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I 

ABSTRACT 

 

Urban air mobility (UAM), the concept of providing transportation in urban settings 

via flying vehicles, has captured the attention of research related to on-demand 

mobility. The concept is expected to provide speedier, time-reducing travel with 

vehicles envisioned to be cleaner, cheaper and more efficient than presently 

available short-distance crafts. Integration, by way of UAM station placement, is 

comparatively less understood than the benefits and vehicular designs of the 

concept. Therefore, this thesis consisted of developing a semi-automated 

procedure for allocating UAM stations in the Metropolitan Region of Munich. The 

work done in this thesis largely followed a geographic information system (GIS) 

multi-criteria decision analysis framework and consisted of gathering factors 

considered to be influential in UAM station placement, prioritizing said factors and 

then allocating stations with a process that had an objective of maximizing 

coverage for all demand points. The evaluation of the networks consisted of 

determining demand per number of stations and travel time comparisons with 

typical ground transportation. Additionally, the thesis networks were compared to 

a previous study’s manually chosen UAM networks. The results indicated the 

thesis’ UAM networks had a comparatively higher UAM demand, but lower travel 

time savings than the manually chosen networks. Spatial distribution and 

appropriate placement were found to be influential for both demand and travel 

time savings.   
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1 INTRODUCTION 

Urban air mobility (UAM), the process of providing transportation via flying 

vehicles in an urban setting, has in recent years been the focus of some research 

concerning future mobility trends and/or on-demand mobility. The concept, 

however, is not intrinsically new given there have already been such systems in 

operation during the first half of the 20th century. The Los Angeles Airway’s 

helicopter service, in operation between the late 1940s and early 1970s, provided 

flight connections to several locations in the Los Angeles region. Similarly, New 

York Airways, in operation between the late 1940s and 1970s, provided helicopter 

flight services to the city’s airports. Unfortunately, both airway companies ceased 

services due to fatal crashes and financial hardship. Presently, other helicopter 

shuttle services, such as BLADE in New York or Voom in São Paulo and Mexico 

City, continue to accommodate demand for UAM [1, 2].  

The introduction of UAM on a wide scale is envisioned to provide travel time 

reductions for daily commuters. By providing access to a third dimension (i.e. 

airspace), UAM has the potential to increase the supply of existing metropolitan 

transportation systems; supplies that are reaching or at capacity. The potential 

for high-speed travel, flexible paths and ability to fly to distant locations while 

bypassing ground obstructions are examples of benefits literature has envisioned 

UAM to provide [3, 4]. Some of the main differences between the reinvigorated 

UAM concept and previous/present UAM services are the vehicles and scale at 

which it is anticipated to operate. Future UAM services are envisioned to provide 

flight service via vertical take-off and landing (VTOL) likely utilizing electric 

(eVTOL) propulsion [5]. Some claim such vehicles would be quieter, more 

efficient, less impactful to the environment and more affordable than helicopters 

or other small aircrafts [3]. While initial UAM operations are anticipated to provide 

service on low-density networks and with slower speeds [1], proposed future use-

cases include high-density on-demand, point-to-point air taxi services, airport 

shuttle services and intercity connections [4, 6].  
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In addition to the potential benefits, vehicular concepts and operations for UAM, 

integration must equally be considered and understood for implementation [2, 5]. 

Rather than introducing UAM as a mode of travel running in parallel to other 

mobility systems, UAM has the potential to act as a complimentary service to 

existing transportation systems [2, 7, 8].  

1.1 Motivation 

An important element of UAM integration relates to the design of networks, which 

would primarily consist of stations [1]. At the time of this thesis, UAM, as a wide 

scale on-demand mobility service, was still a relatively new research topic and 

only a handful of studies were dedicated to the exploration of UAM station 

allocation. While some studies had coinciding methodologies, there was yet to be 

a proven best practice for finding suitable locations (or even establishing what 

suitable locations consist of) for UAM stations. Therefore, this thesis was 

considerably motivated by the fact that UAM station placement was still a 

misunderstood, new topic and aimed at providing a varied, alternative approach.  

Furthermore, there were 2 previous studies this thesis aimed to expand given 

their study areas coincided with that of this thesis and their work primarily 

consisted of [7], or at least included [8], a method for UAM station placement. The 

work done in these studies were frequently consulted, compared and mentioned 

throughout this thesis. 

1.2 Objectives and Research Questions 

The main goal of this thesis was to develop a procedure for allocating stations in 

the Metropolitan Region of Munich. The chosen, semi-automated procedure was 

developed using a multi-criteria decision analysis framework that considered 

several factors. The objective for the allocation procedure was to generate UAM 

networks in such a way that stations were spatially distributed to accommodate 

all demand while maximizing the coverage of each station. Such objectives were 

consistent with German spatial planning practices, which strive to provide equal 

living conditions and services to all municipalities regardless of size or demand 

[9]. 

The evaluation of said objectives included a comparison of the resulting semi-

automated UAM networks with those of a previous study [8] that manually 
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selected stations throughout the study area. The evaluation, and this thesis, 

aimed at answering the following research questions: 

1. Is there a point at which UAM demand in the Metropolitan Region of 

Munich levels off as a result of incrementing stations? If so, how many 

stations would be required? 

2. Would the introduction of UAM to the Metropolitan Region of Munich 

provide travel time savings to destinations such as city cores and/or the 

Munich Airport? 

3. Is there a difference in UAM demand and travel time savings for networks 

defined manually versus semi-automated?  

1.3 Thesis Structure 

The structure of this thesis is as follows: Chapter 2 consists of a review of 

literature on topics such as urban air mobility, multi-criteria decision analysis and 

UAM station allocation studies. Chapter 3 describes the study area, factors found 

to be influential for UAM station allocation and the general data collection 

process. Chapter 4 described the methodology and analytical procedures 

employed in this thesis. Chapter 5 consists of the evaluation of the UAM networks 

developed in this thesis. Finally, Chapter 6 was the conclusion where research 

questions were addressed, limitations acknowledged, and future work proposed. 
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2 LITERATURE REVIEW 

2.1 Urban Air Mobility Background 

Simply put, urban air mobility is the concept of providing transportation via a flying 

vehicle within an urban setting [10]. Though not a new concept (think helicopters), 

there has been a technological push to produce flying vehicles that would be 

cheaper and cleaner than what is currently available in the market. Given these 

vehicles would potentially operate in dense, urban settings, they would require to 

take-off and land vertically likely with electric propulsion [5]. There are already a 

multitude of companies invested in UAM/VTOL development programs [3, 11] 

and if the trends continue, the technology will likely improve and come to fruition.  

2.1.1 Use Cases 

There are several proposed uses for UAM. In their study, Baur et al. [6] suggest 

3 cases: (1) air taxis, (2) airport shuttles, and (3) intercity flights. Under the air taxi 

case, UAM vehicles would provide on-demand, point-to-point flight service 

between stations located inside a defined area (most likely confined to a 

metropolitan area). Trips are not envisioned to surpass 50 km and the expected 

number of passengers would be 1 or 2. Under the airport shuttle case, flight 

routes and schedules would most likely be fixed. Service would be limited to 

flights between a metropolitan area and an airport (or airports). Flight distances 

are believed to be on par or longer than those under the air taxi case. Under the 

intercity flights case, flight service would be provided between nearby cities too 

close for conventional airline flights. Like the airport shuttle case, flight routes and 

schedules would be fixed. The expected number of passengers would be 

between 2 and 4 and UAM vehicles would require the capacity to travel further 

(up to 250 km).  

In addition to the cases listed in Baur et al.’s study, Thipphavong et al. [1] 

proposed UAM use cases outside of passenger-specific travel. This includes 

transportation for cargo, emergency and rescue, law enforcement, and 

monitoring for weather, news and ground traffic.  
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The UAM use case assumed for this thesis most closely resembles the air taxis 

case. However, trips to the airport and other cities, while not fixed to a schedule, 

were also considered.  

2.1.2 Vehicle Types 

As was shown in the previous section, different use cases would require different 

seat and range capacities. Liu et al. [12] consider VTOL and short take-off and 

landing (STOL) capabilities for personal air vehicles. They indicate VTOL would 

be suitable for intra-city trips and STOL for thin-haul trips. Propulsion for the 

former would likely be fully or hybrid electric while the latter would be distributed 

fully or hybrid electric. There are several advantages that come with electric 

propulsion: lower emissions, lower noise, and higher motor efficiency. Further, 

due to less moving parts than a conventional engine, electric motors would likely 

require less maintenance costs [1]. Distributed electric propulsion systems in 

particular have an added safety advantage due to their redundant design [3]. If 

one of the motors were to suddenly fail, there would simply be a reduction in both 

speed and climbing capabilities rather than a more disastrous outcome.   

Baur et al. [6] identified 5 classifications for UAM vehicles currently under 

development: (1) multicopters, (2) quadcopters, (3) hybrids, (4) tilt-wings, and (5) 

fixed wing vectored thrust. As the name implies, multicopters have multiple (more 

than 4) fixed propellers and can cruise at speeds between 80 and 100 km/h. The 

wingless vehicle can accommodate between 2 and 4 passengers and would be 

well-suited for an air taxi use case. According to Thipphavong et al. [1], 

multicopters are expected to perform well for hovering stages, but are expected 

to have relatively lower cruise speeds. Quadcopters have 4 fixed propellers and 

are expected to cruise at speeds between 120 and 150 km/h. The wingless 

vehicle can accommodate between 2 and 6 passengers and would be well-suited 

for an air taxi and airport shuttle use case. A hybrid design would have both 

forward and upward facing propellers for thrust and lift, respectively. These types 

of vehicles are expected to cruise at speeds between 150 and 200 km/h, 

accommodate between 2 and 4 passengers and be well-suited for all use cases 

identified in Baur et al [6]. A tilt-wing design would consist of multiple propellers 

or fans that would be able to rotate depending on whether the vehicle is in hover 

or cruise stage. This type of vehicle is expected to cruise at speeds between 180 
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and 250 km/h, accommodate between 2 and 4 passengers, and, like the hybrid 

design, be well-suited for all use cases. According to Thipphavong et al. [1], 

articulated UAM vehicles would require more time, space and altitude to 

accommodate transition stages. Such vehicles would probably have lower 

hovering efficiency but would likely have higher flight speeds. Finally, a fixed wing 

vectored thrust design consists of multiple groups of fans that can rotate 

depending on whether the vehicle is in hover or cruise stage. This type of vehicle 

is expected to cruise at speeds between 200 and 300 km/h, accommodate 

between 2 and 4 passengers and be well-suited for airport shuttle and intercity 

use cases [6]. 

2.1.3 Modelling and Simulation 

In their study, Rothfeld et al. [5] explained that while UAM vehicular technology 

has been under research for some years, integration is still not fully understood. 

Integration meaning the interaction between UAM (vehicles and infrastructure) 

and already existing transportation systems. The authors therefore developed a 

model that provides a medium by which the effects and performance of UAM 

systems can be simulated and analyzed. The model is an extension to the well-

established multi-agent transportation simulation framework MATSim [13]. With 

the UAM extension, 3 key UAM features can be set: vehicles, nodes and links 

[5]. Parameters such as range, capacity, cruise speed and VTOL speed can be 

set for vehicles. Nodes primarily serve as either stations or link connectors and 

can have their locations set for 3 dimensions: longitude, latitude and height. 

Finally, links are the conduits through which UAM vehicles traverse between 

nodes. Link parameters such as capacity, free-flow speed and length can be set. 

In addition to setting UAM network elements, operational features, such as 

routing and dispatching, can also be set. By introducing and connecting UAM-

specific elements onto a network with conventional transportation system 

elements (i.e. roads and intersections), integration effects can be observed and 

tested for practically any city and/or scenario.  

One of the earliest use cases for the MATSim UAM extension was a study based 

in Sioux Falls, South Dakota [14]. The authors tested several UAM-related 

parameters including cruise speed, VTOL speed, processing time, vehicle 

capacity, fleet size and networks (i.e. different number of stations). The UAM 
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service was assumed to be shared and available to passengers on-demand 

rather than individual ownership and/or operating on a fixed schedule. Results 

showed that travel time savings was among the leading factors for UAM adoption 

from passengers. Any updates to parameters that decreased UAM travel time 

resulted in a higher UAM mode share. Among the most influential parameters 

was also processing time, which corresponds to the time segment between 

arriving at a UAM station and vertical take-off. Another factor that greatly 

influenced UAM usage was the number of UAM stations. For example, 

decreasing the number of stations from 10 to 4 lead to a 55% reduction in UAM 

passengers. 

The MATSim UAM extension was used on a larger scale for a study based in the 

metropolitan region of Munich, Germany [8]. The study is known as OBUAM for 

Oberbayern (Upper Bavaria) UAM. In the study, the introduction of UAM, as a 

complement service to public transportation, to the Upper Bavaria region was 

explored. The performance of UAM was evaluated by determining demand for 

such a service in the region. Much like the Sioux Falls study [14], adjustments to 

UAM-related parameters were tested and resulted in varying mode shares. In 

order to determine UAM demand, the agent- and trip-based model 

Microsimulation Transport Orchestrator (MITO) [15] was enhanced so that its 

mode choice model would include UAM. This was done by integrating MITO with 

the MATSim UAM extension.  

MITO starts by taking a synthetic population as an input [15]. In the case of 

OBUAM, the synthetic population utilized was created using census data for the 

metropolitan region of Munich [16]. The model utilizes the synthetic population to 

generate travel demand for every household; this step is known as trip 

generation. Next, both mandatory and discretionary (i.e. not mandatory) trips for 

each household are determined. While mandatory trips must be completed, 

discretionary trips are assigned if the household’s travel time budget allows it. 

After trip purposes are determined, destination and mode choice are calculated 

using logit models. Trip(s) time of day (arrival and departure time) are determined 

and dependent on the chosen mode. The final step is trip assignment, which is 

handled by MATSim [15]. A graphical representation is shown below in Figure 1.  
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Figure 1 MITO Flowchart [8] 

It was in the traffic assignment step where the MATSim UAM extension was 

integrated with MITO. This integration allowed iterative feedback between the 

UAM extension and MITO. After traffic assignment is simulated in MATSim, UAM 

users can reconsider if they want to choose UAM as their mode of travel. If a 

UAM user experienced excessive wait time for UAM, then the probability said 

user would again choose UAM in the next loop/iteration would be low. Ideally, an 

equilibrium between supply and demand would be reached after going through a 

number of iterations. A graphical representation of this feedback loop is shown 

below in Figure 2. 
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Figure 2 MITO MATSim Feedback Loop [8] 

2.2 Urban Air Mobility Station Allocation 

2.2.1 Existing Infrastructure and Suitability 

Several studies have already utilized different methods and provided rationales 

for identifying locations for UAM stations. For example, Antcliff, Moore, and 

Goodrich [17] identified potential station locations depending on land-use types 

in Silicon Valley: freeway cloverleaf interchanges for general urban settings, 

water barges for metropolitan settings, and private tech company campuses for 

private land-use settings. The authors indicated cloverleaf interchanges are 

favorable due to them being widespread, government owned, adequately 

separated from private land-use, and located in high-noise areas. The water-

barge option was proposed for the denser, bay-surrounded areas of Silicon Valley 

due to a lower count of cloverleaf interchanges (lesser land-consuming diamond 

interchanges prevail here). This option is of course only viable for cities 

surrounded by bodies of water. Finally, the authors expect tech companies to be 

early users of UAM and therefore placing stations at tech company campuses 

was found to be a suitable proposition. 
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A study by Otte et. al [18] proposed using existing airfields within the North Rhine-

Westphalia German state for UAM stations. In total, 47 airfields were identified 

and consisted of passenger airports, public airfields, and special-purpose 

airfields. The study stated that with that many stations, 25 out of the 29 cities 

(equating to about 87% of the population) in North Rhine-Westphalia would have 

access to a station within 15 km (from city centers). The authors also proposed 

using appropriately dimensioned rooftops for future UAM stations within denser 

areas. Using the city of Cologne, Germany as an example, a total of 5 rooftops 

were identified to be suitable sites for future UAM stations and were all within 6 

km of the city center. 

In his thesis, Fadhil [7] found suitable areas for UAM station placement by 

applying a Geographic Information System (GIS) -based suitability analysis. 

