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Abstract:  

 

Cycling has been growing in popularity and gaining more attention as a means of reducing 

emissions and energy use from individual private transport. However, one obstacle that 

is more often mentioned by would-be users is the problem of safety. If cycling is to form 

a key part of a new transport strategy, these concerns must be addressed and cycling 

needs to become attractive to the concerned segment of the population. To understand 

these feelings of danger and to remedy them, they must also be understood in terms of 

traffic conflicts and road conditions. This thesis aims to utilize already existing methods 

of mapping cyclist stress and assess whether the same information can be found in the 

dynamic riding patterns of the cyclist. The research makes use of an experiment to 

naturalistically measure cyclists’ response to random traffic and road conditions while 

riding instrumented bicycles and equipped with wearable sensors in the Reutlingen-

Tübingen area. An analysis of the sensor data is then done and finds that on a statistically 

significant number of independently detected stress events, a combination of dynamic 

on-board indicators also highlights these events with a reasonable degree of accuracy.  

  



Background 

 

Cyclist Stress and Dynamic Patterns.   

Contents 

Declaration ...................................................................................................................... 3 

Abstract: .......................................................................................................................... 4 

List of Figures .................................................................................................................. 8 

List of Tables ................................................................................................................... 9 

1. Introduction ............................................................................................................. 11 

1.1. Background ...................................................................................................... 11 

1.2. Goal ................................................................................................................. 11 

1.3. Thesis Structure ............................................................................................... 13 

2. Literature review ..................................................................................................... 14 

2.1. Cycling mode share factors .............................................................................. 14 

2.2. Measuring comfort ........................................................................................... 14 

2.3. Cycling safety ................................................................................................... 15 

2.4. Cycling dynamics ............................................................................................. 16 

2.5. Perceived danger and dynamics of driving ...................................................... 17 

2.6. Measuring physiological stress ........................................................................ 18 

3. Methodology ........................................................................................................... 19 

3.1. Experiment Design ........................................................................................... 19 

3.1.1. Test Route. ................................................................................................ 19 

3.1.2. Experiment Procedure ............................................................................... 20 

3.2. Instrumentation ................................................................................................ 23 

3.2.1. Bosch Drive Unit (BDU) and ABS with development firmware: ................. 25 

3.2.2. Arduino Sensors: ....................................................................................... 26 

3.2.3. iPhone: ...................................................................................................... 27 

3.2.4. GoPro cameras ......................................................................................... 27 



Contents 

6 
 

3.2.5. Empatica watches: .................................................................................... 27 

3.3. Indicators ......................................................................................................... 28 

3.3.1. Braking 2 .................................................................................................... 28 

3.3.2. Accelerations 1 ........................................................................................... 28 

3.3.3. Speed 1 ...................................................................................................... 28 

3.3.4. Cadence 1 .................................................................................................. 28 

3.3.5. Lateral maneuver 1,4 .................................................................................. 29 

3.3.6. Bell usage 3,5 ............................................................................................. 29 

3.3.7. Head turning 5 ............................................................................................ 29 

3.3.8. Stress Peaks 6 ........................................................................................... 29 

3.4. Data Processing ............................................................................................... 30 

3.4.1. Data Cleanup ............................................................................................. 30 

3.4.2. Signal Filtering ........................................................................................... 31 

3.4.3. Lateral Maneuver detection. ...................................................................... 36 

3.4.4. Empatica Watch Data: ............................................................................... 40 

3.5. Correlation Analysis Parameters ...................................................................... 40 

3.5.1. Indicator calibration and weights ............................................................... 40 

3.5.2. Cross-Correlation ...................................................................................... 42 

3.5.3. Variable time shift ...................................................................................... 43 

4. Results and findings. .............................................................................................. 44 

4.1. Model performance .......................................................................................... 44 

4.1.1. Overall performance .................................................................................. 44 

4.1.2. Indicator assessment. ................................................................................ 45 

4.2. Identification of stress peaks and locations. ..................................................... 48 

4.2.1. Bosch Office/Factory Area. ........................................................................ 49 

4.2.2. Mark West industry area: ........................................................................... 50 



Background 

 

Cyclist Stress and Dynamic Patterns.   

4.2.3. Industry railway cycle track. ....................................................................... 51 

4.2.4. Betzingen pedestrian bridge and sidewalk. ............................................... 52 

4.2.5. Cycle highway bridge and crossing. .......................................................... 53 

4.2.6. Bantlinstrasse intersection. ........................................................................ 54 

4.2.7. Karlstrasse: ................................................................................................ 55 

4.2.8. Right turn onto Kaiserstrasse: ................................................................... 55 

4.2.9. Bismarkstrasse: ......................................................................................... 56 

4.3. Discussion ........................................................................................................ 57 

5. Conclusion and outlook .......................................................................................... 59 

5.1. Main contributions ............................................................................................ 59 

5.2. Future research ................................................................................................ 59 

6. References ............................................................................................................. 60 

-Appendix: ..................................................................................................................... 64 

 



List of Figures 

8 
 

List of Figures 

Figure 1: Stress Response Measurement according to Zeile et al (2016). .................... 18 

Figure 2: Level of Traffic Stress by segment. ................................................................ 20 

Figure 3: Map of the fixed daytime route from the Bosch eBike Campus into Reutlingen 

center. ........................................................................................................................... 20 

Figure 4: Hardware setup flowchart............................................................................... 24 

Figure 5: On-board computer setup. ............................................................................. 24 

Figure 6: Data Flow Chart. ............................................................................................ 25 

Figure 7: Resampling and interpolation. Author: Blok, Marek. (2012). .......................... 33 

Figure 8: Example processing flow for indicator. ........................................................... 34 

Figure 9: Gaussian Distribution versus sine approximation. .......................................... 37 

Figure 10: Second order derivative of the Gaussian vs its sinusoidal approximation. ... 38 

Figure 11: Raw vs Processed IMU Signal. .................................................................... 39 

Figure 12: Threshold Applied to Filtered Signal. ........................................................... 39 

 Figure 13 Initial indicators (blue) vs stress peaks (orange). ......................................... 41 

Figure 14: Improved model fusing additional data. ........................................................ 41 

Figure 15: Applying different time shifts to stress signals. ............................................. 43 

Figure 16: Heatmap of Stress Points............................................................................. 48 

Figure 17: Moments of stress overlayed with LTS rating, with locations of interest. ..... 49 

Figure 18: Intersection near eBike Campus .................................................................. 49 

Figure 19: Mark west sidewalk lanes............................................................................. 50 

Figure 20: Industry track ground condition. ................................................................... 51 

Figure 21: Betzingen bridge, sidewalk and track. .......................................................... 52 

Figure 22: Small bridge after cycling bicycle highway ................................................... 53 

Figure 23: Bantlinstrasse left turn intersection. ............................................................. 54 

Figure 24: Bus and bike lanes on Karlstrasse. .............................................................. 55 

Figure 25:  Bicycle lane transition on Kaiserstrasse. ..................................................... 55 

Figure 26: Turning left on Bismarkstrasse. .................................................................... 56 

file:///C:/Users/z_ala/Documents/Master%20Thesis.docx%23_Toc131764141
file:///C:/Users/z_ala/Documents/Master%20Thesis.docx%23_Toc131764146


Background 

 

Cyclist Stress and Dynamic Patterns.   

List of Tables 

Table 1: Sensor Availability Levels. ............................................................................... 24 

Table 2 : Indicators, interpretation and chosen value. ................................................... 35 

Table 3: Performance Meta-Statistics. .......................................................................... 44 

Table 4: Indicator Statistics. .......................................................................................... 46 



 

10 
 

  



Background 

 

Cyclist Stress and Dynamic Patterns.   

1. Introduction 

1.1. Background 

Cycling has been touted as a sustainable urban transport alternative to the automobile in 

recent years, as it is considered an efficient and accessible mode of transport (Pucher 

and Buehler 2017). However, the share of cyclists still lags far behind the share of drivers 

in Germany. 

Recent research has found a significant impact of subjective, and, in particular, negative 

experiences, on the likelihood of adopting active modes like cycling. This confirms the 

presumed concept of an attractive infrastructure, wherein a large part of trips could be 

cycled, but are not done by bicycle due to concerns of safety and comfort. Transport 

planners have as a result aimed to find “problem areas” where these concerns are most 

pressing, which has spawned studies that measure rider stress to map into hotspots. 

