.

4.1.2 Objective Function Parameters

The cost of solution is sensitive to the constraints discussed previously in the thesis in
section 3.11 and has a significant influence in yielding optimal solutions. So, they also discussed
here.

• DRIVER_COST_PER_HOUR: A soft constraint parameter of the objective function
reflects the influence that the number of driver hours has on the solution cost. For this
thesis model, 30 €/hr was considered.

• COST_PER_REJECTION_PER_HOUR: An additional soft constraint that con-
tributes to keeping rejections per hour in check. As 10 €/hr is set for the model, it means
that for every rejection in simulation, 10 will be added. The algorithm will therefore try
to improve the solution as the cost rises.

• PENALTY: It refers to a hard constraint parameter that has been set to a high value
to suddenly increase the solution’s cost when a violation of the rejection rate occurs.
The violation occurs when the rejection rate per hour consists of values that exceed
the desired rate. The algorithm will always reject solutions with several violations. The
rejection of such solutions leads to ultimately obtaining a solution with the least or no
violations. The value is set to 9999 for all different sub-models and will be discussed for
its significance.

4.1.3 Perturbation Strategy Parameters

Defining perturbation parameters specifies the specifications that control how an encoded
individual (shift plan) is designed and the size of the neighbourhood search space for optimal
solutions. New designs of an encoded solution lead to a new neighbour solution. The
parameters are further divided into two groups, namely:

59

Chapter 4 – Results Configuration Parameters

• Rigid Value Parameters: Although these parameters are changeable, they are fixed in the
scope of the thesis. They will always be fixed to a constant value in all the simulation
runs or sub-models. See table 4.2.

• Flexible Value Parameters: These parameters are also changeable and have been con-
figured in the same way. The flexible parameters have a different value with different
simulation runs or sub-models. See table 4.3.

The flexible parameter values in this table 4.3 are used in combination with the other. For
example, the SHIFTS_INSERTION and SHIFTS_REMOVAL are simulated together with
different configurations in the sub-models: [2, 2], [10, 10], [20, 20]. Here, a sub-model will
be set to 2 for SHIFTS_REMOVAL and 2 for SHIFTS_INSERTION. They are not set to 2
removals with 10 insertions or 20 removals with 2 insertions. The values are kept the same for
both removals and insertions. Even though like described before, the configuration parameters
are Fixed in the algorithm-specific and objective-function parameters or Rigid in perturbation-
function parameters, they are not always constant. These configuration parameters can be
changed to other values for different sub-model scenarios, different study areas, different
settings, or even different analyses. However, in the scope of this thesis, the parameters that
have either been Fixed or Not Fixed are described below, showing an overview:

60

Chapter 4 – Results Configuration Parameters

Table 4.2: Perturbation parameter descriptions and their rigid values

Perturbation
Parameters Description Value

TIME_INTERVAL Time bin size. Important for encoding
shift and break schedule appropriately.

1/2 hr or
1800

START_SERVICE_TIME
Time at which DRT service starts its

operations and first key of the value 0 in
the encoded shift (Figure 3.6)

0

END_SCHEDULE_TIME
The time when DRT service stops it

operations and last key of the value 0 in
the encoded shift (Figure 3.6)

30 hr or
108000

SHIFT_TIMINGS_-
MAXIMUM_LENGTH

Maximum duration of a shift. The
difference between start and end times
should always be smaller than this value

8.5 hr or
30600

SHIFT_TIMINGS_-
MINIMUM_LENGTH

Minimum duration of a shift. The
difference between start and end times
should always be greater than this value

5.5 hr or
19800

BREAK_CORRIDOR_-
LENGTH

Predefined fixed duration of a break
within a shift

1/2 hr or
1800

BREAK_CORRIDOR_-
BUFFER

The intermediate duration between: 1)
start time and earliestStartBreakTime 2)

end time and lastestEndBreakTime
2 hr or 7200

SHIFTS_MINIMUM
To maintain a size fluctuation above this

value, a solution must maintain a
minimum number of shifts

1

SHIFTS_MAXIMUM
To maintain a size fluctuation below this

value, a solution must maintain a
maximum number of shifts

100

SHIFT_TIMINGS_BUFFER
The intermediate duration between: 1)
START_SERVICE_TIME and start time 2)
END_SCHEDULE_TIME and end time

0

61

Chapter 4 – Results Configuration Parameters

Table 4.3: Perturbation parameter descriptions and their flexible values

Perturbation
Parameters Description Value Range

SHIFTS_INSERTION
A random integer number less than this
value determines the number of shifts
that will be inserted into the solution

[2, 10, 20]

SHIFTS_REMOVAL
A random integer number less than this
value determines the number of shifts
that will be removed from the solution

[2, 10, 20]

Table 4.4: Overview of Fixed or Not Fixed configuration parameters in the scope of the thesis

Configuration Parameters Fixed or Not Fixed
INITIAL_TEMPERATURE Fixed at 10000

COOLING_SCHEDULE Fixed at EXPONENTIAL cooling
system

PERTURBATION_TYPE Fixed at WEIGHTED perturbation
strategies, but Not Fixed with weights

ITERATIONS Not Fixed
DRIVER_COST_PER_HOUR Fixed at 30

COST_PER_REJECTION_PER_HOUR Fixed at 10
PENALTY Fixed at 9999

All rigid Perturbation Parameters Fixed at their respective settings
described in table 4.2

All flexible Perturbation Parameters Not Fixed at their respective settings
described in table 4.3

62

Chapter 4 – Results Model Evaluation Procedure

4.2 Model Evaluation Procedure
An empirical approach is used to assess the implementation of the Simulated Annealing

algorithm’s strength and performance in the Shift Optimizer model. The strength or
resiliency of an SA algorithm is given by its ability to reach the same optimized solution from
different input variables (initial solutions) while keeping all other input variables constant. On
the other hand, the performance of an SA algorithm is based on its execution time, complexity,
and computational effort (Akinwale et al., 2012). The performance of algorithms is typically
evaluated by comparing these metrics with other algorithm’s. However, since Simulated
Annealing is the only algorithm implemented in this thesis, the factors that influence the
measurements have been discussed.

To avoid confusion, a sub-model is different from a shift optimizer model as it has
different configuration values and their specific initial solution. So, a sub-model is a copy of
the general shift optimizer model with different parameters.

The strength of the SA algorithm is tested by using different initial shift plans (solutions)
in each sub-model. It is measured based on the same shift size (number of shift (and break)
schedules), reduced rejection rate under 0.2 and very low average rejection rate. Therefore, if a
sub-model solves with similar numbers, the model is resilient or strong. Not many sub-models
were required to be run for testing, but they were tested with only three sub-models for the
three different starting solutions (5, 30, 60).

Creating a starting solution: Each shift plan is manually created with a different number
of random driver shift and break schedules, then classified into three different scenarios, namely
5_shifts, 30_shifts and 60_shifts. For example, the 5_shifts scenario, it means, the initial
Shift Plan will randomly contain 5 shift (and break) schedules. As evident from the prefix
value on ”_shift”, it represents the number of shift and break schedules created.

In contrast, the parameter’s influence on the algorithm’s performance is examined by running
several sub-models. The influence of Fixed values (given in table 4.4) are not evaluated
explicitly in this thesis but were discussed on their performance likelihood.

63

Chapter 4 – Results Sub-Model Configuration and Description

4.3 Sub-Model Configuration and Description
All of the sub-model combinations and their various parameter settings that were simulated

and analyzed during the thesis are presented in table 4.5. Each sub-model combination was
simulated for each initial (5, 30, 60) solution. Thus, 3 X 54 models were run in total during
the thesis.

