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Abstract

Dynamic ride-sharing (DRS), enabled by technology, has the potential to revolutionize the
way people travel, offering an efficient and cost-effective alternative to individual travel.
By facilitating the process of matching drivers and riders, DRS can significantly reduce the
number of single-occupancy vehicles on the road, thereby mitigating traffic congestion and
reducing carbon emissions. However, promoting DRS is a complex challenge that requires
careful planning and strategic interventions. Before implementing any measures, it is
crucial to evaluate their effectiveness, as some policies and measures may have unintended
consequences on the transport system and the environment. This research focuses on
the integration of DRS as a novel mode in the agent-based framework, MATSim. The
aim is to provide a tool that can evaluate the effects of different DRS interventions on
the whole transport system. The thesis proposes a methodology for integrating DRS into
MATSim and develops and tests the extension. A case study is conducted using this new
extension to assess the impacts of financial incentives for drivers on reducing vehicle km
travelled. The results show that this measure could lead to an increase in vehicle kilometers
travelled due to driving being more attractive. The findings of this study highlight the
benefits of utilizing agent-based models such as MATSim for modeling DRS and gaining
a comprehensive understanding of its impacts on the transportation system. Despite the
advantages of integrating DRS in MATSim, the study also identified some limitations
which can be addressed through further research and extension of the model.

Keywords: MATSim, agent-based modeling, dynamic ride-sharing, carpooling, financial
incentives.



Table of Contents

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Expected Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4
2.1 Ride-Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 User Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Sociodemographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Mode Related Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Situational Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Psychological Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Policies and Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Modeling Dynamic Ride-Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Agent-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Research Gap and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 13
3.1 MATSim Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Initial Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Replanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Dynamic Ride-Sharing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



Table of Contents

3.2.2 Plans Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Plans Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Undoing Plans Adjustments . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Integrating Dynamic Ride-Sharing in MATSim . . . . . . . . . . . . . . . . . 19
3.3.1 Matching Algorithm in MATSim . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Plans Adjustment in MATSim . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Plans Execution in MATSim . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Undoing Plans Adjustments in MATSim . . . . . . . . . . . . . . . . 21

3.4 Preparing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 27
4.1 Simulation performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Scoring statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Requests statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Computational times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Scenarios results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Requests success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Modal split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Vehicle kilometers travelled . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Discussion 34
5.1 Simulating dynamic ride-sharing in MATSim . . . . . . . . . . . . . . . . . . 34
5.2 Financial incentives impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 37
6.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 42

v



List of Figures

2.1 Ride-sharing categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Methodology workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 MATSim cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Matching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Plans adjustment flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Dynamic ride-sharing integration in MATSim . . . . . . . . . . . . . . . . . 19
3.6 Upper Austria’s network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Plans scores over iterations for base scenario . . . . . . . . . . . . . . . . . . 27
4.2 Plans scores over iterations for DRS scenario . . . . . . . . . . . . . . . . . . 28
4.3 Riders requests success rate over iterations . . . . . . . . . . . . . . . . . . . 28
4.4 Computational times for base scenario . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Computational times for DRS scenario . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Drivers requests success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Riders requests success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Modal shifts to DRS drivers and riders . . . . . . . . . . . . . . . . . . . . . 32
4.9 Vehicle kilometers travelled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Hypothesis vs. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



List of Tables

2.1 Dynamic ride-sharing factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Dynamic ride-sharing interventions . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Studies and methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Dynamic ride-sharing variants . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Mode parameters for subpopulations . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Dynamic ride-sharing configuration . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Scenarios modal split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Vehicle kilometers travelled composition . . . . . . . . . . . . . . . . . . . . 33

6.1 Potential areas for future research . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



List of Abbreviations

ABM agent based modelling

DRS dynamic ride-sharing

GHG green house gas

HH house hold

MATSim Multi-Agent Transport Simulation

OD origin-destination

OSM open street map

PT public transport

VKT vehicle kilometers travelled

viii



1 Introduction

This chapter provides a comprehensive introduction to the thesis, demonstrates research
motivation, states the expected contributions, and defines the structure of this thesis.