Following the principle of risk homeostasis, stress arises from situations where a 

mismatch exists between the cyclist’s appraised level of risk and the baseline risk 

accounted for (Trimpop 1996). When a cyclist has detected enough risk and danger, a 

reaction should be taken to minimize risk exposure; and, as result, steady state cycling 

dynamics will deviate. Similarly, physiological markers will appear. Compact on-board 

computing, sensor technology and wearable health monitors have allowed the field of 

naturalistic cycling analysis to grow substantially in the last 10 years. Additionally, 

advances in consumer-grade e-bikes meant that these require and have access to ever 

more powerful sensors as part of their control and drive units. Bosch E-Bike is a 

manufacturer of pedelec motors and components and is creating new safety solutions for 

cyclists such as anti-locking systems (ABS) and B2X (bicycle-to-everything) connectivity. 

This study falls within the scope of B2X research on active safety in cycling. 

1.2. Goal 

Although cycling is a very intuitive and dynamic mode of transport, due to the coupling of 

the rider and the bicycle as almost an extension of the former, the link or parallelism 
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between kinematics and physiological states still have not been considered in depth. 

Since a large part of cyclist accidents occur alone on the road (Schepers et al. 2015), and 

most accidents can be attributed to infrastructural issues as well as failures of control, it 

is beneficial to establish a method of finding areas and situations where the infrastructure 

may be causing discomfort for the cyclist with limited sensor availability. As minor single 

cyclist accidents are still underrepresented in statistics, and near misses are not counted 

in these statistics, this method may aid in reducing the blind spot in common incidents 

that are causing danger and discomfort and discourage bicycle use and adoption but yet 

are not visible in data available to planners. 

The objective of this thesis is to detect instances of risk and danger and tie together 

physiological indicators of stress with cycling dynamics that can be collected from an 

instrumented bicycle with varying degrees of sensor availability. The research question 

being posed is the following: Which sensors, indicators and thresholds can be used to 

identify instances of stress tied to traffic conditions and cycling infrastructure? 

The use cases for such a model of stress and data collection method are diverse; first, it 

can be used to identify common points of conflict and adjust warnings or navigation 

accordingly. Secondly, it can be used to generate rich geographical data for research and 

planning purposes. Finally, based on common patterns of handling in certain areas, it can 

also be used to improve path prediction and aid active safety systems in anticipating user 

reaction, which on a bicycle, unlike a car, cannot be ignored or overridden by electronic 

control systems.  
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1.3. Thesis Structure 

The thesis is structured as the following: Chapter 2 will give a literature review of existing 

research and the state of the art in cycling and stress sensing, as well as studies that 

form the basis of the methodology of this thesis. Chapter 3 will give an overview of the 

methodology with indicators of interest that were selected and the basis of their selection, 

and then will cover the experimental setup and instrumentation to record these inputs. 

Chapter 4 will discuss the results, the analysis process and its implementation, and 

performance parameters and will dive into a critical reflection of the methods. Chapter 5 

will synthesis the findings and contributions of this thesis and discuss possible 

improvements and developments.  
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2. Literature review 

Having established the importance of cycling in transport strategy in section 1, this section 

will cover the current state of cycling research in the relevant areas of mode share, safety, 

dynamics and subjective perception, as well as texts that form an important basis for this 

thesis.   

2.1. Cycling mode share factors 

Research on transport and mode choice models have found that most often, the determining 

factors of mode choice are travel time, relative cost with income, waiting time, combined with 

subjective aspects such as comfort and enjoyment of the mode (Ben-Akiva and Bierlaire 1999). 

In Germany, cycling still lags far behind driving a car in mode share (infas Institut für 

Sozialwissenschaft 2022).  

Incorporating subjective feelings of safety and physical effort, one can draw more nuance on why 

cycling is sometimes, albeit the practical option in combined costs, ignored in favor of other 

modes: Vos et al. (2019) found that enjoyment of travel has a reinforcing behavior on the mode 

choice. As such, first experiences with a mode can also highly influence the subjective perception 

of the mode in future choices, as positive experiences with cycling will likely encourage 

future cycling, and negative experiences will do the opposite. This highlights the 

importance of a forgiving infrastructure that allows for beginners to experiment with 

cycling without being subjected to extreme stress, in order to encourage a modal switch. 

This view is also shared in the CROW cycling design manual (Groot 2016). Cycle friendly 

infrastructure, such as separate cycleways and low speed limits in mixed traffic, is also 

stated to encourage mode shift in favor of cycling (Majumdar and Mitra 2019; Rayaprolu 

et al. 2020).  

2.2. Measuring comfort 

Although comfort is considered difficult to measure, there have been several efforts to 

quantify it in objective metrics so as to assess the ease of use of the cycling infrastructure. 

Hull and O’Holleran (2014) focused on how the infraucture allows or impedes movement, 
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specifically in terms of exertion and energy. They considered that comfortable 

infrastructure is that which is smooth, flat, and presents minimal inclines. Agrícola et al. 

(2017) found that cycling at a cadence of 60 revolutions per minute (RPM) left cyclists 

with a significantly higher pleasure rating than at 100RPM. In the CROW manual, Groot 

(2016) similarly considers 50-70RPM as the normal range for cadence, wherein a slope 

that requires a higher cadence for a period of time does not conform to the design 

standards.  

 Mekuria et al. (2012) took stress as the counterpart to comfort and established the 

method of Level of Traffic Stress (LTS) which categorized road sections by the 

demographic that would be comfortable riding on them, with LTS 1 being the most 

accessible for even beginner cyclists, and LTS 4 being only usable by a small minority 

that is dedicated to cycling, the “Strong and Fearless” (Geller 2006). In the CROW cycling 

design manual (Groot 2016), comfort is measured in instances of nuisance per unit of 

distance in the network. Nuisance can be low speeds, interruptions and needing to stop, 

instances where overtaking is not possible, significant turns, and so on. These two 

sources are the conceptual basis for the definition of cyclist stress that will be used 

throughout this thesis, where it relates to the balance of safety and control ability. 

2.3. Cycling safety 

Indeed, perceived safety is often cited as the key obstacle to bicycle adoption (Hull & 

O’Holleran, 2014). In recent years, Intelligent Transportation Systems (ITS) have aimed 

to curtail the risks to automobile passengers as well as vulnerable road users. Cyclists 

however present a unique challenge for these systems as they relatively fast and 

unpredictable in their dynamics, especially as this can be affected by the cyclist’s state of 

mind in reacting to a hazardous situation, which is more severe for less experienced 

riders.  

Incidents involving an automobile are the leading cause of death for cyclists  (EU 

Directorate-General for Mobility and Transport 2021). Bíl et al. (2010) conducted a 

statistical multivariate analysis and found that the most common serious incidents 

involving a car driver and a cyclist were, in order of fatality rate, those related to speeding 
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cars, car  driving style, overtaking manoeuvres, and cyclist riding style, respectively. It 

was also found that drivers were at fault most often, and that incidents that occurred at 

night were more serious on average. Dozza et al. (2016) found that e-bike riders tend to 

have more conflicts with motorized vehicles overall, and that the rate of conflict is strongly 

correlated with rider speeds. They also found that motor vehicle drivers present the 

largest threat and conflict cause for e-cyclists, in contrast to regular cyclists, who most 

often are in conflict with pedestrians, likely due to the higher speed of e-bikes that 

promotes using the carriageway. Kaplan and Prato (2013) conducted a clustering 

analysis of crash data in Denmark and found that 80% of crashes occurred at road 

intersections, commonly with right turning vehicles, especially heavy vehicles, suggesting 

that the cause of right-turn crashes may be blind spots, which are larger for those heavy 

vehicles.  

 

2.4. Cycling dynamics 

To better understand cyclist behavior and how they handle their bicycles, Dozza and 

Werneke (2014) created an instrumented bicycle setup that served as the inspiration for 

the setup used in this thesis. Using that setup, they found that several inputs could be 

measured, such as inclination, cadence, speed, handlebar angle, braking force, 

examining self-reported conflicts and crashes. It was found that risk of crashing was 

significantly higher when the road is poorly maintained and when crossing intersections. 

However, these findings were based highly on self-reported incidents, with the data 

collected from the bicycles themselves only serving as a contextual aid, as too small a 

number of conflicts occurred and there was not enough data to link kinematic data to less 

severe conflicts.  

Due to their dynamics, cyclists are also harder to predict than drivers, which increases 

the chance of drivers misjudging the road situation. Westerhuis and de Waard (2017) 

posit that for most cases, inferring the intention of a cyclist by observing them is difficult, 

but that certain cues do exist that can be used to implicitly predict their intentions with 

better-than-average probability, based on the rider’s head movements, orientation, and 



Perceived danger and dynamics of driving 

 

Cyclist Stress and Dynamic Patterns.   

speed. Pool et al.  (2017) have found that integrating road network data and topology into 

a dynamic linear system model of a cyclist can be used to improve the accuracy of path 

prediction by around 20%, especially for sharp turns. Pool et al. (2019) also propose a 

recurrent neural network based system that combines sensor data with environmental 

map data. Sensors detect object context cues to make more accurately predict a medium-

term path as a probability density field of spatial points. This performs better than previous 

implementations such as Dynamic Bayesian Networks or Linear Dynamic Systems.  Lee 

et al. (2020) also found that the obstacle avoidance maneuver, a critical reaction in conflict 

scenarios, also takes the form of a Gaussian-like curve in displacement, having also 

parameters for its duration and width.   