The general idea behind these configurations is that the Not Fixed parameters are different
in different sub-model. All the values were arbitrarily chosen or decided after several preliminary
test runs (hit and trial). They were not based on literature, as SA algorithms are usually
problem-specific.
PS: the names of the parameters variables have been changed to lower case to fit the page.
Here is the explanation of each parameter in the sub-model:

1. configuration: It denotes each combination of the configuration or the sub-model
number.

2. alpha: It is a factor representing the speed at which the Exponential cooling occurs.
Arbitrary numbers between [0.8, 0.99] were considered: 0.8, 0.85, 0.88, 0.9, 0.95,
0.99. These small differences between the numbers hugely affect the temperature
reduction graphs. Selecting an appropriate alpha value is important for the algorithm’s
convergence rate.

3. rejection_cost: Reason for choosing the cost has been described here in subsubsec-
tion 3.11.1.2

4. penalty: This parameter value influences the maximum rejection rate of the finally
accepted solution. The previous discussion on PENALTY established that a high penalty
value is good for the cost function; setting it to 1000 instead of 9999 gave poor maximum
rejection rate values when tested in the preliminary test runs. The reason for choosing
cost has been described in subsubsection 3.11.2.2.

5. driver_cost: Reason for choosing cost has been described in subsubsection 3.11.1.2.

6. shift_min: The parameter denotes the minimum number of driver shift (and break)
schedules that need to be kept in the optimized solution. The value should be kept to a
minimum as the number of shift (and break) schedules that improves the solution’s cost
is unknown. Naturally, setting the parameter set to the fleet size is beneficial in more
extensive study areas. However, low numbers in such large scenarios will only increase
the computational time as the algorithm will search in regions where it is not required.

7. shift_min: The parameter denotes the maximum number of driver shift (and break)
schedules that need to be kept in the optimized solution. The parameter should be

64

Chapter 4 – Results Sub-Model Configuration and Description

set to a reasonably large number. Too small numbers will lead to failed searches as
one cannot predict the number of good shift (and break) schedules in an optimized
solution. Similarly, a very high value would increase the run time of algorithm searching
in unwanted regions.

8. shift_removal: The value determines the random number of shift (and break) schedules
removed from the solution during perturbation. In theory, the value should not be above
the number of shifts ”n” in the initial shift plan. So when a random number above ”n”
gets selected, it would manipulate the solution and waste run time. A too low number
compared to the initial solution is also not good, as it will not make much of a difference
to the solution. That is why (2, 10, 20) were chosen to check if 1) 10 or 20 are too big
for 5_shift scenario setting or 2 is too small for 60_shift scenario setting.

9. shift_insertion: Similarly, in theory, the insertion parameter should also depend on
the shift size of the initial shift plan (solution). The value determines the number of
shift (and break) schedules inserted into the solution to find a new neighbour solution.
Since the algorithm does not specifically insert good shift (and break) schedules into the
solution, keeping them low in the shift optimizer model was better. Alternatively, it is
better to keep the weights of insertion perturbation low.

10. weights of perturbation strategies: Various weighting patterns are tested in the
model algorithm to search for new solutions. In theory, all perturbations strategies other
than remove_weight and insert_weight perturbation techniques should have higher
weights as they manipulate the already present driver shift (and break) schedules in
the solution and are less sensitive to the solution’s cost. In this sense, there is only a
slight change in the cost. In contrast, inserting or removing shift (and break) schedules
from the solution changes the derived active shifts per hour value drastically, causing
major changes in the cost. The changes are not slight when using these perturbation
techniques.

11. iterations: This parameter defines the algorithm’s exploration and exploitation time. In
theory, SA algorithms find the best solution in infinite time or iteration when that time
is quite high. So the sub-models are tested with different iteration values ranging from
200 to 800.

There are three metrics that defined the shift optimizer model’s strength (Please refer to the
table 4.6 for results):

1. accepted_shift_size: It is the size or number of driver shift (and break) schedules in the
final output solution (optimized).

2. accepted_cost: The final cost of the final optimized solution.

65

Chapter 4 – Results Sub-Model Configuration and Description

3. accepted_max_rejection_rate: The maximum rejection rate of the final optimized
solution that denotes the largest value in the rejection rate per hour variable.

4. accepted_average_rejection_rate: The average rejection rate of the final optimized
solution that denotes the mean value in the rejection rate per hour variable.

The figure in Appendix: 1a shows the iterative progression of the cost of the least-cost accepted
solution with the cost of varying simulated current solutions. As one can see, it is the accepted
solution that is becoming the current solution at iterations with a low cost. Similarly, the
figure in Appendix: 1b shows hows the iterative progression of the least-cost accepted solution
with its maximum rejection rate and average rejection rate values.

66

Chapter 4 – Results Sub-Model Configuration and Description
Ta

bl
e
4.
5:

Al
ls
ub

-m
od

els
wi
th

th
e
di
ffe

re
nt

Fi
xe
d
an
d
No

tF
ixe

d
pa
ra
m
et
er

se
tti
ng

s

co
nfi

gu
ra
tio

n
al
ph

a
re
je
ct
io
n_

co
st

pe
na
lty

dr
iv
er
_
co
st

sh
ift
s_

m
in

sh
ift
s_

m
ax

sh
ift
s_

re
m
ov
al

sh
ift
s_

in
se
rt
io
n

re
m
ov
e_

w
ei
gh

t
in
se
rt
_
w
ei
gh

t
m
ov
e_

br
ea
k_

w
ei
gh

t
m
ov
e_

sh
ift
s_

w
ei
gh

t
in
cr
ea
se
_
w
ei
gh

t
de
cr
ea
se
_
w
ei
gh

t
ite

ra
tio

ns

1
0.
8

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

2
0.
8

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

3
0.
8

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

4
0.
85

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

5
0.
85

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

6
0.
85

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

7
0.
88

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

8
0.
88

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

9
0.
88

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

10
0.
9

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

11
0.
9

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

12
0.
9

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

13
0.
95

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

14
0.
95

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

15
0.
95

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

16
0.
99

10
99

99
30

1
10

0
2

2
10

45
60

75
85

10
0

20
0

17
0.
99

10
99

99
30

1
10

0
10

10
10

45
60

75
85

10
0

20
0

18
0.
99

10
99

99
30

1
10

0
20

20
10

45
60

75
85

10
0

20
0

19
0.
8

10
10

00
30

1
10

0
2

2
10

20
45

70
85

10
0

30
0

20
0.
8

10
10

00
30

1
10

0
10

10
10

20
45

70
85

10
0

30
0

21
0.
8

10
10

00
30

1
10

0
20

20
10

20
45

70
85

10
0

30
0

22
0.
8

10
99

99
30

1
10

0
2

2
10

20
45

70
85

10
0

30
0

23
0.
8

10
99

99
30

1
10

0
10

10
10

20
45

70
85

10
0

30
0

24
0.
8

10
99

99
30

1
10

0
20

20
10

20
45

70
85

10
0

30
0

25
0.
8

10
10

00
30

1
10

0
2

2
25

35
45

70
85

10
0

30
0

26
0.
8

10
10

00
30

1
10

0
10

10
25

35
45

70
85

10
0

30
0

27
0.
8

10
10

00
30

1
10

0
20

20
25

35
45

70
85

10
0

30
0

28
0.
9

10
10

00
30

1
10

0
2

2
10

20
45

70
85

10
0

30
0

29
0.
9

10
10

00
30

1
10

0
10

10
10

20
45

70
85

10
0

30
0

30
0.
9

10
10

00
30

1
10

0
20

20
10

20
45

70
85

10
0

30
0

31
0.
9

10
99

99
30

1
10

0
2

2
10

20
45

70
85

10
0

30
0

32
0.
9

10
99

99
30

1
10

0
10

10
10

20
45

70
85

10
0

30
0

33
0.
9

10
99

99
30

1
10

0
20

20
10

20
45

70
85

10
0

30
0

34
0.
9

10
10

00
30

1
10

0
2

2
25

35
45

70
85

10
0

30
0

35
0.
9

10
10

00
30

1
10

0
10

10
25

35
45

70
85

10
0

30
0

36
0.
9

10
10

00
30

1
10

0
20

20
25

35
45

70
85

10
0

30
0

37
0.
88

10
99

99
30

1
10

0
2

2
10

15
20

55
85

10
0

40
0

38
0.
88

10
99

99
30

1
10

0
10

10
10

15
20

55
85

10
0

40
0

39
0.
88

10
99

99
30

1
10

0
20

20
10

15
20

55
85

10
0

40
0

40
0.
88

10
99

99
30

1
10

0
2

2
10

15
20

55
85

10
0

80
0

41
0.
88

10
99

99
30

1
10

0
10

10
10

15
20

55
85

10
0

80
0

42
0.
88

10
99

99
30

1
10

0
20

20
10

15
20

55
85

10
0

80
0

43
0.
88

10
99

99
30

1
10

0
2

2
15

20
30

55
85

10
0

40
0

44
0.
88

10
99

99
30

1
10

0
10

10
15

20
30

55
85

10
0

40
0

45
0.
88

10
99

99
30

1
10

0
20

20
15

20
30

55
85

10
0

40
0

46
0.
88

10
99

99
30

1
10

0
2

2
15

20
30

55
85

10
0

80
0

47
0.
88

10
99

99
30

1
10

0
10

10
15

20
30

55
85

10
0

80
0

48
0.
88

10
99

99
30

1
10

0
20

20
15

20
30

55
85

10
0

80
0

49
0.
88

10
99

99
30

1
10

0
2

2
5

10
20

50
80

10
0

40
0

50
0.
88

10
99

99
30

1
10

0
10

10
5

10
20

50
80

10
0

40
0

51
0.
88

10
99

99
30

1
10

0
20

20
5

10
20

50
80

10
0

40
0

52
0.
88

10
99

99
30

1
10

0
2

2
5

10
20

50
80

10
0

80
0

53
0.
88

10
99

99
30

1
10

0
10

10
5

10
20

50
80

10
0

80
0

54
0.
88

10
99

99
30

1
10

0
20

20
5

10
20

50
80

10
0

80
0

67

Chapter 4 – Results Sub-Model Configuration and Description

Table 4.6: Model results of sub-models (37 to 54) with different initial solutions (5_shift,
30_shifts, 60_shifts)

configuration initial_shift_size accepted_shift_size accepted_cost accepted_max_rejection_rate accepted_average_rejection_rate

37 5_shifts 8 2040 0.15 0.022079125
38 5_shifts 9 2295 0.142857143 0.01809604
39 5_shifts 7 1960 0.185185185 0.028849206
40 5_shifts 7 1975 0.19047619 0.034845343
41 5_shifts 9 12229 1 0.142906998
42 5_shifts 9 2445 0.185185185 0.049686949
43 5_shifts 8 2055 0.185185185 0.025374379
44 5_shifts 8 22458 1 0.081661898
45 5_shifts 7 1980 0.185185185 0.016071429
46 5_shifts 6 32087 1 0.085421724
47 5_shifts 8 1875 0.185185185 0.167321343
48 5_shifts 8 2035 0.1 0.0140384
49 5_shifts 14 2705 0.175 0.020981538
50 5_shifts 8 12274 1 0.046900871
51 5_shifts 8 1920 0.175 0.008227513
52 5_shifts 8 1925 0.185185185 0.015113035
53 5_shifts 8 11904 1 0.11622575
54 5_shifts 8 32722 1 0.094772727
37 30_shifts 7 1755 0.178571429 0.051989071
38 30_shifts 8 1970 0.1 0.004567901
39 30_shifts 9 1985 0.148148148 0.017896825
40 30_shifts 8 2055 0.185185185 0.021038961
41 30_shifts 7 1700 0.111111111 0.013910935
42 30_shifts 8 1870 0.148148148 0.016748838
43 30_shifts 8 2170 0.148148148 0.040116615
44 30_shifts 7 1905 0.185185185 0.128086045
45 30_shifts 7 11819 1 0.299374633
46 30_shifts 8 1650 0.175 0.176078976
47 30_shifts 8 1995 0.175 0.033787478
48 30_shifts 8 2070 0.090909091 0.013422625
49 30_shifts 40 7350 0.148148148 0.019382716
50 30_shifts 11 2540 0.15 0.012006173
51 30_shifts 11 2445 0.185185185 0.025955726
52 30_shifts 24 14504 1 0.044029982
53 30_shifts 9 2340 0.185185185 0.041541842
54 30_shifts 9 2070 0.175 0.0314903
37 60_shifts 10 2070 0.142857143 0.03218201
38 60_shifts 8 1865 0.1 0.010808551
39 60_shifts 9 2295 0.185185185 0.078225349
40 60_shifts 8 1970 0.175 0.029655516
41 60_shifts 7 1600 0.175 0.238902801
42 60_shifts 8 1950 0.125 0.012407407
43 60_shifts 8 1905 0.148148148 0.024049291
44 60_shifts 9 1835 0.185185185 0.015656966
45 60_shifts 9 2015 0.111111111 0.017418202
46 60_shifts 8 2105 0.185185185 0.021210089
47 60_shifts 8 1955 0.185185185 0.036550964
48 60_shifts 11 2510 0.148148148 0.545852
49 60_shifts 55 9960 0.185185185 0.009907407
50 60_shifts 11 2115 0.185185185 0.014475309
51 60_shifts 11 2085 0.125 0.015019309
52 60_shifts 49 8960 0.175 0.010771605
53 60_shifts 8 1665 0.125 0.003530378
54 60_shifts 10 2030 0.185185185 0.02799807

68

Chapter 4 – Results Findings

4.4 Findings
The table 4.6 shows the aggregated results of the final outputs generated from the sub-

models: 37 to 54. As mentioned previously, these sub-models produced good results. Here it
has been discussed on why they were good. The good results are in terms of:

• Since the model’s objective was to reduce the driver hours, the algorithm reduced the
number of shift (and break) schedules in the optimized solution for almost all sub-models.
Not only that, most of the sub-models have arrived at more or less the same shift size
solution. This same search indicates the shift optimizer model’s resiliency to initial
solutions. Because of static demand, they should reach the same optimized solution.

• The other goal of the SA algorithm was to bring down the rejections per hour under the
DESIRED_REJECTION_RATE value. It also did for most cases, except in cases
where it became 1, which may be because the neighbour solutions were not the best in
the algorithm’s space. It may have been stuck in a local minimum. Further analysis is
still needed to reveal the truth.

• The other implicit aim was also realized after reducing the average rejection rate due to
the optimized solution. That is why the model’s objective function focused on reducing
the maximum rejection rate by placing the penalty factor in the function, as the average
rejection rate would have easily reduced simultaneously.

Therefore, the model works for most sub-models but is unsuccessful on a few of them. Let’s
discuss the observations that were seen after running all sub-models:

• The number of MATSim iterations definitely played a huge role in determining the
run time of the models. As literature also claims that SA guarantees a converges in
infinite time. It was also observed that a higher number of iterations lead to better
results, as seen in the table 4.6. The top three optimal cost solutions were found in
the sub-models with 800 iterations. Not only that, the least average rejection rate and
maximum rejection rate were also in sub-models configured with 800 iterations.