Specifically, the thesis utilized multicriteria decision analysis (also known as 

multicriteria decision making), which generally involves evaluating alternatives 

based on criteria that correspond to a decision maker’s preferences [19]. 

Multicriteria decision analysis (MCDA) can be subdivided into two groups: multi-

attribute and multi-objective. Fadhil [7] employed a multi-attribute approach by 

combining different factors (as layers) and applying weights to each factor 

corresponding to their importance in the decision-making process. Fadhil 

identified 10 factors that could be influential in the determination of UAM ground 

infrastructure placement and included: population density, points of interest, 

major transport nodes and existing noise. The weights for each of the factors 

were determined by conducting an analytical hierarchy process (AHP) -Delphi 

analysis, which was carried out by surveying different experts of varying fields. 

The thesis further developed factor weights by interviewing two so-called “super 

experts” individually to gain their insight for factor priority. The resulting weights 

were then used to determine spatial suitability through a weighted linear 

combination process. Fadhil’s results were suitability maps for the cities of Los 

Angles, USA and Munich, Germany. The suitability maps for each city coincided 

in showing high suitability scores at city centers, major transport hubs and heavily 

populated, high-income areas. 

In another study that also considered the Munich region, Ploetner et al. [8] 

identified stations by conducting workshops that had experts manually choose 

where to place stations. The experts identified stations by considering trip 
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purposes such as commuting, business trips, tourism and leisure trips. A total of 

3 networks were created with varying numbers of UAM stations: 24 (low density), 

74 (medium density) and 130 (high density). Stations were generally placed near 

or at city centers, major transportation nodes and high population and 

employment areas. Rural regions with low accessibility were also considered. 

The networks were evaluated using a mode-choice and traffic assignment model 

that consider UAM. Results showed a UAM market share of about 0.5% indicating 

the introduction of UAM may not significantly alter mobility patterns. Further, most 

UAM trips were found to be for relatively short distances with 55% of UAM trips 

being less than 20 km in length. In the research gap section, the authors stated 

that future goals include developing a more automated process (rather than 

manual selection) for station placement. Such a process would consider different 

spatial attributes that could be combined to find stations that would maximize 

coverage; a process that was consistent with the work done in this thesis.  

2.2.2 Demand-Based 

While some studies [17, 18] proposed solutions that primarily make use of 

existing infrastructure for station placement, other studies took a more objective 

approach by utilizing existing travel demand. For example, Lim and Hwang [20] 

gathered existing commute data for the Seoul metro area and identified three 

main routes (all towards Seoul). They used a k-means clustering algorithm to 

identify centroids for commute origins and proposed said centroids as suitable 

locations for vertiports. In total, the study set up 18 network schematics ranging 

between 2 and 36 (in increments of 2) UAM station. The authors found that 

location was more important than the number of UAM stations when trying to 

improve travel times. Rath and Chow [21] found that Lim and Hwang’s [20] 

approach was limiting in that no objective function (e.g. minimizing travel cost, 

maximize travel time savings) was set up. In their study, Rath and Chow [21] 

identified UAM station locations around New York City by setting up an 

optimization problem to solve for minimum travel cost between origin and 

destination pairs. For every origin and destination pair, the optimization problem 

compared travel cost between ground transportation (i.e. car) and UAM. The aim 

of the study was to find a suitable number of UAM stations that would provide 

access to the three major airports in New York City: Newark, La Guardia, and 

JFK. Their results indicated that at about 6 UAM stations, the amount of incoming 
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demand begins to stagnate, however, about 9 UAM stations would be needed for 

approximately 10% market penetration.  

Syed et. al [22] also employed a k-means clustering algorithm to find UAM landing 

sites. Their study areas were the Northern California and Washington D.C. – 

Baltimore regions. Their k-means clustering algorithm approach differed to Lim 

and Hwang’s [20] in that census tracts for both regions were weighted depending 

on population and income. With the applied weights, and objective to reduce 

travel time to and from stations (or intermodal travel time), the k-means algorithm 

favored census tracts with high population and income. Four different scenarios 

were tested with 200, 300, 400 and 1,000 stations. For Northern California, the 

authors found that 20, 25, 30 and 55% of the potential demand was within 5 

minutes of a station under the 200-, 300-, 400- and 1000-station scenario, 

respectively. The authors used the calculated intermodal travel time (among 

other factors) in their self-developed mode choice model and indicated it, along 

with pricing, played a significant role.  

In the Uber Elevate white paper, Holden and Goel [3] mention the potential to use 

existing infrastructure elements (e.g. cloverleaf interchanges or private company 

campuses) for station placement as proposed by Antcliff, Moore, and Goodrich 

[17], but acknowledged the limitations that arise in dense, urban areas: land is 

scarce and expensive. Holden and Goel approach the station allocation problem 

by using both a k-means clustering algorithm and network optimization, which 

combines approaches used by previously mentioned studies [20–22]. The study 

areas were the cities of Los Angeles, USA and London, England. Holden and 

Goel used a k-means clustering algorithm on a collection of origin and destination 

points to identify 100 candidate stations. Out of these 100 candidate stations, 25 

were chosen through an optimization problem that solved for a maximum trip 

coverage objective function. Similar to Rath and Chow’s [21] approach, the 

optimization problem compares travel time via ground transportation and air 

travel. A user was considered eligible for air travel if the air trip was 40% faster 

than a ground trip. Results indicated that with 25 stations, 60 and 35% of long-

distance trips can be accommodated by UAM for Los Angeles and London, 

respectively.  

The studies cited thus far have dealt with passenger UAM transportation, 

however, German et al. [23] identified locations for placing UAM stations that 
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would be used for cargo delivery. Specifically, the study had two goals that could 

benefit the Amazon Prime Same Day and Amazon Prime Now services: 1) 

increase the number of items that could be shipped via Amazon Prime Now, and 

2) extend the order time cutoff for Amazon Prime Same Day shipments. The 

authors chose the San Francisco Bay Area as their study area due to the high-

income, tech-savvy population and geographic constraints that exist between the 

urban areas and the Tracy, California Amazon fulfillment center (50 miles [80 km] 

apart). Similar to Rath and Chow’s [21] network-trip structure, inter-station 

connections were not considered and trips would fulfill only one trip purpose. To 

find the stations, the study used an optimization approach with an objective 

function that maximized package demand served. The study’s demand was 

structured similar to Syed et al.’s [22] study in that census tracts were weighted 

on population and income under the assumption that customers with higher 

income are willing to pay for the premium services. The optimization problem 

solved 8 scenarios to determine demand served by number of stations ranging 

between 1 and 8 (in increments of 1). Results indicated that the first 3 stations 

would be placed near the San Francisco Bay Area’s largest cities (San Francisco, 

Oakland, and San Jose) and that incremental demand served dropped for 

scenarios with more than 3 stations.  

As an extension to German et al.’s [23] study, Daskilewicz et al. [24] considered 

the spatial distribution of jobs, in addition to population and income, as influential 

factors for identifying UAM stations. Further, the latter study aimed at providing 

commuter connections rather than package delivery routes [23]. To find locations 

for stations, Daskilewicz et al. [24] again used an optimization approach, but with 

an objective function of maximizing travel time savings compared to typical 

ground transportation (i.e. driving). Potential UAM users were assumed to be 

high-income (annual salaries greater than $75,000) individuals that commute to 

work by themselves. The authors chose the San Francisco Bay Area and Los 

Angeles region as their study areas. For each study area, the optimization 

problem solved 3 scenarios of varying sizes comprising of 10, 20 and 40 UAM 

stations. For the San Francisco Bay Area, results indicated that significant 

amount of work trips are located near the San Francisco downtown financial 

district while the home trips were more evenly spread out throughout the region. 

For the Los Angeles region, results placed stations primarily around the Santa 
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Monica, Burbank and downtown areas, which could be explained by the high 

accumulation of high-income residents in said areas. When comparing the two 

cities, Los Angeles showed a higher number of short trips, which could be a result 

of the high traffic congestion that is characteristic of the region. Both cities saw 

an increase in trip length for the larger network scenarios. Finally, results for both 

cities coincided in that a majority of UAM trips had lengths under 30 miles (48 

km) with only a few going beyond 60 miles (96 km).   

2.3 Multi-Criteria Decision Analysis 

Fundamentally, an MCDA decision requires evaluating and choosing among 

different alternatives based on criteria, or factors, that have been prioritized by 

decision makers. According to Malczewski and Rinner [19], MCDA consists of 3 

basic elements: decision makers, criteria, and decision alternatives. Decision 

makers can range from individuals, a group of individuals, or an organization. 

Typically, decisions are made by groups rather than just one person. Criteria can 

refer to either attributes or objectives [25]. The both are interrelated in that the 

successfulness of an objective can be measured by its attribute(s). For example, 

the object of maximizing accessibility to UAM stations can be assessed by 

attributes such as travel time, distance or cost. Therefore, an objective can be 

thought of as a goal while an attribute something that can be measured. Moving 

towards a desired objective requires some type of measurable change in its 

attribute(s). Decision alternatives are options decision makers must choose and 

typically relate to action and location (i.e. what to do where). Spatial decision 

alternatives can be either explicit or implicit [26]. An explicit alternative, for 

example, could be choosing a site for allocating a UAM station. Implicit 

alternatives relate to the consequences that arise from choosing one alternative 

over another. For example, choosing site A over site B for UAM station allocation 

could lead to poor regional connectivity at site B.  

In addition to laying out the basic elements of MCDA problems, Malczewski and 

Rinner [19] also provided the basic procedures and concepts to conduct MCDA, 

which are: value scaling, criterion weighting and combination rule. They specify 

that while said procedures can apply to any MCDA-type problem, they are 

especially relevant to GIS-based MCDA.  
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2.3.1 Value Scaling 

When criteria or factors are collected, they are usually in different measurement 

values and ranges. When conducting MCDA, converting the criteria to 

comparable values is necessary and accomplished with value scaling (also 

known as standardization) [19, 27]. In his book, Voogd [28] explored a variety of 

standardization methods all related to transforming the measurement values to a 

range between 0 and 1 by utilizing the raw maximum and minimum values. Voogd 

found that if the standardized criteria are to be prioritized, or weighted, via 

pairwise-comparison (the preferred method for this thesis as explained in the next 

section), then an appropriate method of standardization will transform the raw 

values so that the minimum and maximum values are 0 and 1, respectively. This 

method, known as linear scaling [27], is one of the simplest and is calculated as 

follows:  

𝑥𝑖 =
(𝑅𝑖 − 𝑅𝑚𝑖𝑛)

(𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)
 

2-1 Linear Scaling 

Where Ri is the raw value measurement of factor i, Rmin the minimum value and 

Rmax the maximum value.  

2.3.2 Criterion Weighting 

As Kao [29] explains, a challenging aspect of MCDA is the determination of 

weights for contributing criteria or factors. Typical methods for weight 

determination include literature review, attaining expert opinion or conducting 

analytical studies on the data [30]. Determining weights by conducting analytical 

studies may consist of using methods classified as objective, which are also 

known as indirect explication or posteriori weights. Under objective methods, 

weights are determined by the data [29] and by using mathematical models with 

little to no input from decision makers and hence omit subjective judgement. 

Examples of commonly used objective weighting methods include entropy 

method, TOPSIS and multi-objective optimization method [31, 32]. While 

objective methods are less susceptible to bias due to less subjective input, 

Malczewski [19] explains such methods are rarely used in MCDA problems 

involving GIS. Finally, attaining expert opinion can include weighting methods 

classified as subjective and are also known as direct explication or priori weights 
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[29]. Under subjective methods, weights are determined through direct input from 

decision makers and/or experts via questionnaires or interviews. Examples of 

commonly used subjective weighting methods include analytic hierarchy process, 

Delphi method and minimum weighted squares [31, 32]. Unlike algorithmic weight 

determination methods, AHP can handle both qualitative and quantitative factors 

[33]. Further, Malczewski [19] explains pairwise comparisons (such as AHP) are 

a commonly used method for MCDA problems that utilize GIS.  

2.3.2.1 Analytic Hierarchy Process 

First introduced by Saaty in the 1970s, the Analytic Hierarchy Process (AHP) is 

a decision-making tool intended to determine priority among different criteria or 

factors [34]. The AHP methodology consists of three main elements: structuring 

(or decomposition), measurement (or comparative judgements) and synthesis. 

Structuring relates to setting up the problem into a hierarchy which typically 

consists of a goal, criteria, sub-criteria and alternatives (all of which are 

interrelated). Measurement relates to the pairwise comparison of criteria where 

decision makers choose between 2 criteria at a time based on their judgement of 

which is more important and by how much. Synthesis, as the name implies, is the 

aggregation of all the participating elements and is the final step of the analysis. 

Under synthesis, pairwise comparisons (from measurement) are calculated into 

ratio-scale weights which are then utilized to determine the best alternative (from 

structuring) [19, 35, 36].  

In his book contribution, Estoque [35] broke down the AHP into fundamental 

steps: 

1. Problem Modeling: In this initial step, the structure of the problem is set 

up by determining the goals and relevant criteria (or factors) that will be 

compared. This step encompasses the structuring/decomposition element 

of AHP.  

2. Priority Determination: This is the core of the AHP process were priority 

between factors are determined. The second step involves choosing 

between the different factors in a pairwise manner. The number of pairwise 

comparisons is solely dependent on the number of factors (n): 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 =
𝑛(𝑛 − 1)

2
 

2-2 Number of Pairwise Comparisons 

In this step, multiple decision makers or experts can be involved. The 

participants choose which factor they believe is more important than the 

other and by how much (with a score). The complete comparison of all 

factors takes the form of a matrix. The scoring schematic is explained 

below in Table 1, as based on Saaty [37].   

Intensity of 

Importance 
Definition 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

Reciprocal 

Scores 

When factor A, compared to factor 

B, is given one of the above 

scores, factor B receives the 

reciprocal value when it is 

compared to factor A 

Table 1 AHP Scoring Scale Description 

3. Weight Derivation: The third step takes the results of the pairwise 

comparisons (from step 2) and uses them to calculate the relative weights 

of all factors. The calculation consists of 2 steps: (1) calculating the 

normalized value for each factor, and (2) calculating the principal 

eigenvector, which is also known as the priority vector.  

4. Consistency: Once the relative weights are determined, a consistency 

ratio (CR) can be calculated using the following formulas: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

2-3 Consistency Ratio 



 

18   

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

2-4 Consistency Index 

Where CI is the consistency index, RI is the random consistency index, 

λmax is the principal eigenvalue (from step 3) and n is the number of factors. 

The RI, developed by Saaty [38], is a fixed value dependent on the number 

of factors. Saaty suggested a suitable CR to be no more than 10%. 

2.3.2.2 Group Decision Making with AHP 

According to Forman and Peniwati [39], there are a number of ways to aggregate 

the priorities of different individuals participating in an AHP including: (1) 

aggregating each individual’s results to the pairwise comparisons (prior to 

calculating priority vectors), or (2) aggregating each individual’s resulting 

priorities. The method of aggregation depends on whether the group of decision 

makers are considered a homogeneous group or a collection of individuals. The 

former assumption leads to the method of aggregating individual judgements 

(AIJ) and the latter, aggregating individual priorities (AIP) [39, 40]. Each of those 

methods has recommended mathematical procedures for aggregation. Under 

AIP, for example, after the priority vectors are calculated for every individual, they 

are averaged using either an arithmetic or geometric mean. Alternatively, under 

AIJ, all individuals’ pairwise comparisons are averaged using a geometric mean 

and the result is considered the collective group’s judgement of that pairwise 

comparison. Under AIJ, the judgement or identify of each decision maker is 

diluted [39]. Ossadnik, Schinke and Kaspar [40] recommend AIP due to its ability 

to handle a group of any size that may have conflicting judgements. 

2.3.3 Combination Rule 

A combination rule is a method for evaluating and assessing the different 

alternatives. This can be done by either picking the best alternative and/or ranking 

the alternatives based on their performance. A combination rule considers both 

the alternatives (criteria or factors) and the priorities of the decision makers 

(criterion weighting) [19]. While there are numerous ways to classify combination 

rules, this thesis will focus on multi-attribute and multi-objective. 
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2.3.3.1 Multi-Attribute and Multi-Objective Methods 

As stated previously, a criterion can take the form of an attribute or an objective, 

therefore, MCDA can be subdivided into two groups: multi-attribute and multi-

objective. Under multi-attribute decision analysis, all possible solutions are 

predetermined and finite. Therefore, solving a multi-attribute problem is typically 

a selection process. Under multi-objective decision analysis, the solution is not 

predetermined, is continuous in that it can be located anywhere within a region 

of feasible solutions and typically involves optimizing different, competing 

objectives [19, 26, 41, 42]. The comparison of the two methods are shown below 

in Table 2, as based on Hwang and Yoon [42] and Malczewski [25]. 