These findings contributed to the establishment of indicators that signal a change of intent 

on the part of the cyclist.   

2.5. Perceived danger and dynamics of driving 

The risk of collision with an automobile and risk perception have also been found to play 

a key role in riding behavior, and these make cyclist actions even less predictable. 

Rowden et al. (2011) found that stress from road conditions has negative impacts on 

reaction times and decision making and causes a higher rate of accidents.  

 Llorca et al. (2017) analyzed perceived risk in cyclists during overtaking maneuvers and 

found that clearance was secondary to the nature of the vehicle overtaking, in addition to 

speed, which was more significantly correlated with high perceived risk. However, a large 

element of the perception was subjective, and significantly depended on the cyclist 

reporting the situation. Matthews et al. (1998) established a methodology to assess 

(automobile) driver stress in relation to driving skill and reaction to critical events. They 

found that younger drivers tend to be more aggressive and less frequent drivers, and that 

aggressive drivers tend to be less skilled. However, it was also found that stress is not 

directly related to driving skill, as reactions to the stressful stimuli are variable, ranging 

from cautious behavior to aggressive driving. Therefore, reaction to stress is also 

dependent on factors such as age and skill.  
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2.6. Measuring physiological stress 

To overcome the challenges of subjective stress rating and variable stress response, 

psychologists have also devised methods of measuring stress via physiological markers. 

Sano et al. (2018) have found that wearables can be used to measure various 

physiological phenomena and measure, with 79% accuracy, the user’s level of stress. 

The most sensitive factors were skin conductance, heart rate variability, and blood 

pressure. Caviedes and Figliozzi (2018) also conducted an experimental study and found 

that these measured physiological markers can be traced to stressful incidents on the 

road, and offered a viable method to measure them in real time and account for delayed 

stress responses. They found that traffic conditions and road infrastructure significantly 

impacted stress markers. The stress/road-condition relation could also be have a 

feedback element, where stress can create or exacerbate unsafe conditions, as in the 

automotive field Ritter et al. (2007) have found a relation between degraded driving 

performance and measured stress.  Kyriakou et al. (2019) and Zeile et al (2016) studied 

stress response for cyclists and pedestrians equipped with GPS tracing, and found that 

locations can be correlated with stress data for cyclists and pedestrians, suggesting the 

existence of stress hotspots where conflict is likely to happen.  

 

Figure 1: Stress Response Measurement according to Zeile et al (2016). 
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3. Methodology 

The methodology incorporates experimental elements from Dozza and Werneke (2014) 

and Zeile et al. (2016), along with concepts from aforementioned studies and guidelines 

from the FGSV and CROW manuals. The methodology followed was primarily focused 

on detecting stress and indicators of conflict to study their possible correlation.  

The research took the form of a semi-naturalistic in order to realistically study riding 

patterns in different contexts and conflict situations and find relations between sensor 

data and physiological states.  To balance the requirements of repeatability and data 

reliability, the following strategies were used and will be described in detail in subsequent 

sections.  

 

3.1. Experiment Design 

The semi-naturalistic experiment was selected in order to observe organic traffic 

conditions, as a controlled environment could not be guaranteed to cause an accurate 

stress-response nor would it be feasible to cause such a response without putting 

participants at risk. 

3.1.1. Test Route.  

The study area in question is the area around the Bosch eBike campus. For the 

naturalistic nature of the experiment, this area provides a variety of bicycle infrastructure 

sections and different possible interactions types with road users. Within the area are the 

two cities of Reutlingen and Tübingen, covering around 22km2 and 23km of cycle paths. 

With slightly more than and less than 100.000 inhabitants respectively, the two cities of 

Neckar-Alb region are middle to large in population size.  

With a mode share of 9% for cyclists and a ADFC cycling score of 4.19 (ADFC-

Fahrradklima-Test 2023), Reutlingen’s cycling infrastructure is lacking compared to 

similar-sized cities of Baden-Württemberg which on average have a mode share of 15% 
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for cyclists and an average ADFC score of 3.97. This difference is especially stark with 

Tübingen’s score of  3.32. This indicates that the area is probably slightly more stressful 

to cycle in than in most medium-sized cities in the state and is therefore an interesting 

testing ground for stress measurement.  

 A designated section of the road (Fig. 1) was selected in order to obtain consistent, 

aggregated results that speak of the cycling infrastructure to avoid overrepresenting 

single occurrences that may be outlier events. The route that was chosen combined 

diverse traffic conditions and convenience for participants. The route included long-

distance cycleways, urban bike lanes, mixed traffic sections, and areas with heavy vehicle 

traffic, which is also expected to cause more stress (Llorca et al. 2017).  The route was 

also evaluated according to the LTS criteria in anticipation of possible stress hotspots 

(Figure 1).  

3.1.2. Experiment Procedure  

 

Figure 3: Map of the fixed daytime route from the Bosch eBike Campus into Reutlingen center. 

Figure 2: Level of Traffic Stress by segment. 

Bosch Ebike 

Ebike 
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A short questionnaire was conceived to collect information about the participants (skill 

level and confidence) and their preferred ride times and routes. It was accompanied by a 

form (Appendix B.1) explaining the nature of the experiment, what will be collected, and 

how data is handled, alongside an agreement to the conditions of data processing. It also 

clarified that in all cases, any case of injury while riding is treated as work-related.   

Employees at Bosch eBike (EB) had the chance to take part in the study: 

• By riding a defined route during a specific time during the workday. 

This gives us more reproducible data, with the same track and times of day for 

riders. 

• By riding back home and returning with the Ebike the next day.  

This allows us to see traffic at more interesting times like rush hour, for which we 

would have difficulties otherwise finding volunteers available before/after regular 

work hours. Additionally, we can compare stress levels from habitual rides vs new 

environments. 

Each participant was given a randomized participant ID to maintain anonymity.  

Participants were given a bike suitable to their height and were equipped with the 

smartwatches. A “feel” test was conducted to make sure they are comfortable in the 

saddle and know how to operate and where to find the gear shifters and bell.  

 

 

The test procedure comprised the following steps:  

- Starting data collection on the NUC.  

o Done by running the data_collection.sh script to start CAN nodes and the 

python file new_arduino_save.py and entering the participant ID, watch 

used, and bike number.  
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-  Connecting smart watch.  

- Preparing iPhone navigation and multisensor app.  

- If they are unfamiliar with Ebikes or the FOCUS 2 model, test lap around 

surrounding area was undertaken. 

- Starting GoPro recording.  

- Starting sensor and watch data collection on iPhone.  

- Riding the route.  

These steps are then followed in reverse to stop the recording. Since iPhone data is more 

difficult to segment (clock accuracy) and it has the least amount of available memory and 

battery it’s prioritized to make sure the file is saved and sent correctly.  

 

Amendments:  

Following a road incident resulting in an injury, the procedure was amended to include 

the following steps:  

- Accompanied ride for first timers.  

- Practice lap for all participants.  

- Daily road inspection.  

- Warning about bike’s dynamics in specific maneuvers in difficult weather like rain 

or snow.  

Following mislabeled data, and corrupted files especially in commute rides where the rider 

did not stop the collection or turned off the bike upon arrival, we also implemented a file 

naming standard for all generated files and automatic saving functions. We also included 

an instruction sheet in the storage space for commuting riders. Relaunching data 

collection was simplified to happen in a couple of key presses with automatic detection of 

the correct USB ports for CAN and Arduino, due to the lack of a suitable screen.  
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3.2. Instrumentation 

To generate the quantitative data that is needed, a dedicated, custom hardware setup 

was created on two trekking e-Bikes. These were two FOCUS Aventura2 bicycles with a 

large (henceforth referred to as Bike 1603) and a medium frame (henceforth referred to 

as Bike 1595). This setup integrated existing sensors with new ones outfitted for the 

purposes of the experiments.  Since it was not known which dynamic and external factors 

can be correlated to stress, the instrumentation strategy was to cover as many indicators 

of cyclist state and behavior as possible.  
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Figure 4: Hardware setup flowchart. 

 

Figure 5: On-board computer setup. 