1.1 Introduction

Rapid urbanization and population growth in cities have led to an increase in the number
of vehicles on the road, resulting in traffic congestion, longer travel times, and negative
environmental impacts such as air pollution and green house gas (GHG) emissions. Ad-
ditionally, relying on private cars as the primary mode of transportation deepens social
inequalities and impedes vulnerable populations’ accessibility. As such, policymakers
and urban planners are increasingly focused on finding innovative solutions to reduce car
dependency, encourage sustainable transportation and increase system efficiency.

Advanced technological solutions have paved the way for new mobility solutions. One
of these solutions is dynamic ride-sharing (DRS). Unlike traditional carpooling which
limits drivers and riders to their acquaintances, DRS relies on real-time information and
communication technologies to match drivers with riders in an efficient manner. This
advanced innovation allows drivers and riders to find more compatible matches and,
subsequently, increase the number of shared rides. Thus, reducing traffic congestion, air
pollution, and overall travel costs. Given the numerous benefits of DRS, many cities are
interested in implementing policies to promote DRS further.

1.2 Motivation

Evaluating the potential impacts of transport policies is critical to making informed
decisions that achieve the desired outcomes. Transport modeling and simulations are
effective methods for evaluating potential impacts as it helps to visualize and test the
effectiveness of a proposed transport measure or policy in a virtual environment. Modeling
and simulation can also help policy makers predict and mitigate unintended consequences
ensuring that the measures align with the overall strategies.

However, transport modeling is a diverse field that encompasses a wide range of methods
and techniques. One such method is agent based modelling (ABM), which simulates
the behavior of individual agents and their interactions with the transportation system.

1



1 Introduction

ABM offers several advantages over traditional modeling approaches, as it captures the
complexity of human behavior and the spatio-temporal dynamics of transportation systems.
It can also provide insights into the impacts of policies and interventions on individual
and collective behavior.

Furthermore, ABM can be a powerful tool for modeling DRS compared to other modeling
tools. Unlike traditional transport models, ABM focuses on the behavior and decision-
making of individual agents, such as DRS users, rather than macro-level variables like
traffic flow. This allows ABM to capture the complexity and heterogeneity of individual
travel behaviors and preferences, as well as the social interactions and network effects that
can influence DRS adoption. Additionally, ABM can model the spatio-temporal dynamics
of DRS, including the pickup and dropoff locations of DRS users and the impact on traffic
flow and congestion.

1.3 Expected Contribution

This thesis aims to integrate DRS as a novel mode of transportation within the open
source framework, Multi-Agent Transport Simulation (MATSim). By examining previous
implementations of DRS models, the thesis investigates the current state of research in
this area, as well as identifies their limitations. The study aims to learn from previous
approaches and build upon them to develop an effective approach to integrating the DRS
extension in MATSim.

The new extension is used to analyse the potential impacts of providing money incentives
for DRS drivers on the transportation system and environment in Upper Austria. The
results provide insights into the potential benefits and trade-offs associated with the
implementation of such incentives in the region, and highlight the need for a holistic and
integrated approach to transportation planning and policy-making.

By developing and utilizing this new DRS extension within MATSim, this thesis aims to provide a
valuable tool for policymakers and urban planners to accurately assess the impact of DRS policies
and interventions on transport systems and the environment.

1.4 Framework

This thesis is composed of six chapters. The first chapter serves as an introduction,
providing an overview of the thesis and defining its motivation and contributions. In
the second chapter, a literature review is conducted with two primary objectives: to gain
insights from previous research and to identify research gaps that will be addressed in this
study.

The third chapter outlines the methodology used in this research, providing detailed

2



1 Introduction

explanations of the extension development and methods employed. In the fourth chapter,
the results are presented while chapter five elaborates on the obtained results. Finally, the
sixth chapter serves as the conclusion, where the lessons learned are presented along with
possible applications, limitations and future research.

3



2 Literature Review

This chapter is divided into five sections. The first section clarifies the difference between
ride-sharing, carpooling and dynamic ride-sharing. The second section reviews the various
factors that can influence DRS users decisions. The third section identifies potential policies
and interventions that can be implemented to encourage greater adoption of DRS. Section
four provides an overview of the current literature on modeling and evaluating the impact
of ride-sharing, while the fifth and final section defines the research gaps and outlines the
relevant research questions.