Condition 
Multi-Attribute Decision 

Analysis 

Multi-Objective Decision 

Analysis 

Criteria defined 

by 
Attributes Objectives 

Objectives 

defined 
Implicitly Explicitly 

Attributes defined Explicitly Implicitly 

Constraints 

defined 
Implicitly Explicitly 

Alternatives 

defined 
Explicitly Implicitly 

Examples of 

multicriteria 

methods 

- Weighted linear 

combination 

- AHP 

- Outranking methods 

- Ideal point methods 

- Linear/integer 

programming 

- Goal programming 

- Compromise 

programming 

- Heuristics/metaheuristics 

Examples of 

spatial decision 

problems 

- Site selection 

- Land use/suitability 

- Vulnerability 

assessment 

- Site search 

- Location-allocation 

- Transportation problem 

- Shortest path problem 

- Districting 
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Condition 
Multi-Attribute Decision 

Analysis 

Multi-Objective Decision 

Analysis 

- Environmental impact 

assessment 

Table 2 Comparison of Multi-Attribute and Multi-Objective Decision 

Analysis 

As stated previously, Fadhil [7] employed a multi-attribute decision analysis in his 

thesis. Specifically, Fadhil utilized weighted linear combination and an AHP-type 

method (Delphi analysis) for attribute scoring and weighting followed by a 

suitability analysis for the spatial decision-making process. As Fadhil stated, 

multi-attribute analysis relates to finding suitable areas while multi-attribute 

relates to finding an exact location.  

Therefore, the work done in this thesis aimed at also exploring the multi-objective 

aspect of MCDA by finding more exact locations for UAM station placement. To 

do so, the spatial decision analysis method of location-allocation was utilized.  

2.4 Location-Allocation 

Fundamentally, a location-allocation problem consists of maximizing or 

minimizing (via optimization) some objective function so that facilities are located 

and demand (to said facilities) is properly allocated [43].  

2.4.1 Problem Types 

According to Church [44], location problems consist of two types: location 

measurement and location search. Location measurement involves measuring, 

or determining, the location of something while location search (also known as 

location-allocation) involves searching for a suitable location for an activity or a 

facility. There are numerous location-allocation problem types, but among the 

most popular are those that attempt to locate facilities by considering: (1) 

weighted distance or time, and (2) maximal service distance [44, 45]. The former, 

more commonly known as the p-median problem type, locates p number of 

facilities with an objective of minimizing the weighted distance of all served 

demand points. Typical applications of the p-median problem include locating 

schools, health clinics and emergency response centers. Minimizing the weighted 
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distance between demand points and facilities could still yield situations where 

some demand points must travel a long distance to reach the nearest facility. This 

is unfavorable for facilities such as emergency response centers [44]. Instead of 

considering weighted distance to locate facilities, a maximal service distance 

could be introduced. By utilizing a maximal service distance, no demand point 

must travel further than a specified, adequate distance. All demand points within 

the maximal service distance are assumed to be covered. Within the context of 

maximal service distance, two methods can be used to locate facilities: location 

set covering and maximal covering. Under location set covering, the number of 

facilities is minimized while in maximal covering, the number of covered demand 

points is maximized [44, 45].  

In their Madrid bike-sharing station allocation study, Garcia-Palomares, Gutierrez 

and Latorre [46] utilized and compared both the minimize impedance and 

maximize coverage location-allocation problem types. Their results showed that 

under minimize impedance, stations were more spread out throughout the city. 

The authors indicated that while the minimize impedance problem type could be 

advantageous for spatial equity, some stations were inefficiently placed due to 

low demand. Under maximize coverage, stations were allocated in areas of 

higher potential demand, increasing efficiency. However, when the number of 

stations to find was low, maximize coverage found stations that were isolated and 

thus not very practical.  

While the intended use and structure between bike-sharing and UAM is very 

different, the location-allocation approach is comparable. This thesis followed a 

similar approach by exploring both the minimize impedance and maximize 

coverage location-allocation problem types. 

2.4.2 Solvers 

There are generally two main methods for solving location-allocation problems: 

optimization and heuristics. Typically, optimization is done using linear 

programming which involves optimizing (i.e. solving for maximization or 

minimization) an objective function while abiding to a set of constraints. Such 

problems are classified as NP (non-deterministic polynomial) -hard meaning 

solve time is defined by a polynomial function made up of problem parameters. 

An increase in problem parameters (e.g. increase in facilities and/or demand 
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points) increases the complexity and solve time of the problem. Heuristics attempt 

to mitigate the complexity that comes with optimization-type problems. Instead of 

solving for optimality, heuristics solves problems more efficiently and faster. 

Heuristic results are not guaranteed to be optimal but are often close [47]. As 

Church [44] explained it, heuristics were introduced to solve problems too large 

for mathematical algorithms in a faster and more cost-effective manner.  

ESRI’s network analyst suite is considered one of the most successful GIS 

environments to employ heuristics for solving location-allocation problems of 

varying types (including both p-median and maximize coverage) [48]. 

Specifically, ESRI’s location-allocation problem solver uses the Teitz and Bart 

vertex substitution process. The Teitz and Bart procedure begins by selecting a 

random number of facilities F from the original, complete pool of facilities P. The 

facilities in F are removed from P and considered to be the initial set of solutions. 

The next step is to take (and remove) a single facility S from P and compare it to 

the facilities in F. If S performs better than any of the facilities in F, then it is 

substituted into F. This process continues until P is empty. The Teitz and Bart 

procedure has been found to provide good, if not optimal, solutions [44, 47]. 

Church and Medrano [47] described Teitz and Bart results as 1-opt, which means 

using one of the unused facilities, in place of one of the used facilities, would not 

improve results.  

If the initial set of solutions F are not the same every time the Teitz and Bart 

procedure is initialized, the result will not always be the same for the same set of 

data [44]. To remedy this, ESRI’s location-allocation solver runs a start routine 

that generates the same initial set of solutions F for the same set of data. By 

doing this, the same solution is generated regardless of how many times the Teitz 

and Bart procedure is run [49].  

Before applying the Teitz and Bart vertex substitution procedure, ESRI’s location-

allocation solver calculates an origin-destination matrix consisting of the costs 

between all facilities and demand points. Afterwards, it edits this cost matrix using 

Hillsman editing [50]. Under Hillsman editing, the cost matrix is edited in such a 

way that multiple location-allocation problem types can be solved. This is 

beneficial because the Teitz and Bart procedure was initially developed to be 

used for the p-median problem. Hillsman editing calculates what are known as 

distance strings. A distance string, for a single node, is a collection of distances 
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between the single node and other nodes listed in ascending order. This allows 

for organized, faster storage and retrieval. The editing process can generate 

distance strings for both demand and facility points [51]. 

Using GIS can have a lot of benefits including providing an environment under 

which dataset collection, management and visualization can be conducted. This, 

coupled with tools such as ESRI’s location-allocation solver, allows for quicker 

and more stream-lined problem solving execution [49]. In their study, Mapa and 

Lima [52], compared a heuristic (via GIS) and optimization-type (via linear 

programming) location-allocation solvers and found that GIS was able to handle 

larger problems with more facilities and demand data. They noted that processing 

time was substantially different between the two procedures. For instance, all 

solutions generated with GIS were completed in less than 5 seconds while some 

of the linear-programming runs lasted almost 2 hours.  

2.5 Surface Modeling 

Surface modeling techniques typically involve creating a continuous surface from 

a collection of measured points (or control points). Some modeling techniques 

utilize said control points to estimate values for unmeasured locations (or 

unknown values) while other techniques spread out the measurement values 

based on their concentration and value. The former is known as spatial 

interpolation and the latter, density estimation. Surface modeling techniques are 

useful for removing boundaries from measurement values that typically aren’t 

confined to hard borders [53]. 

2.5.1 Spatial Interpolation 

Much like typical interpolation, the main idea behind spatial interpolation is to take 

known values and use them to determine unknown values. Typical uses for 

spatial interpolation include determining amount of precipitation, elevation 

differences or pollution concentration. The need for spatial interpolation is a result 

of not being able to collect phenomena measurements at every point within a 

geographic area. With spatial interpolation, estimates can be generated for all, or 

most, points where no measurement values were collected. The general 

assumption behind spatial interpolation is that nearer points are more alike than 

further points [53]. When conducting spatial interpolation, there are some 
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assumptions to consider about what type of interpolation is to be run: global or 

local, exact or inexact and deterministic or stochastic [54]. Spatial interpolation 

methods are classified below in Table 3, as taken from Zhi [54]. 

Global Local 

Deterministic Stochastic Deterministic Stochastic 

− Trend Surface 

(inexact) 

− Regression 

(inexact) 

− Thiessen 

(exact) 

− Density 

Estimation 

(inexact) 

− Inverse 

Distance 

Weighting 

(exact) 

− Splines (exact) 

− Kriging (exact) 

Table 3 Classification of Spatial Interpolation Methods 

The main difference between global and local spatial interpolation methods is 

related to how many, or which, control points (i.e. known values) will be utilized 

to determine unknown values. Under global methods, all control points are 

utilized, and a single trend function is applied to determine all unknown values. 

Under local methods, a select (or sample) number of control points (typically 

within a vicinity) are utilized to determine unknown values [55]. Exact and inexact 

simply refers to whether the interpolated surface passes through every single 

point (exact) or not (inexact) [54]. Deterministic methods create interpolation 

surfaces based on mathematical equations and control points while stochastic 

methods utilize statistics for more advanced predictions and typically provide 

error measurements [56]. According to Setianto and Triandini [57], the local 

spatial interpolation methods of Inverse Distance Weighting (IDW) and Kriging 

provide results with very similar accuracy levels. Further, the authors stated IDW 

is more intuitive, simpler and requires fewer steps than Kriging. While Kriging 

does provide more reliable results, no substantial amount of efficiency is lost by 

using IDW. Therefore, IDW was the selected method to test under the surface 

modeling technique of spatial interpolation. 
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2.5.1.1 Inverse Distance Weighting 

According to Childs [56], IDW should be used when there is enough density in 

the control points to fully capture the study area’s surface variation. As the 

method’s name implies, estimates are calculated by taking the inverse of the 

distance (between the control point and unknown value) and weight (of the control 

point). The influence of a control point diminishes if its distance is far or its weight 

is small. The formula for IDW [58] is as follows:  

𝐹(𝑟) = ∑ 𝑤𝑖𝑧

𝑚

𝑖=1

(𝑟𝑖) =
∑ 𝑧𝑚

𝑖=1 (𝑟𝑖) ∕ |𝑟 − 𝑟𝑖|
𝑃

∑ 1𝑚
𝑗=1 ∕ |𝑟 − 𝑟𝑗|

𝑃  

2-5 Inverse Distance Weighting 

Where p is the power parameter that controls the influence of the distance (r 

minus ri) between the control point and the unknown value; it is typically set to a 

value of 2. The z parameter is the weight, or measurement, of the control point. 

There are some limits that can be imposed onto the IDW calculation: a fixed 

number of points or a fixed radius. In ESRI’s ArcGIS IDW tool [59], the former is 

called variable search radius and the latter fixed search radius. Under variable 

search radius, the number of control points are fixed, which leads to search radii 

of varying sizes depending on how close or far the control points are. Under fixed 

search radius, the size of the search radius is set (yet not fixed) along with 

minimum number of control points. Because the search radius is not fixed it can 

increase in size until the minimum number of control points are satisfied. A visual 

representation of IDW is shown below in Figure 3, as based on [60]. 
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Figure 3 Inverse Distance Weighting. Fixed Search Radius (Top). Fixed 

Number of Points (Bottom) 

As shown, under fixed search radius, the number of control points (red points) 

reached and utilized was just 1 while under fixed number of points, 3 points were 

utilized for the estimation of the unknown value (purple point). 

2.5.2 Density Estimation 

Simply put, to calculate density is to determine the number of phenomena within 

a specified area. Density can be calculated for anything that is countable such as 

objects or events (e.g. businesses, trees or earthquakes) and/or their respective 

attributes (e.g. number of employees, types of trees or earthquake magnitudes). 

Much like spatial interpolation, there are several methods that can be utilized to 

estimate density. ESRI’s ArcMap, for example, provides two methods: simple and 

kernel. Under simple density calculations, a search radius is set around every 

point in the study area. All points that fall within the search radius are added and 

then divided by the search area. Larger search radii produce smoother surfaces. 

Kernel density estimation (KDE), on the other hand, sets the search radius 
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around each control point [53]. Given the aim of using a surface modeling 

technique for this thesis was to determine trends around the collected data, kernel 

density estimation was the selected method to test under density estimation.  

2.5.2.1 Kernel Density Estimation   

Under KDE, density is calculated by drawing a smooth curve, or surface, over 

each control point. The highest calculated value is at the control point, or center 

of the curve, and will decrease with increased distance from the point [61]. The 

shape of said curve, or surface, is called the K (kernel) function. There are several 

K functions to choose from such as uniform, Epanechnikov, biweight or triweight 

(to name a few) [62]. The KDE tool provided in ESRI’s ArcMap, for example, uses 

a biweight K function, also known as a quartic kernel [61, 62] and takes the 

following form:  

𝑓(𝑥) =
1

𝑚ℎ2
∑ 3𝜋−1 (1 − (

𝑥

ℎ
)

2

)
2

𝑚

𝑖=1

 

2-6 Quartic Kernel Function 

The m parameter corresponds to the size of the sample (i.e. total number of 

control points) and the x parameter to the distance between the unknown value 

and the kernel. The h parameter is what is known as the bandwidth and 

corresponds to the size of the search radius drawn around each control point. 

While the K function does not have a substantial impact for the calculated 

densities, the choice of bandwidth is of much greater importance. The bandwidth 

is what determines how far to search for values. Too small a value yields very 

localized, over-fitted and jagged results while too large a value yields very 

homogeneous, under-fitted and over-smoothed results [62–64].  

In ESRI’s KDE tool [61], a bandwidth value is an optional input. If no bandwidth 

value is set, a default value will be calculated that is dependent on the number, 

intensity and spread of the control points. ESRI’s bandwidth estimation is part of 

an algorithm that begins by first determining the mean center of all input (or 

control) points. It then determines the distance between each control point and 

the mean center. Afterwards, said distances are used to calculate a median 

distance. A standard distance is then calculated with two options for said 

calculation: weighted or unweighted. A weighted standard distance will be 
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calculated if each control point has a corresponding intensity value, or score. The 

weighted standard distance takes on the following form: 

𝑆𝐷 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛
+

∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑛
 

2-7 Unweighted Standard Distance 

Where xi and yi correspond to the x and y coordinates of control point i, X and Y 

the coordinates for the mean center, and n the number of control points. 

An unweighted standard distance will conversely be calculated in the absence of 

control point scores, and takes the following form: 

𝑆𝐷 = √
∑ 𝑤𝑖(𝑥𝑖 − �̅�)2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

+
∑ 𝑤𝑖(𝑦𝑖 − �̅�)2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

2-8 Weighted Standard Distance 

Where wi corresponds to the weight, or score, of control point i. 

Finally, the bandwidth value can be calculated. The default bandwidth estimation 

formula is based on Silverman’s Rule-of-thumb and takes the following form, as 

taken from ESRI [61]:  

𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 = 0.9 ∗ min (𝑆𝐷, √
1

ln(2)
∗ 𝐷𝑚) ∗ 𝑛−0.2 

2-9 ESRI's Default KDE Bandwidth Estimation 

Where SD is the standard distance, Dm the median distance, and n the number 

of control points. The min part of the equation chooses the minimum value 

between SD and the square root multiplication. 

A visual representation is shown below in Figure 4, as based on Wasserman [64]. 
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Figure 4 Kernel Density Estimation 

As shown, the estimated density value (solid curve) increases with an increase 

in overlapping kernels (dashed curves). Each tick mark along the horizontal axis 

corresponds to the highest point of each kernel and represent the control points. 
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3 DATA COLLECTION AND 

PREPARATION 

3.1 Study Area 

The work done in this thesis was based in the Upper Bavaria region of Germany. 