In order to determine the best setup that can achieved minimally and scaled up, several 

levels of sensor combinations are defined, from the most basic, to the most complex, 

which are described in the following table: 
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Table 1: Sensor Availability Levels. 

Sensor Level Sensors included 

L1 Drive Unit (IMU, speed, cadence) 

L2 //         //       //   + ABS 

L3 //        //         //   + Bell Sensor 

L4  //        //         //    + Handlebar usage 

L5  //        //        //    + Head turning detection 

 

The experiment used the depicted (see figure) data flow from sensor systems in the data 

collection setup, which will be described in this section in detail: 

 

Figure 6: Data Flow Chart. 

3.2.1. Bosch Drive Unit (BDU) and ABS with development firmware:  

The BDU is set to transmit all CAN messages which are used internally or for debugging 

purposes. The Bosch ABS is mounted on the brakes, it is also sharing all debugging 

messages.  

These two units are connected via a splitter, SUB-D 9-pin to a CAN interface. The latter 

is connected by USB to the Intel NUC mounted on board. CAN Messages are recorded 
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by the LinuxCAN library in a BLF format at the end of recording. The file carries a 

timestamp of the time of creation, but the messages themselves have no timestamp, only 

absolute time delta between messages. Together, the two units give access to inertial 

sensor data, odometry, and torque, and braking pressure measurements recorded 

throughout the rides.  

3.2.2. Arduino Sensors:  

An Arduino board connected to waterproof capacitive sensors adapted to detect hand 

placement on the handlebars (Bike 1603) and on the bell ringer (Bikes 1595 & 1603) by 

transmitting changes in capacitance from human skin. The setup uses copper tape to 

extend the detection area of the sensor. By having the adequate copper tape length and 

thickness these extensions are used to create a contact point that is minimally intrusive 

without affecting the sensor readout itself. This is achieved by the fact that the copper 

tape has similar enough conductive and dielectric properties to the sensor contacts to not 

substantially alter the charge stored in the capacitor on its own, but can conduct this 

charge to the rider’s hands and thereby trigger the sensor.  

In winter conditions, gloves may be needed. Depending on their material, these can either 

block or still maintain the sensor’s sensitivity. Before each ride, these are tested and if 

necessary, copper tape is also added to the gloves at common grip points to detect 

contact. The additional surface of copper tape creates enough of a dielectric difference 

between states such that the contact is also detected as a touch.  

This sensor is also connected to the NUC via USB. Using a python script, simple encoded 

messages from serial ports are monitored timestamped and periodically added to a CSV 

file. In order to not overload the serial bus with several concurrent messages, the signal 

is summarized in a single integer with the following formula:  

𝑠𝑡𝑎𝑡𝑒 = 𝑅𝐻𝐵𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ∗ 20 +  𝐵𝑒𝑙𝑙𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ∗ 21 +  𝐿𝐻𝐵𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ∗ 22 

 

Where 𝐿𝐻𝐵 and 𝑅𝐻𝐵 are “left handlebar” and “right handlebar” respectively.  
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3.2.3. iPhone: 

The iPhone mounted on the handlebars also collects some data. Via the Komoot app, we 

have navigation information displayed and GPS history is collected. With an application 

with access to the Gyro/IMU sensors, the pitch, yaw, and roll of the handlebars are also 

saved. These values have been calibrated via a disc fitted on the frame with angles 

annotated as ground truth.  

3.2.4. GoPro cameras  

Two cameras are mounted. One of them faces the road and serves to cross-reference 

detected events with actual occurrences on the route. The audio track is also extracted 

to detect bell ringing. The other camera faces the rider and records their face’s 

movements. This is later used to analyze shoulder glance behavior.  

3.2.5. Empatica watches: 

These specialized wearables measure physiological data. The data used for stress 

detection is the skin galvanic response, heart rate variability, and skin temperature. The 

watches have two modes of recording the data:  

o The E4 model connects to an app which records the raw values in a SQL 

database file.  

o The Embrace model connect to an app which records the raw values in an 

AVRO file and also provides minute by minutes processed values.  

o Data is timestamped in date/time and unix time.  

o Both watches have inertial measurements which were used to validate 

corresponding timestamps with the bike’s measurements relative 

timestamps.  

The watches were worn on both hands to minimize dominant hand effects on Galvanic 

Skin Response (GSR).  
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Watch data was also processed by Dr Peter Zeile of the Karlsruhe Institute of Technology 

to determine stress points. This was determined with changes in GSR and skin 

temperature and heart rate.  

3.3. Indicators 

To measure rider states through physical indicators, we have the following key indicators 

of state:  

3.3.1. Braking 2  

With the risk of falling over, cyclists are reluctant to brake hard. As a result, strong braking 

is likely to indicate a dangerous road situation where a greater risk exists.  

a) To differentiate between varying levels of intensity, only braking pressure above 

60psi is highlighted. Lower intensities would occur from minor, controlled 

deceleration.  

b) Braking while stationary is ignored.  

3.3.2. Accelerations 1  

High values of acceleration/deceleration that go beyond comfort ranges stated in the 

CROW manual (2016) are highlighted. For most cases, high forward deceleration is 

undesirable and signals a disruption. In the Z axis, high acceleration causes energy loss 

and sustained cyclic vibrations can also reduce visual perception (Ishitake et al. 1998).  

3.3.3. Speed 1  

Very low or very high speeds result in difficulties in controlling the bicycle (Groot). Low 

speeds are assumed to be a limiting factor from the environment or traffic situation as 

instability is undesirable to cyclists.  

3.3.4. Cadence 1  

High cadence over longer times can signal exertion and steep slopes. When sport is not 

the objective, such as in a pleasure ride or commute, this can cause fatigue and frustration 

and result in stress.  
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Cadence discontinuity, sudden reduction to 0RPM indicates a need to observe upcoming 

road conditions better, be more visible, and increase potential time to collision (TTC).  

• Since Pedal assist turns off at speeds >25km/h, instances where cadence 

drops around this value are ignored since they are often not a reaction to the 

environment but part of individual effort/energy management strategy.  

3.3.5. Lateral maneuver 1,4  

High, oscillating acceleration laterally shows a fast displacement and realignment, which 

could be an avoidance maneuver. A wave-like acceleration is assumed as the rider would 

lean and turn into a direction to avoid an obstacle or vehicle and then lean and turn into 

the opposite direction to recorrect course. Quick maneuvers, with less distance and time 

to react, will result in a noticeable amplitude in a certain frequency range. This movement 

creates a higher frequency acceleration waveform than a normal maneuver executed 

under comfortable conditions, since we assume, the rider would avoid strong maneuvers 

both to maintain their balance and to be more “readable” to other road users.  

3.3.6. Bell usage 3,5  

Bell ringing implies a dangerous road situation occurred or is about to occur according to 

the assessment of the rider.  

Bell preparation (finger on the bell in a ready state) implies the same situation, but a lesser 

degree of intensity where such a level of danger did not go over a certain subjective 

threshold.  

3.3.7. Head turning 5  

Head turning and shoulder glancing can signal anticipation of possible conflict, where the 

rider must evaluate if the manoeuvre they are about to perform or another road user might 

perform can be done safely from where they are.  

3.3.8. Stress Peaks 6  

Galvanic skin response (GSR) signals arousal of nervous system in reaction to 

environmental stimuli.  
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A decrease in skin temperature indicates blood recirculation towards the core as a reflex 

response to danger and potential injury.  

 

1: Measured by BDU.    2: Measured by Bosch ABS.   

3: Measured by Arduino Sensors.  4: Measured by iPhone.    

5: Measured by GoPro cameras.  6: Measured by Empatica Embrace/ E4 watches. 

 

Not included –but considered– were the following sensors:  

• Handlebar angle sensor: This sensor was initially tested with a modified 

automotive sensor but not installed due to compatibility issues with software and 

hardware as it interfered with frame components and cables.  

• Temperature, rain, and wind data: Although significant factors of rider safety and 

comfort, the variability of these elements on a precise scale renders comparison 

impossible due to the small scale of the data collection. A coarse level of 

information was instead adopted, where weather conditions were described as dry, 

wet, rainy, snowy/icy. Temperature was deemed to be less significant, and wind 

could not be easily measured as the riders’ bearings would change throughout the 

ride, and reconstructing wind conditions from weather data after the fact would be 

difficult.  

 

3.4. Data Processing 

3.4.1. Data Cleanup 

The collected data is not immediately usable for analysis after saving. It must first be 

restructured and adapted in Vector CANoe to be readable by the MATLAB processing 

algorithm. Data received from the CAN interface is then converted into a MATLAB Matrix 
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and the absolute timestamp marking the start of recording is then added to each 

measurement timestamp, as the CAN files measures time 0 as the start of data recording. 