• One major reason why these 18 (37 to 54) sub-models shown in the table 4.4 yielded supe-
rior results was because the perturbation weights were kept higher for removeSAShifts,
increaseSAShiftTimings and decreaseSAShiftTimings techniques. The algorithm
spent more time perturbing these techniques. These perturbations tend to manipulate
the active shifts per hour value very easily. These then slightly affected the cost solution,
keeping the neighbours’ solution close. However, removing and inserting techniques were
very sensitive to the cost of the solution; for example, even a single insertion of driver
shift could have quickly increased the cost of the solution due to its direct effect on the
cost. This happens because the driver_cost acts as a weight and multiplication factor

69

Chapter 4 – Results Findings

to the additional driver shift insertions resulting in higher costs. One can argue that the
cost will reduce if good driver schedules are added, which is also true. Nevertheless, the
insertion technique was not the main focus during the study, so it was not developed
appropriately to add suitable shifts into the solution. Thus, slight perturbations are best
for the algorithm.

• The number of insertions and removals also affected the solution’s quality and
algorithm’s convergence rate. After careful analysis of sub-model results, it is seen that
this number should be based on the size of the initial solution of the sub-model. A
number larger than the size of the initial solution will not perturb the solution, or a
number too small will have no or negligible effect on the solution. As seen from the table
4.6, for 5_shifts sub-model, 53th and 54th configurations produced the worst results in
terms of shift size while the 52th configuration with 2 shift removals and insertions was
superior. It may be because the initial solutions were never perturbed gradually but
suddenly during the iterations. Alternatively, the 60_shifts sub-model did not see this
problem as the number of insertions and removals were well within 60. Even though,
53th and 54th configurations had high shift size, their cost was low. The large shift size
may be because of several small-length driver shift (and break) schedules present in the
solution. However, it is known for sure why this would have occurred.

• HHigher alpha values (like 0.99) did not produce a low-cost solution, as proclaimed
by (Peprah et al., 2017), other than a gradually cooling the temperature value. The
slow cooling schemes are similar to a linear decrease in temperature, which, as we know
(from subsubsection 3.9.2.2), will lead to a slow convergence rate due to increased
exploration time. Moreover, fast cooling schedules are not good for the algorithm as it
needs high-temperature values to accept a bad solution in early iteration. Thus, 0.88,
that is within 0.8 and 0.99, was chosen in the sub-models in table 4.6 which produced
promising results. Although the table shows positive outcomes, it is still not sufficient to
claim that the cooling rate increased the performance.

• Since the driver_cost and rejection_costs were not altered during any of the sub-
models, it is not known how sensitive these values are to the solution. However, the
penalty value was changed and tested in the preliminary runs. It was noticed that
high penalty values result in reduced maximum rejection rate. The reason is that high
penalties means high costs per violation in rejection rate per hour. Aditionally, since
the violation is to exceed 0.2 (DESIRED_REJECTION_RATE), solutions with many
violations will have a very high cost, thereby forcing the algorithm to look for better
solutions with no or few violations.

• It is also seen that sub-models concerning 5_shift scenarios in the table 4.6, resulted in
a very high costs and low shift sizes (41th, 44th, 46th, 50th, 52th, 53th, sub-models). It

70

Chapter 4 – Results Findings

is the expected behaviour, as small shift sizes will produce high rejections, increasing
the cost. However, what is concerning is that the max rejection rate isn’t under 0.2
for given sub-models. It may have happened either because the algorithm was getting
stuck in local minima or because the perturbation techniques did not work well in the
sub-models. A major limitation is the low test analysis of such concerning sub-models.
The sub-models needs to be rerun and tested to understand such discrepancies.

71

Chapter 5

Conclusion

To conclude the thesis, that begets the research question: Can a heuristics algorithm like
Simulated Annealing optimize shift and break schedules of drivers in ride-pooling services?
Based on the promising results of a few specific models presented in the thesis, it is safe to
assume that Simulated Annealing can optimize drivers’ schedules.

The model was simulated in MATSim several times, whose analyzed results indicated the
model’s robustness and performance. The simulations were carried out on the Study Area of
Holzkirchen town in Germany. The final solution of a few calibrated sub-models was quite
promising in having similar yet low shift sizes and low rejection rates for different starting
solutions. The maximum rejection rate in these sub-models was also under the predefined
desired rejection rate value of 0.2. Furthermore, the average rejection was also relatively low.
Reaching a similar optimized solution after changing the initial solutions indicates that these
sub-models or the model itself were resilient and robust. The other observations were that
these sub-models performed well with specific perturbation techniques when the solution was
perturbed majorly with them. Higher penalty values had helped in the reduction of maximum
rejection rate significantly, rapidly fast cooling schedules were not suitable for the algorithm,
the number of iteration was directly proportional to the run time of the model, and the number
of removals and insertion parameters should be well under the initial solution’s shift size.

Since the few sub-models that were calibrated on preliminary test runs had performed well,
it is safe to assume that the shift optimizer model will get better with more model tests runs.
Moreover, more test analyses are needed to confidently estimate the models’ parameters.

The final conclusion is that even though it showed a positive outcome, the model comes
with a set of its own limitations and limitations of the Simulated Annealing algorithm that it
employs. They have been discussed later in the chapter with the suggestions for future work.

72

Chapter 5 – Conclusion Model Limitations

5.1 Model Limitations
Like most models, this shift optimizer model is not without its limitations which are discussed

below. The model’s disadvantage is mainly due to the Simulated Annealing algorithm involved
in it and partially due to the primary development of it.
These are by:

• The Stimulated Annealing algorithm used in the model itself has several disadvantages
such as:

1. Run time: As cited in (Abramson, 1991; Banchs, 1997c; Catoni, 1998; Aarts
et al., 2005)], the algorithm requires much computational time to explore and
exploit the search space. In this case, the MATSim iterations need to be high for
MATSim to co-evolve with the shift schedules, undermining MATSim’s benefits as
a fast and dynamic simulation system. The run times of SA are high because of
the algorithm’s stochastic nature. The heuristic needs to be tailored to a specific
problem to solve the problem. The processing time is significantly reduced when
Simulated Annealing algorithms are combined with other problem-specific greedy
heuristics. It is also possible to reduce the burden on computational resources by
using parallel computing methods (Chu et al., 1999).

2. Tuning multiple parameters: SA involves numerous parameters, as we have
seen in section 4.1, and many authors also mention it in (Arenas et al., 2010;
Jackson et al., 2017). Fine-tuning these parameters happen to be another problem.
Furthermore, not tuning the parameters leads to a failed convergence in a limited
time. Moreover, the cooling scheduling needs to be an appropriate reduction scheme
as it dictates the algorithm’s convergence rate for finding the optimal solution.
Dynamic cooling schedules could yield better results in lesser times (Aarts and
Van Laarhoven, 1985). Setting suitable perturbation strategies and their weights
seems crucial in finding good results like in the table 4.6. Perturbation functions
create a valuable neighbourhood space for a combinatorial optimization problem
like the shift optimization model.

3. Initializing temperature and solution: The initial temperature is crucial to the
algorithm’s ability to avoid local minima by accepting worse solutions in early
iterations (Kirkpatrick et al., 1983). (Ben-Ameur, 2004) proposes a method to
calculate the initial temperature that is consistent with the algorithm’s acceptance
ratio while accounting for all cooling rates. Single solution-based techniques like
SA are difficult to use without a good starting point, and an unfeasible starting
point will lead to failed searches (Shojaee. et al., 2010).

• There are also three major disadvantages that addresses the issues with the proposed
model are:

73

Chapter 5 – Conclusion Model Limitations

1. Small scenario: The optimizer model has been tested on a small network with
positive results in most cases; however, it cannot be guaranteed that the model
will yield the same positive results for a more extensive network. Additionally, since
the model involves tuning many configuration parameters for its performance, its
parameters do not need to work with an extensive network. In that case, it is
necessary to re-calibrate the model.

2. Static demand: As the model was built on static demand, it can be enhanced
further by including a realistic dynamic travel demand. Since this model uses the
(Kuehnel et al., 2021-05) Shift and Break extension to simulate shift and break
schedules, the limitations of that extension apply to this model as well.