Specifically, the study area is the Metropolitan Region of Munich, which 

comprises 444 municipalities of which the 5 core cities are Munich, Augsburg, 

Ingolstadt, Landshut and Rosenheim. The roughly 15,000 km2 area is home to 

about 4.5 million inhabitants and employment is at about 1.8 million. About a third 

of the population lives in Munich [65].  

In their OBUAM study, Ploetner et al. [8] indicated the metropolitan region of 

Munich was an appropriate area to explore UAM do to the high level of traffic 

congestion, concentration of affluent municipalities and large amount of touristic 

activity (more than 19 million tourist visits per year).  

A digital representation (in the form of a shapefile) of the Munich metropolitan 

region was developed by Molloy and Moeckel [65]. In their study, they developed 

an algorithm that divided the study area to just under 5,000 traffic analysis zones 

(hereafter referred to as zones). The study’s zone system served as the 

foundational structure by which factors were collected and analysis conducted.  

A visualization of the study area is shown below in Figure 5. 
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Figure 5 Metropolitan Region of Munich 

The image shows the boundaries off all the region’s zones. Areas of high 

socioeconomic and/or land-use data concentration (typically city centers) are 

represented with smaller zones. 

3.2 Factors 

There was a total of 10 factors identified and collected for the determination of 

UAM station allocation. Some of the factors coincided with the factors used in 

Fadhil’s [7] study while others were more so related to modeled demand from the 

study area. The author took advantage of the fact that some factors had already 

been prioritized by experts in Fadhil’s study. While not all factors utilized in 

Fadhil’s study were utilized in this thesis, some were recycled while others 
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inspired different factors. The prioritized factors (from an AHP-type procedure) 

from Fadhil’s study are presented below in Table 4 [7]. 

Factor Average Weight 

Population Density 5.3% 

Median Income 12.7% 

Office Rent Price 10.9% 

Points of Interest 14.1% 

Major Transport Node 14.7% 

Average Total Transport Cost 12.3% 

Job Density 8.5% 

Number of Extreme Commuters 7.3% 

Potential Supply 6.9% 

Existing Noise 7.4% 

Table 4 Factors Influencing UAM Ground Infrastructure Placement  

As Table 4 shows, the top 3 highest scoring factors were points of interest, major 

transport node and median income; of which points of interest and major transport 

node were utilized in this thesis. Other coinciding factors that were of interest for 

this thesis were population density, job density and number of extreme 

commuters. All factors utilized in this thesis, along with data collection 

procedures, are presented and explained in the next sections. 

3.2.1 Population 

Population as an influencing factor for UAM station allocation was a commonly 

used factor in the studies [7, 8, 18, 20, 22–24] summarized in Section 2.2. The 

studies generally proposed that placing UAM stations near larger quantities of 

population could amount to larger quantities of patrons. While UAM is not a mode 

of transportation that is publicly available and/or intrinsically like any existing, 

typical mode of transportation, there is at least one major similarity with public 

transportation: stations. For users to access UAM flights, they will first have to 

access a UAM station. As such, public transportation station accessibility 

guidelines can serve as a surrogate for UAM station accessibility. Such an 
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assumption is consistent with Ploetner et al. [8], who argued that UAM is most 

comparable to public transportation as a mobility system. When considering 

access to public transportation stations, the guidelines developed by the Transit 

Cooperative Research Program (TCRP) [66] indicate a station’s catchment area 

should provide access to population. While high amounts of population would not 

necessarily equate to high amounts of UAM users, it does serve as a major 

element for a potential market. Population was therefore used as a factor for this 

thesis.  

Population data for the metropolitan region of Munich was provided by the 

Technical University of Munich’s Modeling Spatial Mobility research group. 

Specifically, the data is part of a synthetic population for the Munich metropolitan 

area and was developed by Moreno and Moeckel [16]. The data was conveniently 

included in the study area’s shapefile that was developed by Molloy and Moeckel 

[65]. In addition to population data, each of the study area’s zones also included 

land-use data, such as mixed-use, industrial or housing quantities.  

3.2.2 Employment 

Like the population factor, employment was also a commonly used factor in the 

studies summarized [7, 8, 20, 22, 24] in Section 2.2. In particular, the studies 

gathered commute data and patterns which typically consist of trips between 

population and employment areas. Further, as the TCRP guidelines [66] 

indicated, in addition to population, a public transportation’s catchment area 

should provide access to areas of employment. Again, like population, 

employment distribution data can serve as an important element for a potential 

market. Employment was therefore used as a factor for this thesis. 

Like the population data, the employment data for the metropolitan region of 

Munich was also obtained from the same study area shapefile [65] populated with 

the synthetic population developed by Moreno and Moeckel [16]. Given both the 

population and employment data were obtained directly from the study area’s 

shapefile, no further manipulation or aggregation of the data were required. 

3.2.3 Points of Interest 

Points of interest refers to touristic attractions. As shown in Table 4, points of 

interest as a factor was among the highest rated factors found to influence station 
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placement in Fadhil’s [7] study. Ploetner et al. [8] indicated the region of Munich 

is an area of high touristic activity and further explored the use of UAM as a 

service to touristic areas. The TCRP guidelines [66] indicate that in addition to 

employment and population, a public transportation station’s catchment area 

should provide access to major attractors. Points of interest as a factor was 

therefore used as in this thesis. 

The points of interest data was provided by Bauhaus Luftfahrt who obtained it 

from TripAdvisor [67]. Specifically, the points of interest correspond to the top 

attractions for the Upper Bavaria region of Germany. In total there were 45 

identified points of interest distributed across the study area. The popularity of an 

attraction on TripAdvisor is based on quality, recency and quantity [68]. Quality 

refers to a location’s ratings given by TripAdvisor users/visitors. Recency relates 

to when reviews were made with older reviews counting less towards the site’s 

overall score. Finally, quantity refers to the number of reviews.  

A list of all points of interest used for this factor is provided in Appendix A. 

3.2.4 Transportation Nodes 

In this thesis, transportation nodes encompassed public transportation stations 

of systems related to longer distance travel. Transportation nodes were the 

highest scoring factor in Fadhil’s [7] study, as shown in Table 4. While some 

studies [18, 22] analyzed UAM as a competing system to public transportation, 

most studies [3, 7, 8, 20] incorporated it as a complementary service. Finally, the 

TCRP accessibility guidelines [66] indicate stations should be multi-modal and 

should provide seamless and fast transfers between said modes. Transportation 

nodes as a factor was therefore used in this thesis. 

The transportation nodes data was obtained from OpenStreetMap [69]. The 

gathered spatial data (in shapefile format) was for the entire state of Bavaria, 

Germany, so filtering was required to obtain data relevant for this thesis’ study 

area. The OpenStreetMap transportation data included nodes and links, such as 

roads, railways and stations. Of interest for this factor were the station nodes. In 

particular, commuter rail, intercity rail and bus stations as such nodes represent 

locations related to longer distance travel. More conventional public 

transportation stations, such as for subway, bus or tram, were omitted due to 

most of them being situated within city cores. Thus, by only taking stations 
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associated with longer distance travel, a higher spatial distribution was expected, 

which the author hypothesized could lead to more regional station allocation.  

3.2.5 Company Headquarters 

In this thesis, company headquarters encompassed employment centers and/or 

firms with large amounts of employees. In Antcliff, Moore and Goodrich’s study 

[17], the authors proposed the integration of UAM to the private sector. 

Specifically, given the study was based in the Northern California Silicon Valley, 

the study suggested tech companies could be early adopters of UAM. The study 

investigated placing UAM stations within a tech company campus block. Said 

block consisted of multiple company offices which would presumably amount to 

a significant number of employees. The Munich region is home to several large 

companies including BMW, Siemens, Allianz and Audi. Like tech companies in 

the Silicon Valley, such companies could potentially benefit from the 

implementation of UAM given their workforce size. Therefore, company 

headquarters as a factor was used in this thesis. 

The company headquarters data was provided by Bauhaus Luftfahrt who 

obtained it from the Bavarian Chambers of Industry and Commerce [70]. The data 

was queried to include companies with number of employees ranging from 200 

to more than 10,000. There were just under 2,100 companies collected including 

headquarters, operating sites, institutions and branch offices. The raw data was 

presented in table format and included addresses for each of the listed 

companies. The addresses were geocoded using the MMQGIS [71] plug-in to 

QGIS [72]. After geocoding, the company locations were filtered to only include 

sites within this thesis’ study area of which the total were about 350 company 

sites. 

3.2.6 Travel Demand 

In this thesis, travel demand encompassed total origin and destination trips per 

zone. Such travel demand can provide insight into travel patterns. Rath and 

Chow’s study [21], for example, used an origin-destination demand matrix to 

determine number of trips per zone destined for the airports in New York City. 

Lim and Hwang’s study [20] also used origin-destination demand data, however, 

instead of focusing on trips destined for airports, they explored commute trips. 
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Other studies [3, 22, 24] also employed similar approaches. By utilizing origin-

destination data, the studies were able to determine the top demand zones and/or 

specific regions that would likely be suitable for UAM. Travel demand data was 

therefore used as a factor for this thesis. 

Like the population and employment data, the travel demand data was obtained 

from the synthetic population developed by Moreno and Moeckel [16]. Unlike the 

population and employment data, the travel demand data was not included in the 

study area’s shapefile [65]. Rather, it was provided in a separate trips file that 

corresponded to the number of trips occurring in the metropolitan area of Munich. 

Each of the entries corresponded to an agent’s (or person’s) trip and included 

information such as departure time, total travel time, trip type, origin and 

destination. The origin and destination information corresponded to what zone 

the trip originated at and was destined for. The zone IDs correspond to the zones 

in the study area’s shapefile developed by Molloy and Moeckel [65]. In the Uber 

Elevate white-paper, Holden and Goel [3] indicate UAM will be most appealing to 

long-distance commuters. They expect long-distance commuters will benefit the 

most in terms of travel time and money savings. Therefore, for each zone, the 

collected trip data was filtered to include trips with distances of at least 32 

kilometers (or 20 miles), which was a distance consistent with 2 previous UAM 

station allocation studies [3, 24].  

3.2.7 Accessibility  

Within the transportation/urban planning field, accessibility is defined several 

ways, though it is generally used to describe the ease with which activities can 

be reached. Geurs and van Wee [73] define it by taking into account the 

interaction between land-use and transportation and how the combination of the 

2 gives people the opportunity to travel to destinations and/or engage in activities. 

The authors identify several different existing accessibility measures, each based 

on different elements such as infrastructure, location, persons and utilities. 

Location-based measures can further be subdivided into accessibilities that are 

measured by distance, contour and potential. Among the more widely used 

accessibility measures in urban and geographic studies is accessibility that 

measures potential. Hansen’s [74] measure of accessibility is a well-known and 

established measure that considers potential. In his study, Hansen described 
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accessibility as the “potential of opportunities for interaction” and distinguishes 

his measure from those that describe the ease of travel and activity interaction. 

Hansen explained that the accessibility at zone i to an activity located at zone j 

can be measured by considering the size of the activity and the travel distance, 

or cost, between zones i and j. In this context, such an accessibility measure is 

also known as a gravity-based measurement. The accessibility measurement 

described by Hansen is as follows, as taken from Hansen [74]:  

𝐴𝑖𝑗 =
𝑠𝑗

𝑇𝑖𝑗
𝑥 

3-1 Hansen Accessibility 

Where Aij is the accessibility at zone i to an activity at zone j, Sj the size of an 

activity at zone j, Tij the travel distance or cost between zones i and j, and x is a 

factor describing the effect of travel time, or cost, between zones i and j. Potential 

accessibility can also account for more than one activity at zone j and/or more 

than one zones with the formula taking the following form, as taken from Geurs 

and van Wee [73]: 

𝐴𝑖 = ∑ 𝐷𝑗ⅇ−𝛽𝐶𝑖𝑗

𝑛

𝑗=1

 

3-2 Potential Accessibility with Negative Exponential Cost Function 

Where Ai is the accessibility measurement for zone i to all opportunities D at zone 

j, cij is the travel cost between zones i and j, and β a cost sensitivity parameter. 

Potential accessibility measures are also known as gravity-based measures and 

this specific formula utilizes a negative exponential cost function. Lower values 

of β result in larger accessibility scores as was shown in [75]. A value of 0.2 was 

used for the cost sensitivity parameter β, which was consistent with several 

studies [76–78] that iteratively calculated the value.  

According to the TCRP public transportation station accessibility guidelines [66], 

station access should be multi-modal. This was in accordance to Ploetner et al.’s 

[8] study, where the authors indicated that UAM should serve as a 

complementary service to public transportation. Further, the TCRP guidelines 

[66] recommend stations should serve both existing and potential markets by 

placing stations in such a way that their catchment areas serve and provide 
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access to high densities of both population and employment. According to a 

TCRP station access model, the main factors found to influence station access 

were employment, density and parking availability. Accessibility via public 

transportation and car were therefore used as factors in this thesis. Specifically, 

there was a total of 4 accessibility factors utilized in this thesis: accessibility to 

employment via car, accessibility to population via car, accessibility to 

employment via public transportation and accessibility to employment via public 

transportation. 

Population and employment data for each zone in the study area was obtained 

from the synthetic population developed by Moreno and Moeckel [16]. The car 

and public transportation interzonal travel time data were provided by the 

Technical University of Munich’s Modeling Spatial Mobility research group. The 

raw interzonal travel time data were presented in 4953x4953 matrices with 4953 

corresponding to the number of zones in the Munich metropolitan area shapefile 

[65]. There were multiple matrices corresponding to different travel times based 

on different modes, such as car, train, metro and bus, and different trip segments, 

such as access, egress and in-vehicle time. Given the multiple number of 

matrices for public transportation, merging of matrices was required. Further, for 

each public transportation interzonal trip, the minimum travel time across different 

public transportation modes (train, metro, bus) was taken. This was done 

because interzonal trips where public transportation as a mode was not viable 

were assigned with very large travel time values.  

Given the large number of interzonal trips (about 25 million) for the study area, 

all accessibility scores were calculated using a custom R [79] script that applied 

Equation 3-2. For every zone, the R script calculated the sum-product of the 

quantity of activity (employment or population) and travel distance (via car and 

public transportation) to every other zone (including itself) in the study area. 

Hence, every zone’s accessibility score consisted of 4953 products.  

3.3 Aggregation 

Once all the factor data were collected and mapped onto the study area, they 

were all aggregated at the zonal centroid level. The resulting structure was a 

collection of attributes indicating the total number of factor data per each of the 

study area’s zones. At this stage, the data showed the raw factor score for each 
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of the zones. While some of the factor data did have exact coordinates, such as 

travel demand, points of interest, transportation nodes or company headquarters, 

other factors did not, such as employment, population, and all the accessibility 

factors. In order to have all the factors represented in the same spatial format, all 

factor data was aggregated to each of the zones’ centroids consequently losing 

spatial exactness for some factors.  

Heatmaps showing the distribution of each of the factors were created and 

provided in Appendix B. A visualization of the study area’s zone centroids is 

shown below in Figure 6. 

 

Figure 6 Study Area Zone Centroids 
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4 METHODOLOGY 

As described in Section 2.3.3.1, MCDA can be subdivided into two general types 

of analysis: multi-objective and multi-attribute. Fadhil’s [7] work, for example, was 

primarily a multi-attribute approach with elements including AHP-type criterion 

weighting, weighted linear combination and suitability analysis. While this thesis 

utilized multi-objective decision analysis (MODA) to ultimately identify station 

locations, it did so by first applying multi-attribute decision analysis (MADA). 