This initial absolute timestamp is provided by the Python module running in parallel on 

the NUC and recording the data from the Arduino when the script is started.  

Similarly, timestamps from the GoPro must be extracted from the metadata. This is done 

in a JavaScript console with functionality available from gopro-telemetry. The outputted 

JSON file is then read in MATLAB and converted into a matrix.  

Data from the Empatica watches is also converted into readable MATLAB readable 

formats. A Python script was created to convert and process data from the SQLITE and 

AVRO files into filtered arrays with moments of stress.  

Additional, manual cleaning of the data must also be done in some cases. For cases 

where the participant ID was not entered, the schedule and video files when available are 

referred to determine which participant was riding which bike. Due to pairing errors, the 

watches may sometimes pair to a phone bearing a different ID. To verify correct 

association of the data, IMU plots are compared for the watch and the E-Bike and should 

mostly be matching when the watch’s data is correctly associated to the E-Bike’s data.  

In some cases, the handlebar sensors would lose contact due to the copper tape on the 

gloves crumpling. This is inspected visually and in suspected cases the touch sensor 

input is discarded for the unreliable sensor(s). Rides for which essential data is correct 

and available (Watch Data & Sensor Data) are grouped into subfolders where they are 

processed. Cases where the watches were not worn or connected properly altogether are 

discarded.  

 

3.4.2. Signal Filtering 

To be able to compare data from different streams, signals need to be synchronized and 

the indicators must have a unified, consistent sampling that facilitates matrix operations 

in the processing state. This is done through the following: 

 Data streams are synchronized according to common event points.  
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▪ This is done by detecting the start of the ride after the “warm up” tour and 

subsequent halt, which is visible with GNSS data on the phone, and IMU data 

on the bike and watch.  

▪ From that point, the start and end point are determined interactively by 

visualizing this data and clicking on the graph in MATLAB. Once the signals 

are synchronized, they are then converted to a common timeseries with a 

specific sample frequency.  

 

 Indicator values that are dependent on other contextual values (braking or inclination 

while stationary, cadence reduction when 25km/h is reached) are adjusted by 

multiplying the value vector with a binary conditional vector.  

▪ For example, from instances where the speed is near 0, a “Standstill” binary 

timeseries is assigned values 0 and 1 (see figure). The result would be that 

IMU data for example, which would show high values when standing since the 

cyclist would be inclined on one foot to one side, are instead zeroed to keep 

this state from affected indicators.   

 

 

 The sample frequency used was 40Hz as most sensors were operating in similar or 

lower frequencies. The exception is the IMU which operates at 1000Hz, and where 

vibration data would be lost if immediately resampled at 40Hz since road vibrations that 

affect user comfort and perception can go up to 80Hz ilato and Petrone 2012).  

 For IMU signals, vibrations are measured first as amplitudes in a bandpass filtered 

timeseries, thresholded, and then resampled to 40Hz.  

Resampling is necessary in order to combine indicators into a single equation along a 

common timeframe. A lower common sampling frequency also improves computation 

performance.  

Resampling occurs according to the following principle:  

• Time range is divided into even measurement times/ticks known as unit blocks 

such that the block occupies the time range of the timestamp ± Sampling rate/2.  
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• If there are measurements within a unit block, they are averaged together to obtain 

a single value per block.  

• If there are no measurements within a unit block, these blocks are marked as 

skipped, until another measurement value is reached. Once reached, all skipped 

blocks are filled with interpolated values between the newest measurement and 

the last known one. 

• This method provides a flexible solution for varying sampling rates and 

measurement 

deltas, which is the case for many CAN messages when the bus is overloaded, or 

when the file size becomes large and read/write operations lag before memory is 

cleared.  

Figure 7: Resampling and interpolation. Author: Blok, Marek. (2012). 
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Filtering and thresholding:  

For most signals, raw values do not give much insight about the state of the cyclist and 

bicycle. Signals can also be related to the same dynamic event but have different 

response times to one another. To draw indicators from these values, we need to 

differentiate values and patterns from normal riding behavior. The following filtering 

methods are applied to each signal to get indicator values:  

 

Figure 8: Example processing flow for indicator. 

  



Data Processing 

 

Cyclist Stress and Dynamic Patterns.   

 

Table 2 : Indicators, interpretation and chosen value.    

INDICATOR TRANSFORMATION THRESHOLD COMMENT 

STANDSTILL Binary timeseries Speed Below 

0.2km/h 

Used to zero other indicators that 

require motion as a condition. 

SPEED Binary timeseries Speed Below 

11km/h 

 

BRAKING Filtered Value. Over 60PSI  Zero below threshold, scaled 

value above threshold.  

CADENCE 

HIGH 

Cumulative value 

timeseries. 

Over 85RPM.  The longer cadence is sustained 

over 85RPM, the higher the 

indicator value. Zeroed when it 

dips below 85RPM  

CADENCE 

LOW 

Binary Timeseries Below 8RPM. Time sensitive, Boolean true if 

cadence is below 8RPM for a 

duration of 1s or more.  

LATERAL 

MANEUVER 

Binary Timeseries. Symmetrical 

Displacement 

over 30cm over 

duration of 0.8 to 

3 seconds 

See detailed method in “Lateral 

Maneuver Detection” section, 

2.4.X 

BELL 

USAGE 

Binary timeseries Duration of 0.5 to 

4 seconds.  

Shorter or longer averaged 

signals in time are considered as 

misdetections. 
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HEAD 

TURNING  

Binary timeseries Angle >±300  

VERTICAL 

VIBRATIONS 

Filtered Value 0.25G Zero below threshold, scaled 

value above threshold. 

 

3.4.3. Lateral Maneuver detection.  

 

A novel method using IMU motion patterns to detect specific avoidance maneuvers was 

implemented to find instances where cyclists swerved around an obstacle or road user, 

without stopping or significantly braking. From  Lee et al. (2020) and Groot (2016) we 

know that cyclists tend to follow a straight line with some minor wobbling, with up to 30-

40cms of later displacement, and that when faced with an obstacle, they tend to avoid 

this obstacle within a range of comfortable distance and time. The avoidance maneuver 

takes the form of a Gaussian function, whose parameters are the duration 2𝜎 and the 

distance of the displacement 𝛼.  
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Figure 9: Gaussian Distribution versus sine approximation. 

The second derivative of this function, acceleration, can be approximated with the 

sinusoid function = −
64

𝜋2 𝛼 cos 4𝜎. This approximation is accurate enough for a large part 
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of the motion and covers the largest changes in amplitude around the peak. 

   

Figure 10: Second order derivative of the Gaussian versus its sinusoidal approximation. 

This renders a simpler type of wavelet fitting possible via a bandpass filter. As amplitude 

 𝛼 corresponds to lateral displacement and 2𝜎 to the duration of the displacement, critical 

values for the second order derivative approximation also can be derived for critical 

values of 𝛼 and 𝜎, one obtains the thresholds for amplitude and frequency ranges:  

2𝜎 = [0.8 3.0𝑠] = [0. 3̅ 1.25𝐻𝑧] 

 → 4𝜎 = [ 0. 6̅ 2.5] 

𝛼 = 0.4 

→ −
64

𝜋2
𝛼 = 2.59 
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With these bandpass parameters, detecting avoidance maneuvers is possible to some 

level of accuracy. This makes incidents visible, where no strong braking or where no 

foresight/cadence management is possible due to the speed at which it occurs, and 

makes the reconstruction of events more complete.  

 

Figure 11: Raw vs Processed IMU Signal. 

 

Figure 12: Threshold Applied to Filtered Signal. 
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3.4.4. Empatica Watch Data:  

The Empatica watches output data at 1Hz to 400Hz depending on the signal. Skin 

Temperature and Galvanic Skin Response are the primary variables to detect stress. 

Because these raw values are affected by exposure to the elements and by 

environmental factors, they must also be filtered to provide more meaningful data.  

As the experiment took place in winter, when insulation is inadequate, wind can cool the 

wrist area as wind enters it, especially at higher speed. To differentiate between 

temperature changes caused by cold air and temperature changes caused by a change 

in blood flow to the extremities, the indicator reacts to changes in the rate of change of 

the temperature.  

Since GSR is also dependent on perspiration levels, as more humid skin conducts 

electricity better, it was also observed that this raw value tends to rise with time as riders 

sweat, especially if heavy winter gear and gloves are worn. Hence, to preserve the 

sensitivity of temperature sensing can also have the byproduct of affecting the GSR value. 

As a result, the GSR was scaled on a running average and strong changes were 

highlighted.  