3. Initial version: TThe model is in its early stage, so several areas need improvement,
including the insertSAShifts perturbation technique that inserts random driver
schedules that are already present in the solution, which may not be the best
approach. Since most of the thesis time was devoted to developing and coding the
model, not many runs were conducted. Further testing and analysis will be needed.

74

Chapter 5 – Conclusion Future Work

5.2 Future Work
• Larger scenario: In order to increase the model’s confidence, it needs to be applied

and tested on a larger study area. There is also a higher possibility that the network
service area and the number of ride-pooling trip requests (demand) will increase in larger
areas. It will be interesting to see how well the model performs in such a situation.

• Addition of realistic elements:Since static travel demand was used in developing, the
model is not as accurate as it should be, so a dynamic demand is needed. In addition to
this change, the simulation could include several other parameters such as the vehicle’s
energy consumption, infrastructure in the area, other DRT modes (electric cars or buses),
and a combination of DRT modes and other modes.

• Combination with other heuristics: The shift optimizer model can be studied by
implementing a hybrid algorithm that was studied in (Bailey et al., 1997; Widl and
Musliu, 2010; Norgren and Jonasson, 2016) however, in the context of a ride-pool. As an
alternative, apply a regression model to estimate rejection rates and improve the model’s
performance. The optimizer model uses the estimated rejection rate to predict the cost
of solutions without actually simulating them. Multiple initial iterations can train the
regression model to predict solutions without simulating and reducing run time gradually.
Although this study was done during the thesis, it was not incorporated into the current
optimizer model. Here is the example of the estimated rejection rate per hour in figure
3 and the actual rejection rate per hour in figure 3. The estimated rejection rate was
based on the formula in (Militão and Tirachini, 2021).

• Parametric sensitivity analysis: Due to the model’s algorithm’s use of multiple
configuration parameters, a wide range of studies can be conducted to study how sensitive
these parameters are to the quality of the solution and the algorithm’s convergence rate.
During the thesis, only many parameters were Fixed, and only a few were Not Fixed. It
would be beneficial to explore a model with more flexibility in parameter configurations.

• Improving objective function: A further improvement to the objective function (cost)
could be achieved by adding variables such as VKT, detour time, or waiting time. All of
these variables contribute to improving the efficiency of the ride-pooling system.

This thesis’ research represents the first attempt to develop a heuristic algorithm to solve
combinatorial scheduling problems in a ride-pooling situation. It is my hope that the thesis
will establish the groundwork for future state-of-the-art research in the ride-pooling area.

75

Statement of Independent Work

I hereby certify that this thesis was written independently by myself without using any other
sources than those cited, and all passages and ideas taken from other sources are properly
cited. No earlier versions of this thesis have been submitted for assessment elsewhere.

Shivam Arora
Technical University of Munich

Qin Zhang
Professorship for Modelling Spatial Mobility,

Technical University of Munich

Nico Kühnel
MOIA GmbH, Hamburg, Germany

76

Chapter – Conclusion Future Work

(a
)
Ba

rp
lo
to

fa
cc
ep
te
d
so
lu
tio

n
th
ro
ug

h
ite

ra
tio

ns
an
d
th
e
co
st
so

fc
ur
re
nt

an
d
ac
ce
pt
ed

so
lu
tio

n
-B

as
ed

on
th
e
re
su
lts

of
th
e
co
nfi

gu
ra
tio

n
12

of
60
_
sh
ift

sc
en
ar
io

se
tt
in
g
in

ta
bl
e
4.
6

(b
)
Ba

rp
lo
to

fa
cc
ep
te
d
so
lu
tio

n
th
ro
ug

h
ite

ra
tio

ns
an
d
th
e
av
er
ag
e
an
d
m
ax
im

um
re
je
ct
io
n
ra
te

of
th
e
ac
ce
pt
ed

so
lu
tio

n
-B

as
ed

on
th
e
re
su
lts

of
th
e
co
nfi

gu
ra
tio

n
5
of

30
_
sh
ift

sc
en
ar
io

se
tt
in
g
in

ta
bl
e
4.
6

77

Chapter – Conclusion Future Work

Figure 2: Plot of rejected rate per hour

Figure 3: Plot of estimated rejection rate per hour

78

Chapter – Conclusion Future Work

Figure 4: Plot of active shifts per hour

Figure 5: Plot of dynamic submitted requests per hour

79

References

E.H.L. Aarts, J.H.M. Korst, and W.P.A.J. Michiels. Simulated annealing, pages 187–210.
Springer, Germany, 2005. ISBN 0-387-23460-8. doi: 10.1007/0-387-28356-0_7.

Emile HL Aarts and Peter JM Van Laarhoven. Statistical cooling: A general approach to
combinatorial optimization problems. Philips Journal of research, 40(4):193–226, 1985.

David Abramson. Constructing school timetables using simulated annealing: sequential and
parallel algorithms. Management science, 37(1):98–113, 1991.

Mauricio Acuna and J. Sessions. A simulated annealing algorithm to solve the log-truck
scheduling problem. Mathematical Research Summaries, pages 87–88, 01 2017.

C Akinwale, S Olatunde, E Olusayo, J Babalola, et al. Performance evaluation of simulated
annealing and genetic algorithm in solving examination timetabling problem. Scientific
Research and Essays, 7(17):1727–1733, 2012.

Arjan Akkermans, Gerhard Post, and Marc Uetz. Solving the shift and break design problem
using integer linear programming. Annals of operations research, pages 1–22, 2019.

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114:201611675, 01 2017. doi: 10.1073/pnas.1611675114.

Mahmoud H Alrefaei and Sigrún Andradóttir. A simulated annealing algorithm with constant
temperature for discrete stochastic optimization. Management science, 45(5):748–764,
1999.

M.G. Arenas, Juan Luis Laredo, Pedro Castillo, Pablo García-Sánchez, Antonio Mora, Alberto
Prieto, and Juan Merelo Guervós. Statistical analysis of the parameters of the simulated
annealing algorithm. In IEEE Congress on Evolutionary Computation, pages 1–8, 07 2010.
doi: 10.1109/CEC.2010.5586160.

Turgut Aykin. Optimal shift scheduling with multiple break windows. Management Science, 42
(4):591–602, 1996. URL https://EconPapers.repec.org/RePEc:inm:ormnsc:v:42:
y:1996:i:4:p:591-602.

RN Bailey, KM Garner, and MF Hobbs. Using simulated annealing and genetic algorithms
to solve staff-scheduling problems. Asia-Pacific Journal of Operational Research, 14(2):27,
1997.

Rafael E Banchs. "genetic algorithms. Research progress report, on Time Harmonic Field
Electric Logging Austin, University of Texas at Austin, 1997a. URL https://rbanchs.
com/publications/reports.html.

80

https://EconPapers.repec.org/RePEc:inm:ormnsc:v:42:y:1996:i:4:p:591-602
https://EconPapers.repec.org/RePEc:inm:ormnsc:v:42:y:1996:i:4:p:591-602
https://rbanchs.com/publications/reports.html
https://rbanchs.com/publications/reports.html

Rafael E Banchs. Gradient methods. Research progress report, on Time Harmonic Field
Electric Logging Austin, University of Texas at Austin, 1997b. URL https://rbanchs.
com/publications/reports.html.

Rafael E Banchs. Simulated annealing. Research progress report, on Time Harmonic Field
Electric Logging Austin, University of Texas at Austin, 1997c. URL https://rbanchs.
com/publications/reports.html.

Stephen E. Bechtold and Larry W. Jacobs. Implicit modeling of flexible break assignments in
optimal shift scheduling. Management Science, 36(11):1339–1351, 1990. ISSN 00251909,
15265501.