While MCDA was the core of this thesis, it also included other procedures. The 

work in this thesis began with a data collection and preparation process (Chapter 

3) which consisted of gathering data related to the study area and factors. It also 

included a surface modeling process that transformed localized data points to a 

more spread-out, continuous surface. Finally, the MCDA results were evaluated 

(Chapter 5) using a mode choice model and travel time comparisons for car, 

public transport and UAM. A graphical representation of this thesis’s methodology 

is shown below in Figure 7. 
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Figure 7 Methodology Flowchart 

4.1 Value Scaling 

The collected factors’ raw scores for each zone resulted in varying ranges of 

values. For example, the maximum number of points of interest at a single zone 

was 3 while the maximum calculated car accessibility to population was well over 

300,000. On the opposite spectrum, several factors had minimum values of 0 

while a few had theirs in the hundreds. In order to fairly compare the factor scores, 

their values were converted using value scaling (also known as standardization). 
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Standardization is a common practice when conducting MCDA [19, 27]. As 

described in Section 2.3.1, the standardization method known as linear scaling is 

appropriate when pairwise comparison is used for factor prioritization (i.e. weight 

determination) [28]. In addition to complementing pairwise comparisons, the 

linear scaling method is considered one of the simplest to use and was therefore 

utilized for this thesis.  

A custom R script used Equation 2-1 to convert every raw score (for each factor 

at each zone) to a scale ranging between 0 and 1.    

4.2 Criterion Weighting 

When conducting MCDA, an important element in the decision-making process 

is the prioritization of the attributes [19], a process Kao [29] explains to be one of 

the most challenging components. As was explained in Section 2.3.2, typical 

methods of attribute weight determination can be done through literature review, 

expert opinion or analytical studies on the data [30]. While some of the factors 

utilized in this thesis coincided with those of Fadhil’s [7] study, not all of them 

were accounted for. Therefore, given the limited amount of studies related to 

UAM station allocation utilizing MCDA, a review of literature was not a suitable 

method for weight determination. For this thesis, expert opinion was sought for 

the determination of weights. Specifically, the AHP method was employed due to 

its ability to handle both qualitative and quantitative attributes [33], its simple, 

straightforward structure, moderate chance of bias [80] and well-established 

usage for MCDA problems utilizing GIS [19].  

4.2.1 Analytic Hierarchy Process 

For this thesis, an AHP process was carried out to determine the weights of all 

10 factors. Often, spatial decision making processes including MCDA are done 

with the input of multiple decision makers, rather than just an individual [19]. The 

procedure was therefore carried out as a group decision making process and 

involved a total of 5 decision makers of varying backgrounds. According to 

Robbins [81], group sizes should typically range between 5 and 50 decision 

makers. The author took advantage of access to decision makers that had 

extensive knowledge or were, at the time, involved in research related to UAM. 

Given the decision makers’ different backgrounds and fields, the author was 
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interested in each decision maker maintaining their personal judgement without 

the influence of any other decision maker in the group. The AIP method (as 

described in Section 2.3.2.2), with an arithmetic mean, was therefore chosen for 

group aggregation.  

Once the 5 decision makers were identified, they were each provided an AHP 

questionnaire that was created on Microsoft Excel using steps consistent with 

and developed by Saaty [37, 38]. Each decision maker completed the 

questionnaire individually without interacting with any other decision maker. The 

Excel AHP questionnaire consisted of 4 sheets: 

1. The first sheet was the only sheet decision makers could edit. It was in this 

sheet where the pairwise comparisons of factors were performed. Given 

there were 10 factors, there were a total of 45 pairwise comparisons (per 

Equation 2-2) every decision maker had to go through. For each pairwise 

comparison, the decision makers were asked to choose what factor they 

considered to be more important (indicated by a checkbox). Afterwards, 

they were asked by how much the chosen factor was more important than 

the other factor (via a score). It was also possible to consider both factors 

to be of equal importance. The scoring system used was Saaty’s [37] 

intensity of importance scale (refer to Table 1).  

2. The second sheet included the comparison matrix where all pairwise 

comparison scores were shown in matrix format. Given there were 10 

factors, the comparison matrix’s size was 10x10 and additionally included 

a summation row at the bottom. The summation row showed the 

summation of each column (column sum) where each column 

corresponded to each of the 10 factors. As described in Saaty’s [37] 

scoring system, if, for example, factor A is considered to be more important 

than factor B (when comparing A with B), then the score of factor B (when 

comparing B with A) receives the reciprocal value of the score (i.e. 1 over 

value of score). On the comparison matrix, such scores would be shown 

on opposite diagonal halves of the matrix (i.e. the transpose position).  

3. The third sheet included the normalized relative weight matrix, which was 

utilized to calculate the eigenvector (or priority vector). The normalized 

relative weight matrix again was a 10x10 matrix with an additional column 

on the right showing the priority vector. The position for each cell in the 
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normalized relative weight matrix was consistent with the cell locations in 

the comparison matrix. The cells in the normalized relative weight matrix 

corresponded to the division of their respective comparison matrix cell by 

their column sum value. Once every cell in the normalized relative weight 

matrix was populated, the priority vector was calculated by taking the 

arithmetic average of every row.  

4. The fourth and final sheet determined consistency. The sheet displayed 

the priority vector (from step 3) and the column sum (from step 2). The 

sum-product of these two values produces what is known as the maximum 

eigenvalue. The eigenvalue was in turn used in Equation 2-4 to determine 

the consistency index. Finally, after the consistency index was determined, 

it was used in Equation 2-3 to determine the consistency ratio. According 

to Saaty [38], a suitable consistency ratio should be less than 10%.  

A copy of the AHP questionnaire, with all sheets, is provided in Appendix C. 

4.2.2 Results 

4.2.2.1 Consistency 

The consistency ratios for the decision makers resulted in values between 10 and 

22% meaning consistency was not suitable per Saaty’s [38] recommendations. 

As Miller [82] stated in his widely cited paper, “the span of absolute judgment and 

the span of immediate memory impose severe limitations on the amount of 

information that we are able to receive, process, and remember.” Miller proposed 

the amount of simultaneous information found to be manageable for humans is 

in the order of 7±2. Increasing the amount of information often leads uncertainty 

and/or a break in consistency. Saaty and Ozdemir [83] agreed with Miller’s claim 

and found that when conducting AHP, inconsistencies often arose when decision 

makers were presented with more than 7 criteria for pairwise comparison. 

Nevertheless, there are times when the number of criteria goes past 7 and 

Saaty’s 10% rule of thumb can be expanded. In his study, Wedley [84] presents 

acceptable and tolerable cut-off values for consistency depending on the number 

of criteria, which were based on Saaty’s [38, 85] work. For 10 criteria, a tolerable 

value was found to be 20%. Per the resulting AHP questionnaires in this thesis, 

all but 1 (with a value of 22%) resulted in meeting the 20% tolerable cut-off value.  
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When dealing with inconsistent results, a possible mitigation involves asking the 

decision maker to reconsider their answers [83] in hopes of improving or reaching 

a level of acceptable consistency. Per Fadhil’s study [7], having decision makers 

reevaluate their judgements, through several rounds, proved to be unsuccessful 

in reaching a target consistency. For this thesis, the author ultimately decided 

against such a process and accepted the decision maker’s initial judgement of 

the factors.  

4.2.2.2 Final Factor Weights 

Once all the decision makers filled out their AHP questionnaires, their judgements 

were aggregated. In this thesis, the group decision making process was assumed 

to be an aggregation of individual priorities (or AIP). Under AIP, the final priority 

vector (i.e. factor weights) is determined by taking the arithmetic mean of every 

decision maker’s priority vector [39, 40]. The final factor weights are shown below 

in Table 5. 

 

Factors DM 1 DM 2 DM 3 DM 4 DM 5 
Average 

Weight 

Population 2.8% 9.6% 2.3% 9.9% 17.8% 8.5% 

Employment 2.8% 9.6% 4.4% 2.7% 13.2% 6.5% 

Points of Interest 21.1% 17.4% 29.6% 26.7% 13.4% 21.6% 

Transportation 

Nodes 
37.7% 2.7% 6.2% 19.3% 3.5% 13.9% 

Company 

Headquarters 
15.5% 35.4% 7.4% 1.3% 8.5% 13.6% 

Travel Demand 7.0% 2.3% 3.0% 16.8% 28.8% 11.6% 

Accessibility to 

Employment via 

Car 

3.6% 6.2% 12.8% 4.1% 3.5% 6.1% 

Accessibility to 

Population via Car 
2.2% 4.2% 7.5% 6.5% 3.8% 4.8% 
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Factors DM 1 DM 2 DM 3 DM 4 DM 5 
Average 

Weight 

Accessibility to 

Employment via 

Public 

Transportation 

4.5% 7.4% 17.6% 4.5% 3.8% 7.6% 

Accessibility to 

Population via 

Public 

Transportation 

2.9% 5.2% 9.1% 8.3% 3.8% 5.8% 

DM = Decision Maker 

Table 5 Final Factor Weights 

As shown, the top 3 factors were found to be points of interest, transportation 

nodes and company headquarters. The resulting average factor weights were 

consistent with Fadhil’s [7] results (shown in Table 4) in that points of interest and 

transportation nodes were considered to be important influential factors for UAM 

station placement. 

4.3 Weighted Linear Combination 

The weighted linear combination (WLC) method is among the most used 

combination procedures in MCDA involving GIS. It is also commonly used in 

combination with factors that have been weighted through a pairwise comparison 

process (such as AHP) [19, 35]. The WLC method consists of two main elements: 

criterion weights (or factor weights) and value functions (or factor scores). The 

value functions are typically standardized before being utilized in the WLC 

procedure (as was done in Section 3.2). The WLC method, known to be a 

straightforward combination procedure, can be calculated using the following 

formula, as taken from Malczewski and Rinner [19]:  

𝑉(𝐴𝑖) = ∑ 𝑤𝑘𝑣(𝑎𝑖𝑘)

𝑛

𝑘=1

 

4-1 Weighted Linear Combination 
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Where wk is the weight for factor k, v(aik) is the factor score for alternative a 

located at i and V(Ai) is the summation of all weighted factor scores at location i. 

The WLC method is a linear method meaning increasing the quantity of a factor 

score will linearly increase the overall score for alternative Ai.  

The WLC for every zone was determined by using Equation 3-3 in a custom R 

script that calculated the sum-product of the standardized (values between 0 and 

1) factor scores and the factor weights developed using AHP. Every zone’s WLC 

score therefore consisted of a summation of 10 elements corresponding to the 

number of factors.  

4.4 Surface Modeling 

The spatial data utilized for this thesis was gathered and initially aggregated at a 

zonal-centroid level based on a structure developed by Molloy and Moeckel [65]. 

The structure they developed divided the greater Munich metropolitan area to just 

under 5,000 zones. In order to convert the spatial data from a centroidal (point) 

format to a spread-out, continuous surface, surface modeling was utilized. Two 

surface modeling techniques were considered for this thesis: spatial interpolation 

and density estimation.  

All surface modeling was conducted using ESRI’s ArcMap 10.7.1 [86] software. 

Specifically, the software’s Spatial Analyst suite [56] was used given it 

conveniently included both inverse distance weighting and kernel density 

estimator tools.  

4.4.1 Kernel Density Estimation 

Calculating density required setting parameters and inputting data to ESRI’s KDE 

[61] tool. The only data required for running IDW was a point shapefile with points 

corresponding to measurement values (or control points). The Munich 

metropolitan region zone shapefile [65] was used for this input given each zone 

had a corresponding centroid and hence, could be represented as a point 

shapefile. The first parameter setting required selecting the input shapefile’s 

attribute data that would serve as the control points. The zone shapefile had at 

this point been modified to include all data related to factors, standardized scores, 

and weighted factor scores. Therefore, the weighted factor scores (calculated in 

Section 3.4) were used as the control points. The next parameter required setting 
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an output raster cell size, which relates to how coarse the output raster will be 

generated. An output raster cell size of 1,250 meters was used. This setting 

proved to be important for the procedures explained in Section 3.6. The final 

parameter setting was the search radius, or bandwidth. As described in Section 

2.5.2.1, the bandwidth determines how far to search for neighboring control 

points. If many control points, or kernels, fall within a single control points’ search 

radius, the accumulation of values yields a higher density estimation. Too small 

a bandwidth value will result in overfitted results while too large a value will result 

in an oversmoothed surface [62]. The default bandwidth value (based on 

Equation 2-9) was used with a weighted standard distance. Here, the weights 

corresponded to each zone centroid weighted factor scores. The default 

bandwidth value (per Equation 2-8) was estimated to be about 4.3 km. 

The KDE results for the Munich metropolitan region are shown below in Figure 8. 
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Figure 8 Kernel Density Estimation Results 

The highest intensity estimates were unsurprisingly located at the city core of 

Munich and medium intensity estimates at the city cores of Augsburg, Ingolstadt 

and Landshut.  

4.4.2 Inverse Distance Weighting 

Interpolating for unknown values required setting parameters and inputting data 

to ESRI’s IDW [59] tool, which were very similar to those input to the KDE tool. 

The only data required for running IDW was a point shapefile with points 

corresponding to measurement values (or control points). The Munich 



 

50   

metropolitan region zone shapefile [65] was again used for this input given each 

zone had a corresponding centroid and hence, could be represented as a point 

shapefile.  

The first parameter setting involved selecting the input shapefile’s attribute data 

that would serve as the control points. Unlike KDE, IDW does not consider the 

density of control points. Unknown values are estimated based on the values of 

the nearest control points and cannot exceed the value of said points. This would 

result in areas with smaller zones (e.g. city centers), which had higher densities 

of scores but smaller absolute score values, to have lower interpolated values 

than areas with larger zones, which had lower densities of scores but larger 

absolute score values. The weighted factor scores (calculated in Section 3.4) for 

each zone were therefore transformed to density values and used as the control 

points. Density values were calculated by dividing the weighted factor scores by 

their respective zone’s area. 

The next parameter involved setting an output raster cell size, which relates to 

how coarse the output raster will be generated. The output raster cell size was 

set to the same value used under KDE: 1,250 meters. This setting proved to be 

important for the procedures explained in Section 3.6. The next parameter 

involved setting the power parameter, which determines how influential control 

points are depending on their distance from the unknown value. Higher power 

values diminish the influence of distant control points. A power value must be 

greater than 0 and ESRI recommends setting a value between 0.5 and 3. The 

default value of 2 was used for this setting. The final parameter setting consisted 

of choosing between a fixed search radius and variable search radius 

interpolation method (as explained in Section 2.5.1.1). Each method has two sub 

parameter settings [87].  

Under the fixed search radius method, the first setting is the search radius 

distance, which corresponds to how far from the unknown point to search for 

neighboring control points. If no search radius is set, the IDW tool will use a 

search radius value that is 5 times that of the output raster cell size value [87]. 

The second parameter is related to setting the minimum number of points, which 

corresponds to the number of control points to search for and use for the 

interpolation estimation. The default value is 0, but if set, the search radius’ size 

can increase until the specified number of points are satisfied.  
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Under the variable search radius method, the first setting is number of points, 

which corresponds to the number of control points to search for and use for the 

interpolation estimation. It searches for the nearest neighboring control points 

and the default value is 12. The second parameter setting is maximum distance, 

which is essentially a search radius and limits the distance by which to search for 

neighboring control points. This is an optional setting with a default value equal 

to the diagonal distance of the study area. 

Both methods were tested, and results were noticeably different. Under the fixed 

search radius method, the default value for both search radius distance and 

minimum number of control points were used. As shown below in Figure 9, the 

resulting raster had missing values (indicate by white raster cells), which 

correspond to points that found no neighboring control points inside their search 

radius.  

When running the variable search radius, rather than take the default value for 

number of points (12), a value of 7 was input. The value seemed suitable given it 

corresponded to the average number of neighboring zone polygons for the study 

area’s shapefile. The default value for maximum distance was taken. Unlike the 

fixed search radius method, the variable search radius had no missing values. 

Further, as shown in Figure 10, the resulting surface was more spread out than 

the one created using the fixed search radius method. 
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Figure 9 Inverse Distance Weighting Results using Fixed Search Radius 



 

53 

 

Figure 10 Inverse Distance Weighting Results using Variable Search Radius 

4.4.3 Results 

When comparing the KDE and 2 IDW surfaces, results were similar in showing 

higher intensity values at the cores of the region’s larger cities. However, the KDE 

results were found to be overly smoothed and showing almost no variation in 

scores outside the city cores. The resulting surface calculated using inverse 

distance weighting with a variable search radius was the preferred method 
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between both IDW approaches given it had no missing values and intensity 

values were more spread out throughout the region. 