Due to materiel delivery delays, this was not used for all rides, and calibration was also 

imperfect by the end of the experiment. For moments of stress, as a reference, 

measurements and processing by Dr. Peter Zeile were used as they were available at the 

beginning of the data collection and were deemed more reliable and better calibrated.  

3.5. Correlation Analysis Parameters 

3.5.1. Indicator calibration and weights 

Initial analysis shows a relation between stress peaks and braking and accelerations, but 

not so much for slope or high cadence. Some stress peaks also did not have any 

correspondence with indicators, until lateral avoidance indicators were introduced. 

However, visible already was the discrepancy in time between stress response and 

indicators peaks.  
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Initial thresholds used were based on values extracted from literature. Some values were 

adjusted to improve the sensitivity of indicators for the properties of the E-Bike and the 

track, such as critical cadence and exertion and slope.  

 
Figure 13 Initial indicators (blue) vs stress peaks (orange). 

 

Figure 14: Improved model fusing additional data. 

With more data from the handlebar sensors and bell sensor, a better model is 

obtained(Fig.14) 

However, there is an apparent lag between the indicator peaks and the detected moments 

of stress. This in line with the findings by Zeile et al. (2016) and Kyriakou et al. (2019) 

who found that the physiological response may lag several seconds behind the actual 

stressor event. Zeile cited 8s as the average time for the response to be detected. The 

extent of this delay however varies from participant to participant, with different riders 

having different delays, however all were within the same order, of 5-20 seconds.  

Time in seconds 

Time in seconds 
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3.5.2. Cross-Correlation 

To mitigate this and extract metastatistics about the model and its accuracy, a cross-

correlation was performed on the indicators and detected moments of stress.  

Cross correlation between two time varying functions is calculated with the convolution:  

𝑓 ∗ 𝑔 =  ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
+∞

−∞ 

 

where 𝑡 = 𝑡𝑖𝑚𝑒 𝑠ℎ𝑖𝑓𝑡 (Blackledge 2013). 

This was accomplished by feeding in both time series into a function, given a range of 

time shift alongside a number of layers L and a number of steps S. The function iteratively 

maximises the degree of overlap of both functions.  

Pseudocode:  

NewRange=TimeRange 

 For l going from 1 to L  

  For s going from 1 to S  

   Overlap(s)= sum(f dot g) 

  BestOverlap= NewRange(MaxIndex(Overlap) 

  NewRange=[BestOverlap-2/L  BestOverlap+2/L] 

 Output(BestOverlap, Max(Overlap) ) 

   

This allows an optimal time shift to be found for each ride from which the degree of cross 

correlation could be computed and different combinations and weights of indicators to be 

evaluated and compared against each other.  
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To allow for a gradual and more lax optimization process, the binary signals are passed 

through a Gaussian kernel that extends an impulse peak to a Gaussian curve that peaks 

at the impulse but preserves positive values around the impulse in a range of ±1 second.  

3.5.3. Variable time shift 

However, while the result showed improved correspondence between measured stress 

and stress indicators, there also seems to be different optimal time shift values for 

different segments of the same ride. This is likely to be due to the previously mentioned 

temperature and GSR sensitivity changes as time progresses. The general trend is that 

the optimal time shift decreases as time goes on, which can also be due to the adaptation 

to the riding task as the rider becomes more aware of their surroundings after exposure 

to risks and repeated stimulus increases vigilance and reduces reaction time.  

A possible solution which was adopted was the segmented time shift approach. Utilizing 

the same logic as the previous function, the segmented time shift function add another 

dimension where the indicator time series is split into N segments, finds the optimal shift 

level for a segment, then truncates the lagging watch data according to that last shift, and 

moves on to the next segment. The output is a 𝑁 × 1 vector of time shifts alongside a 

resampled stress measurement timeseries combining each shifted segment. The 

resulting plots show a better correspondence between peaks that are adjacent and 

seemingly related.  

 

Figure 15: Applying different time shifts to stress signals. 
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4. Results and findings.  

4.1. Model performance 

4.1.1. Overall performance 

To evaluate model performance, some metrics were established and calculated for each 

ride.  

• Indicator Positive Accuracy: How often the model correctly predicts a stress peak, 

as a percentage of all stress peak.  

• False Positive Rate: How often the model incorrectly assumes a stress peak where 

none has been recorded.  

• Reliability: Inversely related to sensitivity. This value calculates the likelihood that 

a correlation between the predicted and measured time series is not incidental. 

This is determined by taking the larger area of the predicted and measured stress 

peaks, and subtracting it from the area of the entire time window of observation. 

This parameter can help detect if the model is showing high accuracy only because 

the indicator is oversensitive, and large stretches of the observation period are 

considered as a single detection event.  

 

Table 3: Performance Meta-Statistics. 

 
POSITIVE 

DETECTION 

FALSE 

POSITIVE 

RATE 

RELIABILITY 
TIME 

SHIFT 

STRESS 

EVENTS/MIN 

AVERAGE 

VALUE 
50.59% 45.95% 74.53% 11.72s 1.448 events 
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4.1.2. Indicator assessment. 

The individual indicators were evaluated according to the following characteristics: 

• Accuracy: How often this indicator was present in correctly identified moments of 

stress.  

• Time sensitivity: How narrow of a time range is this indicator active to achieve this. 

“High” and “Very High” denote indicator durations of a few seconds and not more. 

“Medium” denotes indicators that detected events that span 5 to 10 seconds. “Low” 

are indicators that detecting longer events than 10 seconds for a single signal 

satisfying the thresholds.  

• Reliability and precision: How reproducible these results are with different riders 

and rides, using the same criteria.  
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Table 4: Indicator Statistics. 

INDICATOR ACCURACY TIME-

SENSITIVITY 

RELIABILITY AND PRECISION 

BRAKING Very High Very High High.   

LATERAL 

AVOIDANCE 

High High Medium to High.  

CADENCE 

SHIFT HIGH 

High* Very High.  High.  *Related more to exertion than 

traffic conflicts. Can replace slope 

values. 

CADENCE 

SHIFT LOW 

High  High High 

SLOPE Low Low to Medium  Low.  

BELL USAGE Very High Medium to High High 

HEAD 

TURNING  

Medium to High Low to Medium Low. Clarity of video affected by 

lighting and rain. Rider behavior 

differs. 

VERTICAL 

VIBRATIONS 

Medium Medium Medium. Stretches of poorly surfaced 

road make it less time sensitive.  

HANDLEBAR 

MOTION 

Medium Medium Low. Phones were not always placed 

correctly by testers and as a result did 

not charge.  
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These findings show that most relevant indicators that can be used to predict or estimate 

stressful situations are already integrated in the E-bike itself, with the exception of the bell 

usage detection. In general, braking force, lateral avoidance, cadence reduction and bell 

usage are enough to detect a significant part of stress events. Additional inputs in the 

current configuration may increase accuracy, but at the cost of increased false positives 

and reduced time precision. Therefore, sensor setups II and III, as detailed in section 3.2, 

form the optimal package of accuracy and simplicity.  

Additionally specific scenarios that were identified where stress peaks were detected, 

besides evident cases such as braking and weaving, were:  

• Reaching the pedal-assist speed limit.  

• Picking up cadence after a slope begins.  

• Being in mixed traffic (cyclist/pedestrian, cyclist/car). 

The first point relates more to the implementation of speed limiters in the E-Bike software, 

and therefore is not insightful with respect to infrastructure. The latter two points highlight 

the importance of not simply separating cyclists from car traffic but also providing a less 

stressful experience.  

Stress points were more frequent during morning hours. This can be due to several 

reasons, among which is a traffic peak that is more pronounced than  the afternoon peak, 

increasing interaction with cars and cyclists, in addition to poorer visibility, lighting, and 

colder temperatures in the morning. Notable is the fact that 4 rides occurred in foggy 

conditions in the morning.  

From these results, it can be seen that a relation exists between these indicators and the 

stress measured. The reliability value suggests that the relationship is probably 

statistically significant. However, the false positive rate is still high. This means the 

indicators and thresholds need better tuning to generate more meaningful data. Positive 

detection is satisfactory since the number of stress events generated is quite high, 

suggesting that the wearables have high sensitivity to begin with, and may be 

overrepresenting minor events.  
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4.2. Identification of stress peaks and locations.  

 

Figure 16: Heatmap of Stress Points. 

The geographic distribution of stress points also confirms rider’s feedback and feelings 

and assumptions about the route. After performing the time adjustment from cross 

correlation in section 3.6.2 , the stress points mapped out to more overlapping areas of 

stress and points that have been noticed by the riders themselves.  

Common points of stress were:  

• Crossing major intersections with no bike lanes.  

• Turning intersections within cities, especially left turns.  

• Streets with mixed traffic with cars.  

• Streets with high heavy vehicle traffic.  