Andreas Beer, Johannes Gärtner, Nysret Musliu, Werner Schafhauser, and Wolfgang Slany.
Scheduling breaks in shift plans for call centers. In Proc. of the 7th Int. Conf. on the
Practice and Theory of Automated Timetabling, Montréal, Canada, 2008. doi: 10.1007/
978-3-642-39304-4_5.

Andreas Beer, Johannes Gaertner, Nysret Musliu, Werner Schaffhauser, and Wolfgang Slany.
An ai-based break-scheduling system for supervisory personnel. IEEE Intelligent Systems, 25
(2):60–73, 2010. ISSN 1541-1672. doi: 10.1109/MIS.2010.40.

Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea Schaerf, and Tommaso Urli. Feature-
based tuning of simulated annealing applied to the curriculum-based course timetabling
problem. Computers & Operations Research, 65:83–92, 2016.

Walid Ben-Ameur. Computing the initial temperature of simulated annealing. Computational
Optimization and Applications, 29(3):369–385, 2004.

Mauro Birattari, Luis Paquete, Thomas Stützle, and Klaus Varrentrapp. Classification of
metaheuristics and design of experiments for the analysis of components. Teknik Rapor,
AIDA-01-05, 2001.

Joschka Bischoff and Michal Maciejewski. Proactive empty vehicle rebalancing for demand
responsive transport services. Procedia Computer Science, 170:739–744, 2020.

Joschka Bischoff, Ninja Soeffker, and Michał Maciejewski. A framework for agent based
simulation of demand responsive transport systems. Technical report, Technische Universität
Berlin, 2016. URL http://dx.doi.org/10.14279/depositonce-5760.

Joschka Bischoff, Michal Maciejewski, and Kai Nagel. City-wide shared taxis: A simulation
study in berlin. In 2017 IEEE 20th international conference on intelligent transportation
systems (ITSC), pages 275–280. IEEE, 2017. doi: 10.1109/ITSC.2017.8317926.

Joschka Bischoff, Karoline Führer, and Michal Maciejewski. Impact assessment of autonomous
drt systems. Transportation Research Procedia, 41:440–446, 2019.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308, 2003.

Daniil Bogdanov. A comparative evaluation of metaheuristic approaches to the problem of
curriculum-based course timetabling, 2015.

Ihor O Bohachevsky, Mark E Johnson, and Myron L Stein. Generalized simulated annealing
for function optimization. Technometrics, 28(3):209–217, 1986.

81

https://rbanchs.com/publications/reports.html
https://rbanchs.com/publications/reports.html
https://rbanchs.com/publications/reports.html
https://rbanchs.com/publications/reports.html
http://dx.doi.org/10.14279/depositonce-5760

Alex Bonutti, Sara Ceschia, Fabio De Cesco, Nysret Musliu, and Andrea Schaerf. Modeling
and solving a real-life multi-skill shift design problem. Annals of Operations Research, 252
(2):365–382, 2017.

Philippe Bruecker, Jorne Van den Bergh, Jeroen Beliën, and Erik Demeulemeester. Workforce
planning incorporating skills: State of the art. European Journal of Operational Research,
243, 05 2015. doi: 10.1016/j.ejor.2014.10.038.

Edmund K Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer programming and
variable neighbourhood search for highly-constrained nurse rostering problems. European
Journal of Operational Research, 203(2):484–493, 2010.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013. URL https://doi.org/10.1057/
jors.2013.71.

Patrick M. Bösch, Felix Becker, Henrik Becker, and Kay W. Axhausen. Cost-based analysis of
autonomous mobility services. Transport Policy, 64:76 – 91, 2018-05. ISSN 0967-070X. doi:
10.3929/ethz-b-000184754.

Olivier Catoni. Solving scheduling problems by simulated annealing. SIAM Journal on Control
and Optimization, 36(5):1539–1575, 1998.

Vladimír Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of optimization theory and applications, 45(1):41–51, 1985.

Nelson D Chan and Susan A Shaheen. Ridesharing in north america: Past, present, and future.
Transport reviews, 32(1):93–112, 2012.

Ziyi Chen, Patrick De Causmaecker, and Yajie Dou. Neural networked assisted tree search
for the personnel rostering problem. CoRR, abs/2010.14252, 2020. URL https://arxiv.
org/abs/2010.14252.

King-Wai Chu, Yuefan Deng, and John Reinitz. Parallel simulated annealing by mixing of
states. Journal of Computational Physics, 148(2):646–662, 1999.

Claudio Ciancio, Demetrio Laganà, Roberto Musmanno, and Francesco Santoro. An integrated
algorithm for shift scheduling problems for local public transport companies. Omega, 75:
139–153, 2018.

Clevershuttle (2021). https://www.clevershuttle.de/, 2021. Accessed: 2021-10-05.

George B. Dantzig. A comment on edie’s "traffic delays at toll booths". Journal of the
Operations Research Society of America, 2(3):339–341, 1954. ISSN 00963984. URL
http://www.jstor.org/stable/166648.

Demand Responsive Transit (DRT). https://matsim.org/apidocs/drt/0.9.0/, 2021.
Accessed: 2021-05-02.

Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, Andrea Schaerf, and
Wolfgang Slany. The minimum shift design problem. Annals of operations research, 155(1):
79–105, 2007. doi: 10.1007/s10479-007-0221-1.

82

https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://arxiv.org/abs/2010.14252
https://arxiv.org/abs/2010.14252
https://www.clevershuttle.de/
http://www.jstor.org/stable/166648
https://matsim.org/apidocs/drt/0.9.0/

Luca Di Gaspero, Johannes Gärtner, Nysret Musliu, Andrea Schaerf, Werner Schafhauser, and
Wolfgang Slany. Automated shift design and break scheduling. In Automated scheduling
and planning, pages 109–127. Springer, 2013. doi: 10.1007/978-3-642-39304-4_5.

Leslie C. Edie. Traffic delays at toll booths. Journal of the Operations Research Society of
America, 2(2):107–138, 1954. ISSN 00963984. URL http://www.jstor.org/stable/
166599.

Richard W Eglese. Simulated annealing: a tool for operational research. European journal of
operational research, 46(3):271–281, 1990.

MA Saleh Elmohamed, Paul Coddington, and Geoffrey Fox. A comparison of annealing
techniques for academic course scheduling. In International Conference on the Practice and
Theory of Automated Timetabling, pages 92–112. Springer, 1997.

David Ennen and Thorsten Heilker. Ride-hailing services in germany: Potential impacts on
public transport, motorized traffic, and social welfare. Institute of Transport Economics
Münster Working Paper, 29, 2020.

A.T Ernst, H Jiang, M Krishnamoorthy, and D Sier. Staff scheduling and rostering: A review
of applications, methods and models. European Journal of Operational Research, 153(1):
3–27, 2004. ISSN 0377-2217. doi: https://doi.org/10.1016/S0377-2217(03)00095-X.
Timetabling and Rostering.

Javed Farhan and T. Donna Chen. Impact of ridesharing on operational efficiency of shared
autonomous electric vehicle fleet. Transportation Research Part C: Emerging Technologies,
2018.

BR Fox and MB McMahon. Genetic operators for sequencing problems. In Foundations of
genetic algorithms, volume 1, pages 284–300. Elsevier, 1991.

Bayrisches Landesamt für Statistik. Einwohnerzahlen am 31. Technical report, März 2019.
Technical Report. Fürth. URL: https://www. statistik. bayern. de . . . , 2019.

Bundesministerium für justiz und verbraucherschutz. Arbeitszeitgesetz (arbzg, 2021. URL
https://www.gesetze-im-internet.de/arbzg/BJNR117100994.html.

Johannes Gaertner, Nysret Musliu, and Wolfgang Slany. Rota: A research project on algorithms
for workforce scheduling and shift design optimization. AI Commun., 14:83–92, 07 2001.