The IDW results indicated the highest intensity of scores were located at the city 

centers of the study area’s largest cities. Additionally, there was a small area to 

the south of Munich that also had a high intensity score, as shown in Figures 9 

and 10. When reviewing the individual factor heatmaps (provided in Appendix B), 

the area in question had relatively high activity for the travel demand, company 

headquarters, employment, population and transport nodes factors. The 

accumulation of all these factors was initially expected to be the reason for the 

high intensity score. However, a closer examination revealed the high score was 

due to a zone structure error. As shown in Figure 11, an unintended zone was 

drawn as a result of crooked boundaries from neighboring zones.  

 

Figure 11 Zone Structure Error 

The resulting zone was very small and essentially empty; it contained no land-

use or socioeconomic data. When calculating accessibility scores, the obtained 

travel time zone matrices did have associated travel time data for the specific 

zone. Therefore, accessibility scores were generated for the zone. As mentioned 
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in Section 4.4.2, the weighted zone scores for IDW were input as density scores. 

Although accessibility scores were relatively low for the zone, the resulting 

accessibility scores, in density format, were particularly high due to the zone’s 

small area. Under location-allocation, the zone’s, and consequently the area’s, 

highly weighted demand points resulted in it being an attractive site for UAM 

station placement. Though location-allocation was not solved with the correction 

of this error, it was expected the area’s high score had a considerable influence 

on the resulting UAM networks. A simple fix would have consisted of removing 

such empty zones from the original study area shapefile. This error was 

unfortunately identified towards the end of the thesis after all subsequent analysis 

and steps had been conducted.  

4.5 Location-Allocation 

This thesis conducted all location-allocation analysis using the GIS environment 

ArcMap 10.7.1 from ESRI given it provides a medium by which all relevant data 

can be collected, analyzed and visualized. Further, ESRI’s location-allocation tool 

solves location problems using heuristics, which was of interest to the author 

given its well-established processing speed, efficiency and close to optimal 

solutions. ESRI’s location-allocation solver is housed in the software’s Network 

Analyst suite [88], which is able to solve multiple types of location-allocation 

problems. As described in Section 2.4.1, both the minimize impedance and 

maximize coverage problem types were considered suitable for this thesis. Under 

minimize impedance, locations are found in such a way that all demand points’ 

average travel costs (e.g. time or distance) are minimized. Under maximize 

coverage, locations are found in such a way that the maximum amount of demand 

points, within an impedance cutoff value (i.e. search radius), are served. Demand 

points located outside the specified search radius are not assigned to any 

allocated facility and are considered unserved [88].  

4.5.1 Data Inputs 

The location-allocation solver required input data and parameter settings to be 

able to run. The 3 required data inputs are as follow: 

• Network Dataset: the network dataset is essentially the infrastructure 

network by which demand is connected to facilities. All analysis conducted 
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using ESRI’s Network Analyst suite is done on a network dataset. Such a 

dataset includes information and features such as links, nodes, capacity, 

speed, junctions and direction of travel (i.e. one-way or two-way roads) 

[89]. The network dataset was created in ArcMap 10.7.1 using a road 

shapefile of the study area that was obtained from OpenStreetMap [69].  

• Demand Points: demand points typically correspond to the locations that 

house users that will be served by the facilities [88]. ESRI’s location-

allocation solver can handle a maximum of 10,000 demand points [90] and 

must be input as a point shapefile. Demand points can contain weights, 

which represent a level of demand. The interpolated values calculated in 

Section 3.5.2 were used for this input, however, because they were 

produced as a raster image, a conversion of format was required. As 

described in Section 3.5.2, when creating the interpolated raster image, a 

raster output cell size of 1,250 meters was used. This value, identified 

through trial-and-error, determines the number of raster cells the 

interpolated raster surface image will contain. At an output cell size of 

1,250 meters, the raster image was made up of about 9,300 raster cells. 

Each raster cell had an associated interpolated value estimated using the 

weighted factor scores. Using a built-in raster-to-shapefile tool in ArcMap, 

the IDW raster image was converted to a point shapefile containing about 

9,300 points (evenly spaced at 1,250 meters) with their respective weights. 

The resulting shapefile was used as the demand points input. 

• Facilities: facilities correspond to the sites that will be chosen by the 

location-allocation solver and to which the demand points are assigned. 

When inputting facilities, they can be classified as candidates, required or 

competing sites. Candidate sites make up the facilities that could be 

chosen by the solver, required sites are facilities that are always chosen 

and competing sites are facilities that will compete with other sites for 

market share and demand points [88]. All facilities used in this thesis were 

classified as candidate sites. Like demand points, facilities can also have 

weights assigned to them, however for this thesis, the weights were 

assigned to the demand points. ESRI’s location-allocation solver can 

handle a maximum of 1,000 demand points [90] and must be input as a 

point shapefile. The facilities point shapefile was created using a built-in 
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tool in ArcMap that creates points spaced according to an input distance 

value. The value, identified through trial-and-error, was set to 4,000 meters 

(4 km) and a total of about 930 evenly spaced points were created. The 

resulting shapefile was used as the facilities input. 

Visualizations of the study area with demand points and facilities are provided in 

Appendix D. 

4.5.2 Parameter Settings 

In addition to the aforementioned input data, ESRI’s location-allocation solver has 

several parameters that should be set prior to running [88, 90]. The first 

parameter involved setting how impedance (or travel cost) between demand 

points and facilities would be calculated. An impedance of travel distance (in 

kilometers) was chosen for this parameter. Each link (or road) in the network 

dataset has an associated length attribute which is utilized for determining the 

shortest path between demand points and facilities. The next parameter involved 

choosing what problem type should be solved. ESRI’s location-allocation solver 

has a total of 7 problem types to choose from: minimize impedance, maximize 

coverage, maximize capacitated coverage, minimize facilities, maximize 

attendance, maximize market share and target market share. As described 

previously, both the maximize coverage and the minimize impedance problem 

types were tested for this thesis. The next parameter involved choosing the 

number of facilities (i.e. UAM stations) to find. If, for example, 10 facilities were 

chosen, the solver would find the top 10 facilities from the approximately 930 

previously input facilities. Varying number of facilities were used for this thesis. 

The next parameter involved setting an impedance cutoff value. This value 

corresponds to a search radius from each potential facility. Any demand point 

that fell outside this search radius was not served by the facility. Varying 

impedance cutoff values were used in this thesis and were dependent on the 

number of facilities to find. Whereas an impedance cutoff value is required under 

the maximize coverage problem type, for minimize impedance, the problem type 

finds facilities in such a way that average distance is minimized for all demand 

points. Therefore, the impedance cutoff for the minimize impedance problem type 

is optional and a value is not typically set.    
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As mentioned, both the number of facilities and impedance cutoff (for the 

maximize coverage problem type) parameters were set to varying values. From 

the station-allocation studies summarized in Section 2.2, there was no clear 

rationale or pattern for proposing number of stations. The number of stations 

proposed across studies varied widely with some studies allocating as few as 8 

[23] while others as many as 1,000 [22]. Further, while some studies 

incrementally found stations [20, 21, 23], others proposed distinct networks of 

varying sizes [8, 22, 24]. This thesis decided to follow the incremental approach 

at finding stations given one of the goals was to determine a point (or range) 

where UAM demand leveled-off as a result of incrementing number of stations.  

Therefore, in order to determine the incremental amount of UAM demand per 

number of stations, the location-allocation solver was solved several times 

iterating through the number of facilities to find. A range between 2 and 75 

stations in increments of 1 were set for the parameter. The author found 75 to be 

a suitable ceiling given it far surpassed the number of proposed stations from 

other incremental approach studies. Further, it was hypothesized incrementing in 

single steps between 2 and 75 would provide a wide range where a noticeable 

UAM demand pattern would manifest.  

Regarding impedance cutoff, the parameter was only required and set when 

running the maximize coverage problem type. Again, when referring to the work 

summarized in Section 2.2, there were some studies that did consider a 

comparable parameter. For example, in German et al.’s study [23], UAM stations 

were allocated by limiting service to users within a 10-minute drive to the stations. 

The resulting stations were primarily allocated to urban areas and indicated 10 

minutes was not adequate for non-urban, more dispersed land-use. In the 

extension to that study, Daskilewicz et al. [24], again consider a catchment area 

around potential UAM stations. Their allocation solver determined stations by 

limiting service to users within 3 miles and a 5-minute drive to the station. 

For the 2 studies, the result of imposing a catchment area around potential 

stations influenced results by allocating stations to areas of high population 

density. This thesis explored a different approach thought to be more equitable. 

The maximize coverage problem type was run with impedance cutoffs (i.e. 

catchment areas) large enough to serve every demand point in the study area 

and hence solved for networks where search radii were not an influential element 
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for station allocation. This approach was considered consistent with the principles 

described in a German Spatial Planning Report by the Federal Office for Building 

and Regional Planning [9]. The report makes a reference to a law found in the 

German constitution (Article 72) that mandates the “preservation of equivalent 

living conditions.” Equivalence, as the report explains, refers to equal access to 

services, goods, jobs and housing. Spatial planning in Germany considers 

sustainability, equivalence and regional strengthening as objectives. The report 

also refers to the German urban planning concept of central places. German 

settlements are decentralized when compared to other European cities and 

countries. Settlement networks under the central places concept have access to 

all necessary and vital amenities. Under this system, rural regions too must be 

provided with a minimum supply of public facilities, such as access to 

transportation networks, in order to prevent exodus.  

Given this thesis sought to create UAM networks with stations ranging between 

2 and 75, tediously running the location-allocation solver 74 times was 

inconvenient. Therefore, using ESRI’s model builder [91], the location-allocation 

solver was grouped into a sequence of ESRI tools and processes. ESRI’s model 

builder allows multiple procedures to be run in sequence and can do so iteratively. 

The custom model was set up to accept all data inputs and parameter settings 

described in this section. The model additionally accepts iteration values, such 

as a start, end and increment value which correspond to the number of stations 

to find. Every time an iteration was commenced by the model-builder, the demand 

points and facility shapefiles were reloaded onto the network dataset. Given the 

large sizes of the input data, loading them onto the location-allocation solver 

required a significant amount of time. To remedy this, the built-in ArcMap tool 

Calculate Locations [92] was used to hard-code the demand points and facilities 

data onto the network dataset. By doing so, load times were significantly reduced 

from several minutes to a couple of seconds. A visualization of the model builder 

is provided in Appendix E.  

4.5.3 Running the Solver 

4.5.3.1 Maximize Coverage 

As described in the previous section, the maximize coverage location-allocation 

problem type was run with an impedance cutoff large enough to serve all demand 
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points in the study area. Networks with lower numbers of stations required larger 

impedance cutoff values to completely reach all demand points. Conversely, 

networks with higher number of stations required smaller impedance cutoff 

values. Solve time increased significantly with the increase in the impedance 

cutoff value. Therefore, to expedite the process, the solving was broken up into 

3 groups of networks each with a range of UAM stations. The groups had the 

following ranges: 2 through 10, 11 through 25 and 26 through 75. For each group, 

an impedance cutoff value was determined (through trial-and-error) for the 

smallest network under the assumption said value would satisfy all demand 

points for the larger networks. The impedance cutoff values found to satisfy all 

demand points were 110, 50 and 40 km for the groups in ascending order.  

4.5.3.2 Minimize Impedance 

After maximize coverage, the minimize impedance location-allocation problem 

type was tested to compare differences in results. Except for the impedance 

cutoff values, all data inputs and parameter settings used for the maximize 

coverage problem type were the same for minimize impedance. As described in 

Section 3.6.2, impedance cutoff values are typically not set for minimize 

impedance as it attempts to find stations by minimizing weighted cost (here, travel 

distance) for all demand points.  

4.5.4 Results 

Every time the model builder solved a location-allocation iteration, it generated 

and saved 3 output shapefiles. The 3 outputs were a demand points, demand 

lines and facilities shapefile. Under maximize coverage, the resulting demand 

points shapefile typically correspond to a subset of the original input demand 

points corresponding to points that were successfully connected and served by a 

facility. In the case of this thesis, all demand points were connected. The demand 

points shapefile included data such as what facility it was connected to and how 

much of the demand points’ weight was allocated to said facility. When solving 

for maximize coverage and minimize impedance, a demand point can only be 

linked to a single facility, therefore, a demand points’ weight is fully allocated to 

the facility serving it. The demand lines output shapefile was visually a collection 

of straight lines between a single facility and all its served demand points. For 

each line, the shapefile generated information such as total travel distance and 
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amount of demand point weight being allocated to the facility. Though the lines 

were visually drawn in a Euclidean format, the corresponding travel distances 

were network distance values. Finally, the facilities output shapefile showed the 

facilities that were chosen among the initial input of facilities. The shapefile 

included information such as total weight and total number of demand points 

allocated to it. 

When comparing results from maximize coverage and minimize impedance, the 

allocated stations were unexpectedly found to be identical for all networks sizes. 

The author hypothesized this was due to the large impedance cutoff values set 

under the maximize coverage problem type. A study by Church and ReVelle [93] 

demonstrated the computational similarities between the p-median (or minimize 

impedance) and the maximal covering location problem (or maximize coverage). 

The authors described that by introducing a service distance (i.e. cutoff value), 

between the facilities and demand points, to the minimize impedance problem, 

the solutions can be generated using equivalent mathematical calculations to 

those under maximize coverage. In the final remarks of the study, the authors 

indicated a desire to develop a procedure that can edit the input data so that other 

problem types can be solved using a minimize impedance approach. As 

described in Section 2.4.2, such a method (known as Hillsman editing) is in fact 

used by ESRI’s location-allocation solver. Therefore, though unexpected, the 

identical station allocation results between maximize coverage and minimize 

impedance were reasonable.  

Visualizations of the location-allocation results are shown below in Figure 12.  
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Figure 12 Location-Allocation Results 

The maps, from A to D, show the results for the networks with 2, 25, 50 and 75 

UAM stations. The blue points represent the allocated UAM stations while the 

purple lines represent the connections between the UAM stations and demand 

points (not shown). As mentioned, demand points were only allowed to be served 

by a single UAM station. Therefore, UAM station catchment area borders were 

clearly displayed by the maps. Patches of missing lines correspond to study area 
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features such as lakes or forests and represent areas where UAM station 

placement would likely not take place. 

While maps for all 74 UAM networks were not provided, Figure 12 accurately 

portrays the trend related to incrementing number of stations. Networks with 

fewer stations resulted in station allocation in areas with demand points with the 

highest weights. Such areas were primarily city centers as shown in map A of 

Figure 12 where the 2-station network resulted in the stations being allocated in 

the region’s largest cities: Munich and Augsburg. Increasing the number of 

stations yielded networks with stations congregating in areas with high demand 

weights. Additionally, a higher number of stations resulted in a reduction of station 

catchment areas and hence, less travel time between demand and facilities. Both 

results are apparent in map D of Figure 12. 
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5 EVALUATION 

The resulting UAM networks from the location-allocation analysis were evaluated 

by determining demand per number of stations and travel time comparisons. The 

travel demand was carried out using the mode choice model described in Section 

2.1.3. The travel time evaluation involved comparing UAM, car and public 

transportation travel times to different destinations in the study area. 

Additionally, this thesis’ evaluation included a comparison between the manually 

created UAM networks developed in Ploetner et al.’s study [8]. The comparison 

seemed suitable given their study area was the same and their station allocation 

procedure noticeably different. Further, as described in Section 2.2.1, their study 

indicated a desire to explore a semi-automated process for station placement that 

would consider different criteria. Such a process was consistent with the work 

carried out in this thesis. Because their study developed UAM networks with 24, 

74 and 130 stations, an additional 130-station UAM network was created using 

the procedures described in Chapter 4. The generated travel times for each set 

of networks were also compared. 

A visualization of the 2 sets of networks are shown below in Figure 13. The 

networks on the left correspond to the networks created in this thesis (hereafter 

referred to as Thesis networks) while those on the right correspond to the 

networks created in Ploetner et al.’s study [8] (hereafter referred to as OBUAM 

networks). From top to bottom, the UAM network sizes are 24, 74 and 130.  

As shown, the stations under the manually created networks were primarily 

allocated to city centers while this thesis’ networks were more evenly spread out 

throughout the study area. 
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Figure 13 UAM Network Comparison 
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5.1 Mode Choice Modeling  

In order to determine UAM demand per network size, the Thesis networks were 

input to a mode choice model that considered UAM as a mode of transportation. 

Among the required inputs, MITO [15] takes in a UAM network file. As described 

in Ploetner et al. [8], MITO was enhanced to consider UAM as a mode choice. 