• Cyclist and pedestrian bridges.  

• Strong downhill sections with low visibility.  

• Large open areas/squares with high pedestrian activity.  

This is in line with the findings by Teixeira et al. (2020) that cited intersections and traffic 

lights, pedestrian presence, and mixed traffic as the highest stressors. 

Specific areas have also been highlighted on the regular route to compare with the initial 

LTS assessment  from section 3.1.1 (Fig. 14).  
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Figure 17: Moments of stress overlayed with LTS rating, with locations of interest.  

The intensity of the heatmap has been adjusted to the number of rides performed through 

it as the section going to Tübingen was only ridden for commute rides. However, an 

unequal quality of data must still be assumed.  

Still, the location of stress points corresponds more closely to the LTS rating than not. 

Among the areas of high stress intensity, points 1 through 9 are of interest.  

4.2.1. Bosch Office/Factory Area.  

 

Figure 18: Intersection near eBike Campus 
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This section presents more frequent conflicts than expected. This is likely due to the 

bidirectional advisory cycle lane, which is equal to the full width of the sidewalk it merges 

into. As a bus stop is present on that sidewalk, there is ambiguity on where cyclists should 

pass and pedestrians should stand or walk. Additionally, vehicles going to or from the 

right may not always expect cyclists from both directions as markings are not 

conspicuous.  

4.2.2. Mark West industry area:  

 

Figure 19: Mark west sidewalk lanes. 

This section overall generated a high density of continuous stress points. Cyclists have 

no dedicated lanes and must share the sidewalk with pedestrians or the road with heavy 

vehicles. Participants noted their general dislike of this segment of road. From video 

recordings, it was noticed that some participants choose to use the sidewalk while others 

used the road, however this was not found to be related to their expressed experience 

level.  The sidewalk transitions are rough and not chamfered. Additionally, temporary bus 

stops occupy some sidewalk space. A specific choke point was measured at 1.3 meters 

wide, which is already insufficient according to both FGSV and CROW guidelines, and 
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would be even more narrow if pedestrians were present or waiting for the bus. This would 

then force cyclists to get on the carriageway, which is used by large trucks and has a 

speed limit of 50km/h.   

 

4.2.3. Industry railway cycle track.  

 

Figure 20: Industry track ground condition. 

Although this section features a separated cyclist/pedestrian way, it also features two 

points of conflict that were not anticipated. Outbound, riders must move into a middle left 

turn lane within traffic. Due to the intermediate width of the lane and the high speed limit, 

drivers are often tempted to speed past cyclists which will find themselves pushed to the 

shoulder if not assertive enough. The transition to the left lane becomes then even more 

precarious. Drivers in perpendicular directions may often focus on the faster and more 

visible motorized traffic and in several cases did not notice cyclists intending to turn left. 

Inbound from Reutlingen, the cycle lane turns into a shared sidewalk. The transition is 

however not smooth, as the sidewalk ledge is around 7cm high. Between the train tracks, 

the transition into the sidewalk however is smooth, but that presents a potential to get 

stuck between the tracks, especially in wet conditions or in snow where the track may not 

be visible. Drivers waiting to merge sometimes block one of these paths or the other.  
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4.2.4. Betzingen pedestrian bridge and sidewalk.  

 

Figure 21: Betzingen bridge, sidewalk and track. 

The bridge was a site of some stress points, due to its narrow shape, but more 

significantly the exit off the bridge is a blind spot with a turn rightward. The shared 

sidewalk turns into a shared street or a separate path, which however due to routing was 

not used. To continue on the defined route, cyclists must step off the sidewalk in 

significant bump. At this point, right of way is not clearly defined, as vehicles moving 

parallel may consider the cyclist as merging traffic, and perpendicular traffic may not 

assign riders the same priority as drivers since they are crossing beyond the dashed line. 

Additionally, heavy vehicles such as buses frequently pass through this section, 

increasing potentially stressful interactions.  
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4.2.5. Cycle highway bridge and crossing.  

 

Figure 22: Small bridge after cycling bicycle highway 

This section also saw some moments of stress, as predicted, due to the strong downhill 

followed by a strong turn, and a barrier-narrowed bridge. Since the bridge is not clearly 

within line of sight at the crest of the hill, it can sometimes arrive unexpected, which 

coupled with its barriers, can lead to crashes with the latter or with other cyclists and 

pedestrians as the rider arrives with too much speed ad momentum from the downhill. 
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4.2.6. Bantlinstrasse intersection.   

 

Figure 23: Bantlinstrasse left turn intersection. 

This section saw two concentrations of stress. The former is at the intersection itself. This 

could be likely due to the long waiting time at the traffic light, which according to Zeile 

(2016) and CROW is a factor of discomfort. It could also be possibly due to the lack of 

clear markings for cyclists to cross, as traffic lights imply that cyclists should use the 

sidewalk, but the sidewalk too narrow to continue to serve as a shared walking/cycling 

space, yet there is no space at the shoulder for a cyclist to pass without getting in the way 

of an automobile.  

Additionally, to continue forward, the cyclist must turn slightly left into a bidirectional 

narrow street. This maneuver is easier to perform if the cyclist is already on the 

carriageway. This also relates to conflicts at the crossing as a result.   
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4.2.7. Karlstrasse:  

 

Figure 24: Bus and bike lanes on Karlstrasse. 

This section was also cited as uncomfortable. This is most likely due to the fact that cycle 

lanes northbound are crossed by the buses, which leave no buffer around the lanes. 

Southbound, the cycle lanes exist within bus the lanes. Participants have reported that 

they sometimes felt anxious when a bus is behind or in front of them, due to not knowing 

if they should yield out of the way or to overtake a stationary bus.  

4.2.8. Right turn onto Kaiserstrasse: 

 

Figure 25:  Bicycle lane transition on Kaiserstrasse. 
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This section transitions rather abruptly into a shared street, with the cycling lane 

disappearing without defining a path for the cyclist to take or a space for drivers to reserve 

for cyclists. This caused stress points on and after the turn. The street’s width is also 

ambiguous; fitting easily one and a half standard automobile lanes, yet cyclists must 

share the space with the expectation that they are to be overtaken by other vehicles, as 

the wide space invites drivers to drive more quickly and aggressively.  

4.2.9. Bismarkstrasse:  

 

Figure 26: Turning left on Bismarkstrasse. 

This section also saw a concentration of stress points. This can be due to waiting times, 

as well as navigating the turn with turning cars as in the previous turn on Kaiserstrasse. 

The lack of markings from one side of the cycleway to the other creates potential for 

conflict whenever one side is not aware of the space needed or intended to be taken by 

another road user.  

Overall, the stress points seem to be rather representative of the traffic situation, 

especially when synchronized to kinematic indicators to adjust for delayed response. 

Theoretically, it could also be interesting to filter out stress points that do not intersect 

with the stress moments seen in kinematic indicators, notably  those generated from long 

waiting times at traffic lights. However, as they were considered an aspect of comfort, 

they were kept in the is study, as it is not within the scope of this thesis to tune the 

parameters of the physiological stress sensing methodology.  

From these insights, there is a visible throughline in all of the highlighted problem areas, 

notably the insufficient and inconsistent allocation of cyclist space. If FGSV or CROW 
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guidelines were to be followed in full, several sections must be widened, or upgraded to 

separated cycle lanes, and intersections and transitions must be more clearly marked to 

suggest and facilitate a safe crossing where all road users are aware of one another. 

Crucially, heavy vehicle traffic and high speed traffic (50+km/h) must not be sharing road 

space with cyclists in the Mark West area. It must be sadly noted that the aforementioned 

area has already witnessed fatal accidents in the past and current infrastructure has not 

done much to mitigate this danger.   

4.3. Discussion 

Since the model variables and weights were selected on a theoretical basis, it is possible 

that other variables that were not considered can be relevant for the improvement of the 

model. In addition, simple filtering and combination methods were applied for indicators 

as the large size of the timeseries signals made simpler computations preferred. For 

example, Nuñez et al. (2018) has found that noise can also influence stress levels. 

However, due to the nonuniform availability of video footage and the associated 

processing requirement to evaluate it, this aspect was not considered.  

In another dimension, the data from the Empatica Watches had a limited time resolution: 

they were sampled every second, and these values were aggregated to find peaks of 

stress. Therefore, they should not be taken as ground truth, but also subject to inaccuracy 

and inconsistency themselves. Indicators related to video were promising when 

conditions were right; however, they mostly faced adverse conditions due to the time span 

of the experiment occurring in the winter season where lighting and visibility are at their 

worst. Additionally, the cold temperatures affected battery performance, and this also 

made access to video data inconsistent. For these reasons, video data was not 

considered for most of the rides. Temperatures also could affect the reliability of the 

Empatica watches in determining stress, as riding at speed increases cold airflow and 

can affect skin temperature which is a metric in stress measurements.  