Michael R Garey. A guide to the theory of np-completeness. Computers and intractability,
1979.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Stuart Geman and Donald Geman. Geman, d.: Stochastic relaxation, gibbs distribution, and
the bayesian restoration of images. ieee trans. pattern anal. mach. intell. pami-6(6), 721-741.
IEEE Trans. Pattern Anal. Mach. Intell., 6:721–741, 11 1984. doi: 10.1109/TPAMI.1984.
4767596.

83

http://www.jstor.org/stable/166599
http://www.jstor.org/stable/166599
https://www.gesetze-im-internet.de/arbzg/BJNR117100994.html

Fred Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & Operations Research, 13(5):533–549, 1986. ISSN 0305-0548. doi: https:
//doi.org/10.1016/0305-0548(86)90048-1. URL https://www.sciencedirect.com/
science/article/pii/0305054886900481. Applications of Integer Programming.

Fred Glover and Claude McMillan. The general employee scheduling problem. an integration of
ms and ai. Computers & Operations Research, 13(5):563–573, 1986. ISSN 0305-0548. doi:
https://doi.org/10.1016/0305-0548(86)90050-X. Applications of Integer Programming.

Gill Velleda Gonzales, Elizaldo Domingues dos Santos, Leonardo Ramos Emmendorfer, Liér-
cio André Isoldi, Luiz Alberto Oliveira Rocha, and Emanuel da Silva Diaz Estrada. A
comparative study of simulated annealing with different cooling schedules for geometric
optimization of a heat transfer problem according to constructal design. Scientia Plena, 11
(8), 2015.

Shivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen, and Svetha Venkatesh.
Algorithmic assurance: An active approach to algorithmic testing using bayesian optimisation.
In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 5470–5478, 2018.

Bruce Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research,
13(2):311–329, 1988. ISSN 0364-765X. doi: 10.1287/moor.13.2.311.

Alejandro Henao and Wesley E Marshall. The impact of ride-hailing on vehicle miles traveled.
Transportation, 46(6):2173–2194, 2019.

Renato Fernandes Hentschke and RADL Reis. Improving simulated annealing placement
by applying random and greedy mixed perturbations [ic layout]. In 16th Symposium on
Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings., pages 267–272.
IEEE, 2003.

ioki (2021). https://ioki.com/en/home/, 2021. Accessed: 2021-09-12.

Warren G Jackson, Ender Özcan, and Robert I John. Tuning a simulated annealing metaheuristic
for cross-domain search. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages
1055–1062. IEEE, 2017.

L. W. Jacobs and S. Bechtold. Labor utilization effects of labor scheduling flexibility alternatives
in a tour scheduling environment. Decision Sciences, 24:148–166, 1993.

Java Library. https://docs.oracle.com/javase/8/docs/api/java/util/Random.
html, 2021. Accessed: 2021-07-22.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL
https://www.science.org/doi/abs/10.1126/science.220.4598.671.

Lucas Kletzander. A Heuristic solver framework for the general employee scheduling problem.
PhD thesis, Wien, 2018.

Lucas Kletzander and Nysret Musliu. Solving the general employee scheduling problem.
Computers & Operations Research, 113:104794, 08 2019. doi: 10.1016/j.cor.2019.104794.

84

https://www.sciencedirect.com/science/article/pii/0305054886900481
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://ioki.com/en/home/
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://www.science.org/doi/abs/10.1126/science.220.4598.671

Lucas Kletzander and Nysret Musliu. Scheduling bus drivers in real-life multi-objective scenarios
with break constraints. In Proceedings of the 13th International Conference on the Practice
and Theory of Automated Timetabling-PATAT, volume 1, 2021.

Deniz Kocabas. Exact methods for shift design and break scheduling. PhD thesis, TU Wien,
2015.

John R Koza and John R Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

Nico Kuehnel, Felix Zwick, and Sebastian Hörl. Shifts in perspective. operational aspects
in (non-) autonomous ride-pooling simulations. "[Online; accessed 08-November-2021]",
2021-05.

Anit Kumar. Encoding schemes in genetic algorithm. International Journal of Advanced
Research in IT and Engineering, 2(3):1–7, 2013.

S Kundu, M Mahato, B Mahanty, and S Acharyya. Comparative performance of simulated
annealing and genetic algorithm in solving nurse scheduling problem. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, volume 1, pages
96–100. Citeseer, 2008.

P.J.M. Laarhoven, Van and E.H.L. Aarts. Simulated annealing : theory and applications.
Mathematics and its applications. Reidel, 1987. ISBN 90-277-2513-6.

Ziru Li, Yili Hong, and Zhongju Zhang. Do ride-sharing services affect traffic congestion? an
empirical study of uber entry. Social Science Research Network, 2002:1–29, 2016.

Miranda Lundy and Alistair Mees. Convergence of an annealing algorithm. Mathematical
programming, 34(1):111–124, 1986.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

Microscopic Transportation Orchestrator (MITO). https://github.com/msmobility/mito,
2021. Accessed: 2021-11-20.

Aitan M Militão and Alejandro Tirachini. Optimal fleet size for a shared demand-responsive
transport system with human-driven vs automated vehicles: A total cost minimization
approach. Transportation research part A: policy and practice, 151:52–80, 2021.

MIT. Rideshare history and statistics. https://ridesharechoices.scripts.mit.edu/
home/histstats/, 2009. [Online; accessed 08-November-2021].

Rolf Moeckel, Nico Kuehnel, Carlos Llorca, Ana Tsui Moreno, and Hema Rayaprolu. Agent-
based simulation to improve policy sensitivity of trip-based models. Journal of Advanced
Transportation, 2020, 2020. doi: https://doi.org/10.1155/2020/1902162.

MOIA (2021). https://www.moia.io/, 2021. Accessed: 2021-12-13.

MOIA’s Driver advertisement. https://www.moia.io/de-DE/fahrer, 2021. Accessed:
2021-12-20.

85

https://github.com/msmobility/mito
https://ridesharechoices.scripts.mit.edu/home/histstats/
https://ridesharechoices.scripts.mit.edu/home/histstats/
https://www.moia.io/
https://www.moia.io/de-DE/fahrer

Shyan L Moondra. An lp model for work force scheduling for banks. Journal of Bank Research,
7(4):299–301, 1976.

Ana Tsui Moreno and Rolf Moeckel. Population synthesis handling three geographical resolu-
tions. ISPRS International Journal of Geo-Information, 7(5):174, 2018.

Pablo Moscato. An introduction to population approaches for optimization and hierarchical
objective functions: A discussion on the role of tabu search. Annals of Operations Research,
41:85–121, 1993.

Multi-Agent Transport Simulation (MATSim). https://matsim.org/, 2021. Accessed:
2021-05-14.

Nysret Musliu, Andrea Schaerf, and Wolfgang Slany. Local search for shift design. European
Journal of Operational Research, 153:51–64, 02 2004. doi: 10.1016/S0377-2217(03)00098-5.

Münchner Verkehrsgesellschaft GmbH (2021). https://www.mvg.de/services/
mobile-services/mvg-sod/isartiger.html{#}intro, 2021. Accessed: 2021-11-17.

A.G. Nikolaev and Sheldon Jacobson. Simulated annealing. Handbook of Metaheuristics, 146:
1–39, 09 2010a. doi: 10.1007/978-1-4419-1665-5_1.

Alexander G Nikolaev and Sheldon H Jacobson. Simulated annealing. In Handbook of
metaheuristics, pages 1–39. Springer, 2010b.

Eric Norgren and Johan Jonasson. Investigating a genetic algorithm-simulated annealing hybrid
applied to university course timetabling problem: A comparative study between simulated
annealing initialized with genetic algorithm, genetic algorithm and simulated annealing,
2016.