Therefore, the network input must include UAM infrastructure: stations and flight 

links (paths). Using the MATSim UAM extension developed by Rothfeld et al. [5], 

UAM infrastructure was added to the study area.  

5.1.1 Data Preparation 

The MATSim UAM extension [94] was built and can be run using the Java object-

oriented programming language. In addition to simulating UAM operations, the 

extension includes a multitude of Java classes that can be applied individually to 

create or modify UAM-related data. For this thesis, the extension’s UAM scenario 

creator class was used to generate both a UAM network and a complimentary 

UAM vehicles file. The UAM vehicles file includes parameters such as station 

names, station coordinates, station capacity, vehicle type, vehicle capacities, and 

deboarding/boarding times. The MATSim UAM extension’s scenario creator 

class accepts both a network and stations file as inputs. The stations file must 

contain the desired parameter settings for the UAM vehicles file and must 

additionally contain the UAM station coordinates, which are used to map the 

stations onto the network file.  

Including the 3 OBUAM networks and additional 130-station network, a total of 

78 UAM network and vehicles files were created. The UAM flight paths were 

straight lines between all stations. 

5.1.2 Running MITO 

Like the MATSim UAM extension, MITO was built and can be run using Java. 

Rather than running MITO 78 times separately on a personal computer, the cloud 

computing platform Amazon Web Service (AWS) was used. AWS allowed several 

high computing instances to run simultaneously on which separate MITO runs 

could be accommodated.  

While MITO [95] requires multiple data inputs to run, a single command-line 

argument was needed: a configuration (or properties) file. The properties file 
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points to where the input data is located and additionally includes MITO 

parameters that dictates what to run and how to run it. The data and parameters 

consist of elements such as skim matrices, socio-economic data, number of 

iterations, and travel patterns. The Modeling Spatial Mobility research group at 

the Technical University of Munich provided access to all such data 

corresponding to the metropolitan region of Munich.  

A unique properties file was created for each UAM network where the only 

difference between them were the references to the UAM network and vehicles 

files. 

5.1.3 Results 

MITO results were a compilation of folders containing various outputs on the 

performance of the UAM networks. The output that was of interest for this thesis 

was the trips data. The data provided trip information for every generated trip for 

a single day in the study area. Generated trip information included the associated 

person id (i.e. who took the trip), trip purpose, origin/destination, departure time, 

distance and mode of travel. The trip data was provided through two files where 

one file contained all trips and the other, only UAM trips. The UAM trips file had 

additional information for each trip including origin/destination stations, 

access/egress modes of travel and UAM flight distance.  

5.1.3.1 Thesis Networks 

Total daily trips for all MITO runs were around 9.8 million. When considering only 

the Thesis networks (not including the 130-station network), UAM mode share 

ranged between 0.06 and 1%, which corresponded to just under 5,800 and 

100,000 UAM trips, respectively. The UAM networks ranging between 2 and 5 

stations had the largest number of trips (about 20%) in the distance range 

between 11 and 20 kms. Additionally, shorter trips were most dominant for the 

UAM networks ranging between 6 and 75 stations where trips with distances less 

than 10 kms made up between 30 and 58% of UAM trips. It should be noted that 

these distances were between the origin and destination meaning trips of less 

than 10 kms were present for the 2-station UAM network, which had the stations 

about 60 kms apart. For this reason, the number of trips were determined for total 

traveled distances (i.e. summation of access, egress and UAM flight distances). 

For total traversed distances, the UAM networks ranging between 2 and 5 
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stations had the largest number of trips (between 60 and 88%) for distances 

greater than 101 kms. Across all network sizes, trips of less than 10 kms never 

exceeded 1%. The larger network sizes (greater than 35 stations) had between 

35 and 55% of trips in the distance range between 11 and 20 kms.  

Demand per number of stations is shown below in Figure 14. The highest 

increase in demand was for the range between 5 and 12 stations. The range 

between 15 and 35 stations resulted in various fluctuations in demand. Finally, 

the range between 36 and 75 stations increased gradually with smaller 

fluctuations.  

 

Figure 14 UAM Demand per Number of Stations 

In order to determine a reason behind the high demand fluctuations for the 

networks ranging between 5 and 12 stations, the networks containing 21, 22 and 

23 stations were mapped and compared. The MITO results indicated the 21-

station network had a higher number of UAM trips than the 22- and 23-station 

networks, which appeared counterintuitive. As shown in Figure 15, there was a 

significant amount of overlap in stations allocated outside Munich’s city core. A 

closer examination of the Munich city center showed the 21-station network 

allocated 3 stations in highly dense areas (as indicated by the smaller zone sizes) 

while the 22- and 23-station networks only had 2 stations in such areas. While 

the 22- and 23-station networks did have 2 additional stations within the city of 

Munich, they were allocated at the periphery of the city around zones that were 

more sparsely populated and perhaps not as well-connected to the road or public 
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transportation networks. Except for the western region of the study area, the 22- 

and 23-station networks are almost identical. The 23-station network performed 

a bit better than the 22-station network, which could have simply been due to the 

extra station. A similar occurrence was observed for the networks containing 26, 

27 and 28 stations (not mapped). As shown in Figure 14, there was a dip in UAM 

trips for the 27-station network. The 27-station network had less stations allocated 

in highly dense areas while still maintaining some stations at the periphery of the 

city. 

 

Figure 15 Station Placement Influence on Demand 
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5.1.3.2 Thesis and OBUAM Networks 

Next, the demand between the Thesis and OBUAM networks were compared. 

The resulting UAM mode shares for both sets of networks ranged between 0.75 

and 1.1%, which corresponded to just under 74,000 and 108,000 UAM Trips, 

respectively. Trip distances were very similar between the Thesis and OBUAM 

networks. Results showed that most trips (between 50 and 60%) were for 

distances of less than 10 kms. When considering total traveled distances, the 

Thesis and OBUAM networks coincided in showing most trips (between 54 and 

60%) for the 74- and 130-station networks were for trips between 11 and 20 kms. 

The 24-station networks differed in showing the Thesis network had about 37% 

of trips between 21 and 30 kms while the OBUAM network had about 35% of trips 

between 11 and 20 kms.  

Demand per network size is shown below in Figure 16.  

 

Figure 16 Thesis and OBUAM UAM Demand Comparison 

For all network sizes, the results indicated the Thesis networks generated higher 

UAM demand than the OBUAM networks. As previously mentioned, the UAM trip 

information provided in the MITO results included access and egress stations. 

When examining such data for both the Thesis and OBUAM networks, the Thesis 

network stations were found to have their top performing stations attracting a 

significant amount of the overall UAM demand. The top 3 performing stations for 

each network size are tabulated below in Table 6. 
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 Thesis Networks OBUAM Networks 

Network 

Size 

UAM Demand 

Served by Top 3 

Stations 

Share of 

Overall UAM 

Demand 

UAM Demand 

Served by Top 3 

Stations 

Share of 

Overall UAM 

Demand 

24 56,250 73% 34,192 46% 

74 23,131 23% 14,318 16% 

130 20,364 19% 9,076 9% 

Table 6 UAM Demand of Top 3 Stations 

As shown, the top 3 performing stations for each of the Thesis’ networks 

accommodated a higher portion of the overall UAM demand when compared to 

the OBUAM networks. Such results could be due to the difference in spatial 

distribution of UAM stations. The top 3 stations for both set of networks were 

primarily located in the Munich city center. As was shown in Figure 13, the station 

placement for this thesis was much more spatially distributed throughout the 

region as compared to the OBUAM networks. Higher spatial distribution, 

therefore, resulted in less stations allocated in areas of high demand. For the 

Thesis networks, this resulted in less stations taking on more UAM demand. The 

Thesis networks, in ascending network size, were noted to accommodate half of 

the generated UAM demand with 2, 9 and 15 stations, while the OBUAM 

networks required 4, 15 and 26 stations.  

5.2 Travel Time Comparisons 

To further evaluate the performances of the Thesis and OBUAM networks, travel 

times to different destinations in the study area were determined. For this 

evaluation, the MATSim UAM extension [94] was again used. Specifically, the 

extension’s built-in travel time calculators were utilized to determine travel times 

for car, public transportation and UAM.  

5.2.1 Data Preparation 

The MATSim UAM extension [94] includes 3 travel time calculators for car, public 

transportation and UAM. Inputs are similar for all 3 travel time calculators.  
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The car travel time calculator takes in: a network file, a network-change events 

file and a trip inputs file. The network file contains the infrastructure (i.e. roads) 

by which trips will be routed and travel time calculated. The events file is a file 

specific to MATSim [13] that records all actions that occurred in a simulation. The 

events file used for the travel time calculators is intended to be an events file from 

a previous MATSim run where UAM is not included. By using such an events file, 

resulting network performances (e.g. congestion on links) can be mimicked onto 

the network file used for travel time calculations and hence changes the network. 

Therefore, when car travel time is calculated, for example, it is done so on a 

network that considers road congestion conditions [94]. The network-change 

events file was provided by Bauhaus Luftfahrt. Finally, the trips input file should 

include desired origin and destination coordinates and departure times.  

Travel times were calculated for 3 destinations in the study area: Munich Central 

Station, Augsburg Central Station and the Munich Airport. Munich and Augsburg 

represent the largest cities in the study area and the Munich Airport is the busiest 

in Bavaria [96]. The travel time calculators were used to determine levels of 

accessibility to said destinations from all regions of the study area. Therefore, the 

origin coordinates in the trips input file corresponded to evenly spaced points 

distributed throughout the entire study area. All origin points were destined to all 

3 destinations. According to TomTom’s traffic index for Munich [97] and Augsburg 

[98], the most congested times on the roads are 5 pm. Therefore, in order to 

determine potential travel time savings during times of high traffic congestion, the 

departure time for the trips input was set to 5 pm. The same trips input file was 

used across all travel time calculators.  

The public transportation travel time calculator takes in: a network file, a transit 

schedule file and a trips input file. In addition to roads, the network file should 

also contain infrastructure that is specific to certain public transportation types 

(i.e. rails for subway) that may be present in the study area. Given both car and 

public transportation travel times were needed, the same network input was used 

for both calculators. The transit schedule file contains all information on public 

transportation lines and schedules. The transit schedule file was provided by 

Bauhaus Luftfahrt. 

The UAM travel time calculator takes in: a network file, a network-changes events 

file, a UAM vehicles file, a transit schedule file, a trips input file, a strategy name, 
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processing time, search radius and access modes. The network file should 

contain infrastructure for UAM, and any other modes identified to be used for 

UAM access (i.e. roads, public transportation). As mentioned in Section 5.1.1, the 

UAM vehicles file includes parameters such as station names, station 

coordinates, station capacity, vehicle type, vehicle capacities, and 

deboarding/boarding times. The UAM network files (along with their respective 

UAM vehicles files) described in Section 5.1.1 were used here as inputs. The 

strategy name refers to the desired routing method where the options are 

minimum travel time, minimum distance, minimum access travel time and 

minimum access distance. The minimum travel time strategy was used in order 

to determine potential travel time savings. Processing time refers to the amount 

of time for the segment when passengers arrive to the station and take-off. The 

search radius refers to the maximum distance an agent (or person) will travel 

from their origin to access a UAM station. The values set for processing time and 

search radius were 15 minutes and 160 km, respectively. A processing time of 

15 minutes was consistent with values tested by Rothfeld et al [14] and 

corresponded to the more conservative range of their tested values. A search 

radius of 160 km provided a large enough distance to cover the entire study area. 

Finally, access modes refer to the modes of travel (e.g. car, walk, public 

transportation) available to access UAM. Car, walking and public transportation 

were used here.  

5.2.2 Running the Travel Time Calculators 

Both the car and public transportation travel time calculators were run on a 

personal computer given they did not require substantial processing power nor 

time. The UAM travel time calculator, however, did require a significant amount 

of processing. Therefore, the AWS was again utilized to accommodate the UAM 

travel time calculations.  

5.2.3 Results 

The resulting travel time calculation files provided the same information as the 

input trips file, but with an additional attribute field corresponding to the resulting 

travel times. The results were visualized on QGIS where each origin point was 

assigned a color representing a value on a travel time range. The travel time 

range was broken up by 30-minute increments. There was a total of 3 different 
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sets of visualizations corresponding to the number of destinations. Each set 

consisted of 8 maps corresponding to the different modes of travel as well as the 

2 sets of UAM networks (i.e. Thesis and OBUAM).  

5.2.3.1 Travel Times to Munich Central Station 

The travel time results to the Munich Central Station are shown below in Figures 

17A and 17B.  

As shown in map A of Figure 17A, the car travel times were one among the best 

performing, while map B showed public transportation results to be among the 

worst performing. The resulting radial patterns for public transportation show 

travel time is dependent on proximity to transit stations. The car travel times 

generally performed better than all the Thesis networks, especially in the area 

around the destination (i.e. Munich city center) and for Ingolstadt in the north. 

While public transportation generally performed the worst among all the 

calculated travel times, it did have a slight advantage, over the 24-station Thesis 

network, in the area immediately surrounding the destination. 
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Figure 17A Travel Time Comparisons to Munich Central Station 

Maps C and D of Figure 17A show results for the 24-station UAM networks. The 

Thesis network resulted in providing access in the 30- to 60-minute travel time 

range to a larger area than the OBUAM network.  
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Figure 17B Travel Time Comparisons to Munich Central Station 

Maps E and F of Figure 17B show results for the 74-station UAM networks. 

Though the Thesis network resulted in a slightly larger access area for the 30- to 

60-minute travel time range than the OBUAM network, the OBUAM network did 
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provide a larger access area for travel time under 30 minutes (especially in the 

Munich city center).  

Finally, maps G and H of Figure 17B show results for the 130-station UAM 

networks. Like the 74-station results, the Thesis network resulted in a slightly 

larger access area for the 30- to 60-minute travel time range than the OBUAM 

network, however the OBUAM network performed significantly better in the city 

center.  

To further illustrate travel time savings, maps were created that identified areas 

where UAM was faster than ground transportation (i.e. car and public 

transportation). The travel time savings to the Munich Central Station are shown 

below in Figures 18A and 18B. 

Maps A and B of Figure 18A show the travel time savings for the 24-station UAM 

networks. While the Thesis UAM networks do show more travel time savings, 

both show relatively minor travel time savings when traveling to the Munich 

Central Station.  

Maps C and D of Figure 18A show the travel time savings for the 74-station UAM 

networks. Compared to the 24-station UAM networks, larger areas in the north 

and at the periphery of the study area showed travel time savings with UAM. 

Finally, Maps E and F of Figure 18B show the travel time savings for the 130-

station UAM networks. The Thesis network shows a larger amount of travel time 

savings in the Augsburg area.  

In general, the maps showed that the city of Munich is already well-connected 

with existing ground transportation. However, UAM could provide travel time 

savings for the periphery regions of the study area.  
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Figure 18A Travel Time Savings to Munich Central Station 
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Figure 18B Travel Time Savings to Munich Central Station 

5.2.3.2 Travel Times to Augsburg Central Station 

The travel time results to the Augsburg Central Station are shown below in 

Figures 19A and 19B.  

In terms of providing the quickest access in the immediate vicinity of the 

destination, car travel time, shown in map A of Figure 19A, was among the best 

performing. Travel times clearly increased with the increase of distance to the 

destination. Public transportation travel time, shown in map B of Figure 19B, was 

among the worst performing. The distinct patterns shown for public transportation 

map indicate travel time is dependent on an origin point’s distance to a transit 

station. Compared to the car travel times, the Thesis networks had an advantage 

in that travel times over 90 minutes were reduced and travel times over 120 

minutes were almost non-existent. Further, the 74- and 130-station Thesis 

networks had similarly sized extents, with car, for travel times in the 30- and 60-

minute range. Again, while public transportation was generally the worst 

performing, it did have a slight advantage over the 24-station Thesis network in 

providing quicker travel times in the immediate vicinity of the destination. 
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Maps C and D of Figure 19A show results for the 24-station UAM networks. The 

results for the OBUAM network indicate origin points directly adjacent the 

destination performed worse than origin points much further away. The peculiar 

result is due to the way travel time is calculated by the MATSim UAM extension’s 

calculators [94]. Every origin point within the search radius of a UAM station (here 

set to 160 km) was forced to take UAM regardless of their distance to the 

destination. Therefore, the origin points immediately around the destination were 

required to first travel to the nearest UAM station and then travel back to the 

destination. Because the Thesis network had more than 1 UAM station near the 

destination, the travel time results performed better around the Augsburg Central 

Station. The OBUAM network, however, did perform better than the Thesis 

network given it had less amount of origin points traveling more than 90 minutes. 