Events that can also cause stress that are invisible kinematically are also overtaking 

events by drivers. For this, a sound analysis was considered, where engine sounds would 

be identified by a range of frequencies and amplitudes. However, this proved too complex 
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to differentiate between a close fast overtaking and sound from a vehicle in an opposite 

lane that posed no danger.  

There are also externalities that could affect this stress measurement. In particular, the 

higher occurrence of stress events in the morning hours can be a result of busier traffic 

conditions but also could be in part due to the riders worrying about making it in time to 

work or the general state of discomfort and drowsiness that can happen in the morning.  

Finally, the results are limited by their sample size (15 rides) which makes trends visible 

but not exactly representative of the broader population. There is also a limiting factor 

from selection bias, where participants were for the most part experienced, all-weather 

cyclists. Although some inexperienced riders were scheduled to take part, they were not 

confident enough for the weather conditions of November/December, which frequently 

had rain and ice, and canceled their appointments. Additionally, the author himself took 

part of the data generation process, which may skew results inadvertently due to his 

knowledge of what is being measured. Finally, gender-dependent perceptions of stress 

and reactions to it, if they exist, could not be investigated in this study due to the male-

dominated sample population (>90%).   
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5. Conclusion and outlook 

5.1. Main contributions  

This thesis aimed to synthesize methodology from different sectors of cycling safety 

research to establish a more accurate and easily deployable data collection system. 

Based on the comparison and analysis of kinematic and physiological data, it can be 

concluded that physiological and emotional stress can in many cases be also detected 

through kinematics. While the sample size limits the conclusiveness of the results, the 

process and methods explored can provide new insights in the analysis of cycling 

kinematics in stressful environments or conflict situations. By adding more time-sensitive 

indicators, the findings of this thesis can also be used to improve existing stress-sensing 

and mapping. With a streamlined process to collect and analyse bicycle data, based on 

existing sensors, it can be easily expanded in scope and used to analysis conflict and 

cyclist reactions in other geographical areas or in other traffic contexts and technological 

applications.  

5.2. Future research 

From what has been found, different avenues of research can be investigated in future 

studies. Utilizing the same methods and indicators, a model could be developed based 

on the more recent Empatica Embrace which includes higher polling rates. The 

relationship between physical exertion and stress occurrence should also be studied, as 

some patterns emerge among e-bike riders that are different from other cyclists, notably 

energy management strategies for cadence. Additionally, implicit signals of intent, such 

as cadence and leaning, seem to also relate to explicit signals of intent such as hand 

signaling, and this would be a potential area of future research. Shoulder glancing 

behavior is also possibly affected before and after stressors are detected, however limited 

quality of video data did not allow a deeper dive into this phenomenon. The before-and-

after-stress reaction could then be explored. Finally, a rider’s stress response to a Human 

Machine Interface (HMI) safety warning would be an area of interest to assess the impact 

and benefit of such warnings.  
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Appendix: 

Appendix A: Questionnaire.  

Naturalistic Experiment for Cycling Stress Data. 

 

Dear colleagues,  

We are conducting an experiment for measuring cyclist stress across different locations 

and in different traffic situations.  

We are recruiting volunteer cyclists internally who would be able to cycle using our 

instrumented bicycles along one route. A section of the route will be predefined to make 

it common and comparable among different riders. The ride will consist of a ~1h round-

trip from the campus during the workday. 

If you want to perform a ride during your morning or evening commute, we also propose 

the routes starting near Tubingen and Reutlingen Hbf., respectively; and ending at the 

Bosch E-Bike Campus.  

If you are interested, please proceed to fill out the survey form on the following pages. 

More details on the experiment are provided below. 

 

Experiment Description: 

The objective of this research is to study the relation between the handling of the bicycle 

and the cyclist’s experience of and level of stress.  

For this section, we will describe the experimental conditions under which you will ride 

the instrumented bicycle and collect data.  
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We will be collecting the following data during the duration of the ride on the pre-defined 

section. If you are performing a commute trip, this will not be collected or processed during 

your ride from home to the start point of the predefined route.  

1. Health Data (used to measure stress level):  

a. Heart rate. 

b. Skin temperature. 

c. Skin conductance.  

2. Ride Data (used to detect changes in state and events):  

a. Hand placement on the handlebars. 

b. Face orientation/turning during the ride (Video). 

c. Short range view of the road ahead (Video). 

d. GPS data – Speed, location, acceleration etc. Location data is only used to 

synchronize events to specific sections of the route. We will not have GPS 

data before the collection is activated at the beginning of the route.  

As you ride, you will be asked to ride on the route as you would normally after having 

activated the on-board computer at the beginning of the route. From there, you will be 

asked to follow a defined route to/from the E-Bike Campus. If any conflicts occur on the 

way, you are asked –if you can remember – to report this after the ride in the survey. We 

will hand you the survey after your ride(s).   

This survey will also ask you about your overall level of comfort and stress throughout the 

ride and to locate approximately where conflicts occurred. This will allow us to find 

conflicts later in the data if they were not detected at the time of occurrence.  

For the purpose of validating data, we will associate a rider ID with your personal 

information temporarily in case we need to review details about a ride with you. Once the 

information has been validated and the data collection is complete, this identifier key will 

be removed. Video used for analysis will also be anonymized after the face angle is 

measured.  

Do you understand and consent to the collection of data as described above?  
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☐Yes, I consent to the above terms of data collection and am willing to participate.  

☐No, I reject the data collection, and would not participate in this study as a rider.   

If you answered “No”, we would kindly ask you not to send out your response, to reduce 

the number of documents to be processed.  

Name: ___________ Department: EB/_____________ 

Internal Email Address: _______________ 

 

If you would like to participate, please fill the following pages as well.  
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Your profile: 

1. Are you present on the Bosch E-Bike Campus twice a week at least? 

☐Yes  ☐No  ☐No, but willing to go more often  

2. In/Near which city do you live?  

☐Reutlingen   ☐Tübingen  ☐Other (i.e. Wannweil, Mössingen, 

Engstingen…): ____________ 

3. How regularly do you cycle?  

☐As a main mode of commuting/Several times a week  

☐Once to a couple times a week  

☐Once to a couple times a month 

☐Never 

4. Do you consider yourself a:  

☐ Beginner… ☐Intermediate…  ☐Experienced…  cyclist? 

5. Do you cycle depending on the weather or year-long? 

☐Only on sunny days. 

☐On sunny and/or rainy days. ☐In all weather (including rain and snow).  

 

6. What day(s) are you present in person at the Campus? 

☐Monday    ☐Tuesday    ☐Wednesday   ☐Thursday  ☐Friday  ☐Irregularly 

 

7. On which of the following days would you be available to ride? (Select up to 3) 

Monday:  ☐ 21.11    ☐28.11    ☐5.12  ☐12.12 

Tuesday:  ☐ 22.11    ☐29.11    ☐6.12  ☐13.12 

Wednesday:  ☐ 23.11    ☐30.11    ☐7.12  ☐14.12 
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Thursday:  ☐ 24.11    ☐01.12    ☐8.12  ☐15.12 

Friday:  ☐ 25.11    ☐02.12    ☐9.12  ☐16.12 

 

At which times would you be able to ride? Mark with a checkmark according to 

your date preferences, chronologically.  

Selected 

Day 

10:30-

11:30 

13:15-

14:15 

15:00-

16:00 

Commute 

(EOD 

commute 

from EB 

followed by 

morning 

commute to 

EB the next 

day. See 

next page 

for map) 

Day 1     

Day 2     

Day 3     

Thank you for your time and for your interest! Please send your response to  

fixed-term.Alameddine.Zouheir@de.bosch.com   with the subject “Participation Form”. 

mailto:fixed-term.Alameddine.Zouheir@de.bosch.com


 

 

Routes: If you 

commute by bicycle, 

from which zone do 

you begin your route 

to work? Please 

highlight the zone 

with dashed lines. 

From this zone, 

please also trace an 

approximate path to 

the Bosch E-Bike 

Campus. This will be 

used to make a 

common starting 

point and route that 

minimizes detours for 

all participants.  

 

  



 

 

Appendix B: Extra figures:  

 

Figure B.1: Avoidance Maneuver signal.  

 

 

  

 

 

Figure B.2: Adjusted GSR signal versus speed and 

braking data.  



 

 

 

Figure B 3: Map of the route with rider feedback on 

experienced stress and conflict points.  

  



 

 

 

 

Figure B.7: Poster to advertise the test rides and find 

participants.  
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