Yaghout Nourani and Bjarne Andresen. A comparison of simulated annealing cooling strategies.
Journal of Physics A: Mathematical and General, 31(41):8373, 1998.

Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography, 1996.

Moon-Won Park and Yeong-Dae Kim. A systematic procedure for setting parameters in
simulated annealing algorithms. Computers & Operations Research, 25(3):207–217, 1998.

Alex Kwaku Peprah, Simon Kojo Appiah, Samuel Kwame Amponsah, et al. An optimal cooling
schedule using a simulated annealing based approach. Applied Mathematics, 8(08):1195,
2017.

Python. https://www.python.org/, 2021. Accessed: 2021-12-13.

Monia Rekik, Jean-François Cordeau, and François Soumis. Implicit shift scheduling with
multiple breaks and work stretch duration restrictions. J. Scheduling, 13:49–75, 02 2010.
doi: 10.1007/s10951-009-0114-z.

Caroline Rodier. The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas
Emissions. Institute of Transportation Studies, Working Paper Series qt2rv570tt, Institute of
Transportation Studies, UC Davis, April 2018. URL https://ideas.repec.org/p/cdl/
itsdav/qt2rv570tt.html.

86

https://matsim.org/
https://www.mvg.de/services/mobile-services/mvg-sod/isartiger.html{#}intro
https://www.mvg.de/services/mobile-services/mvg-sod/isartiger.html{#}intro
https://www.python.org/
https://ideas.repec.org/p/cdl/itsdav/qt2rv570tt.html
https://ideas.repec.org/p/cdl/itsdav/qt2rv570tt.html

Fabio Romeo and Alberto Sangiovanni-Vincentelli. A theoretical framework for simulated
annealing. Algorithmica, 6(1):302–345, 1991a.

Fabio Romeo and Alberto Sangiovanni-Vincentelli. A theoretical framework for simulated
annealing. Algorithmica, 6(1):302–345, 1991b.

Claudio Ruch, ChengQi Lu, Lukas Sieber, and Emilio Frazzoli. Quantifying the efficiency of
ride sharing. IEEE Transactions on Intelligent Transportation Systems, 2020.

Bruce Schaller. The new automobility: Lyft, uber and the future of american cities, 2018.
URL http://www.schallerconsult.com/rideservices/automobility.pdf.

Manuel Schmitt and Rolf Wanka. Particle swarm optimization almost surely finds local optima.
Theoretical Computer Science, 561:57–72, 2015.

Susan Shaheen. Shared mobility: the potential of ridehailing and pooling. In Three revolutions,
pages 55–76. Springer, 2018.

Susan Shaheen and Adam Cohen. Shared ride services in north america: definitions, impacts,
and the future of pooling. Transport reviews, 39(4):427–442, 2019.

Susan Shaheen, Adam Cohen, Ismail Zohdy, et al. Shared mobility: current practices and
guiding principles. Technical report, United States. Federal Highway Administration, 2016.

Kambiz Shojaee., Hamed Shakouri G., and Mojtaba Behnam Taghadosi. Importance of the
initial conditions and the time schedule in the simulated annealing. In Rui Chibante, editor,
Simulated Annealing, chapter 12. IntechOpen, Rijeka, 2010. doi: 10.5772/intechopen.83946.
URL https://doi.org/10.5772/intechopen.83946.

Marius Sinclair. Comparison of the performance of modern heuristics for combinatorial
optimization on real data. Computers & Operations Research, 20(7):687–695, 1993.

El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74. John Wiley &
Sons, 2009.

Craig A Tovey. Hill climbing with multiple local optima. SIAM Journal on Algebraic Discrete
Methods, 6(3):384–393, 1985.

Uber Pool (2021). https://www.uber.com/de/en/ride/uberpool/, 2021. Accessed:
2021-10-24.

Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck. Personnel scheduling: A literature review. European Journal of Operational
Research, 226(3):367–385, 2013. URL https://EconPapers.repec.org/RePEc:eee:
ejores:v:226:y:2013:i:3:p:367-385.

Kay W Axhausen, Andreas Horni, and Kai Nagel. The multi-agent transport simulation
MATSim. Ubiquity Press, 2016.

Ingo Wegener. Simulated annealing beats metropolis in combinatorial optimization. In
International Colloquium on Automata, Languages, and Programming, pages 589–601.
Springer, 2005.

87

http://www.schallerconsult.com/rideservices/automobility.pdf
https://doi.org/10.5772/intechopen.83946
https://www.uber.com/de/en/ride/uberpool/
https://EconPapers.repec.org/RePEc:eee:ejores:v:226:y:2013:i:3:p:367-385
https://EconPapers.repec.org/RePEc:eee:ejores:v:226:y:2013:i:3:p:367-385

Magdalena Widl and Nysret Musliu. An improved memetic algorithm for break scheduling. In
María J. Blesa, Christian Blum, Günther Raidl, Andrea Roli, and Michael Sampels, editors,
Hybrid Metaheuristics, pages 133–147, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-16054-7.

Magdalena Widl and Nysret Musliu. The break scheduling problem: complexity results and
practical algorithms. Memetic Computing, 6:97–112, 2014.

Gabriel Wilkes, Roman Engelhardt, Lars Briem, Florian Dandl, Peter Vortisch, Klaus Bogen-
berger, and Martin Kagerbauer. Self-regulating demand and supply equilibrium in joint
simulation of travel demand and a ride-pooling service. Transportation Research Record,
2675(8):226–239, 2021. URL https://doi.org/10.1177/0361198121997140.

Tse-Chiu Wong, Mai Xu, and Kwai-Sang Chin. A two-stage heuristic approach for nurse
scheduling problem: A case study in an emergency department. Computers & Operations
Research, 51:99–110, 2014.

Anthony Wren and David O Wren. A genetic algorithm for public transport driver scheduling.
Computers & Operations Research, 22(1):101–110, 1995.

Lin Xie, M Merschformann, N Kliewer, and L Suhl. Metaheuristics approach for solving
multi-objective crew rostering problem in public transit. Technical report, Working paper.
University of Paderborn, Germany, 2013.

Wenwen Zhang, Subhrajit Guhathakurta, Jinqi Fang, and Ge Zhang. Exploring the impact of
shared autonomous vehicles on urban parking demand: An agent-based simulation approach.
Sustainable Cities and Society, 19:34–45, 2015.

Felix Zwick and Kay W Axhausen. Analysis of ridepooling strategies with matsim. In 20th
Swiss Transport Research Conference (STRC 2020)(virtual). IVT, ETH Zurich, 2020.

Felix Zwick, Nico Kuehnel, Rolf Moeckel, and Kay Axhausen. Ride-pooling efficiency in large,
medium-sized and small towns - simulation assessment in the munich metropolitan region.
Procedia Computer Science, 184:662–667, 01 2021. doi: 10.1016/j.procs.2021.03.083.

88

https://doi.org/10.1177/0361198121997140

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Research Question
	Thesis Overview

	Literature Review
	Ride-pooling and its challenges
	Employee Scheduling Problem
	Shift Design Problem with Breaks
	Heuristics
	Simulated Annealing

	Methodology
	Study Area
	Travel Demand - submitted requests per hour
	Travel Supply (Shift Plan) - active shifts per hour
	Shifts and Breaks
	Shift
	Break

	Travel Price - rejections per hour
	Simulated Annealing
	Encoding
	Initial Solution
	Temperate and Cooling Schedules
	Temperature
	Cooling Schedules

	Objective Function - cost of solution
	Constraints
	Hard Constraints
	Soft Constraints

	Perturbation Strategies

	Results
	Configuration Parameters
	Algorithm Specific Parameters
	Objective Function Parameters
	Perturbation Strategy Parameters

	Model Evaluation Procedure
	Sub-Model Configuration and Description
	Findings

	Conclusion
	Model Limitations
	Future Work

	References