Maps E and F of Figure 19B show results for the 74-station UAM networks. The 

results for the OBUAM network performed better than the Thesis network given 

there were larger areas of access for both the 0- to 30- and 30- to 60-minute 

travel time ranges. Additionally, the OBUAM network had less origin points 

traveling more than 90 minutes. 

Finally, maps G and H of Figure 19B show results for the 130-station UAM 

networks. Like the 74-station results, the OBUAM network performed better than 

the Thesis network in terms of providing faster travel times to the destination. The 

OBUAM network also had less origin points traveling more than 90 minutes. 
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Figure 19A Travel Time Comparisons to Augsburg Central Station 
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Figure 19B Travel Time Comparisons to Augsburg Central Station 

To further illustrate travel time savings, maps were created that identified areas 

where UAM was faster than ground transportation (i.e. car and public 

transportation). The travel time savings to the Augsburg Central Station are 

shown below in Figures 20A and 20B. 
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Figure 20A Travel Time Savings to Augsburg Central Station 
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Figure 20B Travel Time Savings to Augsburg Central Station 

Maps A and B of Figure 20A show the travel time savings for the 24-station UAM 

networks. The OBUAM network provided larger travel time savings, especially in 

the southeastern region of the study area.  

Maps C and D of Figure 20A show the travel time savings for the 74-station UAM 

networks. Like the 24-station station networks, the OBUAM network provided 

larger travel time savings.  

Finally, maps E and F of Figure 20A show the travel time savings for the 130-

station UAM networks. Again, the OBUAM networks yielded larger travel time 

savings.  

Compared to the Munich Central Station travel time savings, traveling to 

Augsburg via UAM could provide larger travel time savings, especially if traveling 

from the southeastern region of the study area.  

5.2.3.3 Travel Times to Munich Airport 

The travel time results to the Munich Airport are shown below in Figures 21A and 

21B.  
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Map A of Figure 21A show car travel times were again found to be the best 

performing in terms of providing the largest amount of travel time under 30 

minutes. Conversely, public transportation travel times, shown in map B of Figure 

19A, were among the worst performing. The resulting radial patterns for public 

transportation show travel time is dependent on proximity to transit stations. 

When compared to the Thesis UAM networks, the car travel times had a 

consistent advantage for the northernmost region of the study area. However, the 

Thesis UAM network travel times did have a reduction in travel times over 90 

minutes. Like the previous 2 set of results, the public transportation network 

provided a very minimal advantage in the area immediately around the 

destination in providing quicker travel times. 

Maps C and D of Figure 21A show results for the 24-station UAM networks. The 

OBUAM network travel times resulted in a more even and larger distribution of 

travel time within 30 and 60 minutes. Map D also showed small areas near the 

destination with travel times under 30 minutes. 

Maps E and F of Figure 21B show results for the 74-station UAM networks. The 

OBUAM network was found to produce a larger distribution of travel times within 

30 and 60 minutes. There was also a larger area with travel times under 30 

minutes near the destination. 

Finally, maps G and H of Figure 21B show the results of the 130-station UAM 

networks. The results were found to produce a similar distribution of travel time 

ranging between 30 and 60 minutes. However, the OBUAM network produced 

travel times under 30 minutes near the destination.  

 



 

86   

 

Figure 21A Travel Time Comparisons to Munich Airport 
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Figure 21B Travel Time Comparisons to Munich Airport 

To further illustrate travel time savings, maps were created that identified areas 

where UAM was faster than ground transportation (i.e. car and public 

transportation). The travel time savings to the Munich Airport are shown below in 

Figures 22A and 22B. 



 

88   

 

Figure 22A Travel Time Savings to Munich Airport 
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Figure 22B Travel Time Savings to Munich Airport 

Maps A and B of Figure 22A show the travel time savings for the 24-station UAM 

networks. The results indicate the southern region of the study area could 

potentially benefit from UAM when traveling to the Munich Airport. The OBUAM 

network had an advantage over the Thesis network in the southeastern region of 

the study area. 

Maps C and D of Figure 22A show the travel time savings for the 74-station UAM 

networks. The results for both networks are similar and like the 24-station network 

results, the southern region of the study area could potentially benefit the most 

from UAM when traveling to the Munich Airport. 

Finally, maps E and F of Figure 22B show the travel time savings for the 130-

station UAM networks. Again, the southern region of the study area could benefit 

the most from UAM. The Thesis network showed a slight advantage for the 

Augsburg area. However, the OBUAM network could provide faster travel times 

to the southern half of Munich’s city center. 

In general, the southern region of the study area could benefit the most from UAM 

when traveling to the Munich Airport. 
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6 CONCLUSION 

6.1 Discussion of Results 

The mode choice modeling results indicated the highest amount of incremental 

UAM demand was for the range between 5 and 12 UAM stations. For said range, 

UAM demand increased from just over 9,000 to just under 54,000 UAM trips, 

which corresponded to a mode share of about 0.09 and 0.55%, respectively. In 

turn, the range between 13 and 75 UAM stations generated a more gradual 

increase in demand with total trips ranging between 54,000 and about 99,200 

UAM trips, which corresponded to a mode share of about 0.55 and 1%, 

respectively. These results were comparatively higher than the results found by 

Ploetner et al. [8] where their 74-station network produced a UAM mode share of 

0.5%, and as they pointed out, such low mode shares indicate UAM may not 

significantly alter existing mobility patterns or conditions. Additionally, the range 

between 15 and 35 stations was found to produce fluctuations in UAM demand. 

A reason for such fluctuations were likely due to the location of the UAM stations. 

Such results indicate station location is more influential to demand than number 

of stations. Overall, the resulting incremental UAM demand did not show a critical 

point or exact network size where demand stagnated, however the range 

between 5 and 12 stations did show the highest rate of incremental UAM demand. 

Finally, resulting trip distances were consistent with previous studies [8, 14, 24] 

in showing a majority of UAM trips were for shorter distance trips.  

When comparing the UAM demand between the Thesis and OBUAM networks, 

the demand generated by the Thesis networks was larger for all network sizes. 

The main difference between the 2 sets of networks was the proximity of stations 

and spatial distribution throughout the study area. The Thesis networks were 

significantly more spread out, however there were general similarities in station 

placements for both sets of networks. For example, a high number of stations 

were unsurprisingly located within or around the Munich, Augsburg and Ingolstadt 

city centers. These are the largest cities in the study area and hence contained 

the largest amount of demand to which stations were attracted to. Further, the 
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top 3 Thesis-network stations were found to take in a larger amount of demand 

as compared to the OBUAM-network stations. Higher spatial distribution 

therefore led to areas of high demand being served by of a lower number of 

stations. These results were reasonable given the Thesis networks were 

allocated with the location-allocation solver type maximize coverage which 

allocated stations in such a way that all demand points were served while 

maximizing demand per station (maximize coverage) and/or minimizing weighted 

distances (minimize impedance). 

The travel time comparison results indicated UAM benefits could be realized for 

longer distance trips. This result was consistent with previous UAM station 

placement studies [3, 8, 24]. The travel time maps showed that the Munich 

Central Station and Munich Airport are already well connected by existing ground 

transportation, especially car. The largest amount of travel time savings was 

achieved when traveling to the Augsburg Central Station. Specifically, traveling 

to Augsburg from the southwestern region of the study area (around Rosenheim) 

saw travel time savings of up to more than 90 minutes when traveling via UAM. 

The south and southwestern regions of the study area could also benefit from 

UAM when traveling to the Munich Airport with travel time savings found to go 

over 60 minutes. In general, the travel time savings maps showed that, at least 

for the 3 identified destinations, ground transportation is faster than UAM. While 

the largest amount of travel time savings was realized when traveling to the 

Augsburg Central Station via the Thesis’ 130-station network, the map (map E of 

Figure 20B) indicated a large portion of the study area experienced no travel time 

savings. This could perhaps indicate the study area is a bit small to implement 

UAM at this scale. Increasing the size would likely lead to longer distance trips 

where travel time savings from UAM could become more widespread.  

The manually selected OBUAM networks were generally found to produce 

greater travel time savings than the semi-automated Thesis networks. This was 

in great part due to the exact placement of the OBUAM network stations. The 

locations of OBUAM-network stations were carefully considered by experts [8] 

and often placed near major roads and/or public transportation nodes. Further, 

there was always an OBUAM station allocated at the tested destination sites for 

travel time comparisons. The OBUAM stations were therefore allocated in areas 

with high accessibility. While Thesis-network stations were allocated to areas of 



 

92   

high demand, they were often allocated to areas with low connectivity. The 

Thesis-network station locations were constrained by the initial set of candidate 

facilities (shown in Appendix D), which were evenly spread out throughout the 

entire study area. Like UAM demand, station location is more influential than 

number of stations for travel time savings. This can be seen in the southeastern 

region of maps E and F of Figure 20B or maps C and D of Figure 22A where the 

Thesis UAM networks offered more stations, however generated lower travel 

times. These results are consistent with Lim and Hwang [20] who found that travel 

time savings are maximized with appropriately located UAM stations. 

To conclude, the station allocation procedure employed in this thesis generated 

UAM networks that were evenly distributed throughout the study area. This 

resulted in comparatively higher UAM demand than the manually allocated 

OBUAM networks. However, when comparing travel times, the OBUAM network 

had apparent advantages due to their carefully considered station placements.  

6.2 Limitations 

The stations in this thesis were allocated without consideration of restricted 

airspace or land-use. The stations were essentially free to be allocated anywhere 

in the study area (except lakes and forests) where demand was satisfied. Further, 

the generated flight paths were straight station-to-station routes that often 

traversed over population. Some station allocation studies [3, 7, 22, 23] discussed 

in Section 2.2 did consider airspace restrictions while Ploetner et al. [8] explored 

flight paths that were restricted to fly over areas of low population density; similar 

to how existing helicopter routes in some US cities are set up [1].  UAM will likely 

be subject to several regulatory hurdles for cities and the public to accept its 

implementation. Noise, visual disturbances and emissions are all examples of 

possible negative effects from UAM [1]. Rothfeld et al. [2] indicated such 

byproducts of UAM should be explored in more detail. In addition to no airspace 

or land-use restrictions, the mode-choice modeling was conducted with no UAM 

station capacity restrictions and with a very large fleet size. The mode-choice 

modeling was therefore conducted for a scenario where a UAM vehicle is always 

readily available and wait time is nonexistent. While disregarding station capacity 

was consistent with previous studies [8, 21, 24], setting limits on fleet size was 
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found to significantly increase UAM travel times, reduce UAM demand [14] and/or 

generate more demand than the supply of UAM vehicles could handle [8].  

The location-allocation solver only considered car as a mode of a travel between 

demand points and potential stations. This is a limitation of the software where 

only a single impedance can be set at a time. Therefore, even though ESRI’s 

ArcMap has the capability to include public transportation in infrastructure 

networks (or network datasets), the location-allocation solver would only be able 

to consider either, for example, travel time via car or via public transportation, but 

not both simultaneously. This is a limitation because studies such as Rothfeld et 

al. [2] or Ploetner et al. [8] have indicated UAM should be integrated as a multi-

modal system.   

As discussed in Section 6.1, the manually selected UAM networks generally 

outperformed the Thesis networks given their locations were carefully considered 

and often placed in highly accessible sites. The Thesis-network sites were pre-

determined and limited to just under 1,000 evenly distributed points. This resulted 

in potential UAM station sites to often be located at arbitrary locations. Therefore, 

1,000 evenly distributed points, as potential facility sites, were found to be too 

coarse for the size of the study area. 

Finally, as was presented in Section 4.4.3, the location-allocation solver results 

were likely undesirably influenced by a zone structure error visualized in Figure 

11. While going through all 5,000 zones is unwieldly to determine other such 

errors, simply disregarding empty (i.e. no land-use or socio-economic data) zones 

during the data collection and preparation step (Chapter 3) would have remedied 

the problem. As discussed, the error was unfortunately found towards the end of 

the thesis after all subsequent steps and analysis had been conducted. 

6.3 Future Work 

As described above in Section 6.1, the Thesis networks performed better than 

the OBUAM networks when considering UAM demand. However, the OBUAM 

networks provided greater travel time savings due to their carefully considered 

station placements. The OBUAM stations were allocated in areas of higher 

connectivity. Therefore, an interesting exploration could be the combination of 

these 2 methods where a few stations are manually placed in areas of high 

connectivity or known demand and then subsequent stations are allocated using 
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the semi-automated location-allocation procedure used for the Thesis networks. 

As explained in Section 4.5.1 ESRI’s location-allocation [88, 90] allows facilities 

to be classified as candidate or required. This could mitigate situations where 

UAM stations are allocated in poorly connected locations; an occurrence 

common to the resulting Thesis-network stations. 

If maximizing UAM demand is the goal, a similar procedure could consist of 

running the location-allocation solver, fixing the allocated stations and again 

running the location-allocation solver with a single, or very small, increment in 

number of stations to find. Such UAM network creation could represent short-, 

medium- or long-term UAM implementation plans. The short-term UAM network 

stations would correspond to the initial set of stations that would produce the 

largest amount of potential UAM demand and could accommodate low-density 

networks early UAM operations are envisioned to serve [1]. 

Finally, the enhanced MITO model, that integrated the MATSim UAM extension, 

developed in Ploetner et al [8] was not used to full capacity. Only the MITO portion 

of the model was used without utilizing the feedback loop (described in Section 

2.1.3) with the MATSim UAM extension’s traffic assignment capabilities. Running 

MITO for all 70+ scenarios proved to be time consuming and required a significant 

amount of processing power. Adding the MATSim feedback loop would have 

surely increased computational requirements. Determining mode choice with this 

feedback loop could perhaps provide more realistic levels of demand and could 

possibly alter the incremental UAM demand pattern (Figure 14).  
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APPENDIX A POINTS OF INTEREST 

The sites considered for the points of interest factor were the following: 

Marienplatz Hofgarten 

Englischer Garten Deutsches Museum 

KZ-Gedenkstätte Dachau Frauenkirche 

Asamkirche Odeonsplatz 

Chiemsee Max-Joseph-Platz 

New Town Hall Munich Karlsplatz/Stachus 

Theresienwiese (Oktoberfest) Eisbachwelle 

Hellabrunn Zoo St. Martin Church 

Alte Pinakothek Trausnitz Castle 

Viktualienmarkt Botanical Garden at Nymphenburg 

Nymphenburg Palace Augsburg Zoo 

Allianz Arena Augsburger Puppenkiste 

Lake Starnberger Fuggerei 

Munich Residence Augbsburg Town Hall 

St. Peter’s Church Augsburg Cathedral 

Olympiapark Weihenstephan 

BMW-World Erdinger Weissbräu 

Neue Pinakothek Erding Thermal Baths 

Andechs Monastery Ingolstadt Altstadt 

Pinakothek der Moderne Audi Museum + HQ 

Chinese Tower Ingolstadt Village 

Königsplatz BMW Zentrale 
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APPENDIX C AHP QUESTIONNAIRE 

C1. Pairwise Comparison 

 

C2. Comparison Matrix 
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C3. Priority Vector 

 

C4. Consistency 
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APPENDIX D DEMAND POINTS AND FACILITIES 

 



 

116   

APPENDIX E LOCATION-ALLOCATION MODEL BUILDER 

The model builder figure was broken up into 2 separate images below. Ellipsoid 

shapes correspond to variables (inputs/outputs) while rounded squares 

correspond to ESRI tools. The by, to and from values on the left correspond to 

the iterator values and represented the number of stations to find. The output 

layer variable corresponds to the naming of all generated files and workspace 

variable to the save location of said files. Required inputs are shown in blue and 

correspond, from left to right, to the network dataset (i.e. roads), input demand 

(i.e. demand points) and input facilities. Other inputs included the location-

allocation problem type (e.g. minimize impedance or maximize coverage) and 

impedance cutoff values. The bottom image shows the model’s segregation and 

saving procedures for generated files. 

E1. Location-Allocation Model Builder 
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