2.1 Ride-Sharing

In existing literature, authors are using terms such as carpooling, ride-sharing, and dynamic
ride-sharing interchangeably [1]. This section aims to clarify these terms and highlights the different
types.

2.1.1 Definitions

Ride-sharing is a general term when multiple individuals share a single vehicle to reach
a common destination [2], [3]. One classic form of ride-sharing is acquaintance-based
carpooling, where a group of individuals who know each other, such as co-workers, friends,
or neighbours, share a ride in a single vehicle. In this arrangement, participants usually
take turns driving and contribute to the cost of fuel and other expenses [4].

However, with the rise of technology, a new form of ride-sharing has emerged called
dynamic ride-sharing. Unlike traditional carpooling, which limits drivers and riders to
only their acquaintances, DRS uses platforms and mobile apps to connect drivers with
riders on a trip by trip basis. This allows for greater flexibility of matching drivers with
riders on short notice ranging from a few minutes to a few hours[5]–[8].

2.1.2 Categories

Ride-sharing can be categorized in various ways. One of the most common categorizations
is based on the relation between the users. Ride-sharing can involve acquaintances,

4



2 Literature Review

strangers or ad hoc. Ride-sharing between acquaintances can be between family members,
neighbours or coworkers. Whereas, ad hoc is when a ride is shared with someone who
happens to be going in the same direction, also called slugging [9].

On the other hand, ride-sharing between strangers also called organised-based ride-sharing
can be categorized based on the technology used to find a rider. For example, some
rides are organised through websites or phone calls while other rides are organised using
mobile apps [9]. The latter is the only one considered as DRS since it is based on matching
algorithms that finds and suggests matches for the user. The various classifications of
ride-sharing are demonstrated in Figure 2.1.

In addition, DRS may differ depending on the trip distance, ranging from intra-city trips to
inter-city travel [9]. DRS can also be arranged on the fly or up to several days in advance.
However, It is preferable for individuals to arrange a shared ride at least one night in
advance, rather than at the last minute just before the trip [7]. An additional form of DRS
that is still less popular is drivers accepting ride requests while en route. This method poses
several safety concerns, which have presented significant challenges for its implementation
[6].

In light of the findings from the literature review, this thesis will solely focus on a specific type of
DRS, where drivers and riders use matching apps and platforms to find a match in advance, rather
than directly or en route. The drivers in this context are also not doing this for a living, but rather
just sharing a ride.

Figure 2.1: Ride-sharing categories [9]

5



2 Literature Review

2.2 User Perspective

In order to efficiently promote DRS, it is important to understand the motivations, psy-
chology, and obstacles that users face. Thus, a comprehensive review of existing literature
about DRS user perspective and travel behavior is necessary [1]. Factors affecting drivers
and riders decisions can be classified into four categories; sociodemographics, mode related
factors, situational factors and judgmental factors [10], [11]. Table 2.1 shows the different
factors affecting the users decisions.

Table 2.1: Dynamic ride-sharing factors, table compiled from [10]–[14]

Sociodemographics Mode related Situational Judgemental

Gender Organisation time Trip distance Awareness
Age Waiting time Time of trip Ease of use

Income Travel time Travel schedule Safety
HH size Parking time Alternative modes Comfort

Car availability Parking cost Population density Flexibility
Native Travel cost DRS platforms Privacy

Reliability

2.2.1 Sociodemographics

Sociodemographic factors are characteristics of individuals that can affect their decision-
making process when using DRS services. Gender, age, income, house hold (HH) size, car
availability, and native status are all examples of sociodemographic factors that can impact
a user’s decision [1].

For instance, women may be more concerned about safety when using DRS services, while
younger users may be more focused on cost-effectiveness [14]. Income can also affect users’
willingness to use DRS services [1], while native status can influence users’ familiarity and
comfort when using these services[15].

Understanding the different sociodemographic factors and how they impact users can help
DRS service providers create targeted incentives and improve their services to meet the
needs of different user groups.

6
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2.2.2 Mode Related Factors

Mode-related factors are crucial factors that DRS users take into account. Cost-effectiveness
is often a key consideration, with users seeking to save on travel and parking costs [9].
However, users may also face certain drawbacks such as longer waiting and travel times,
as well as the need to spend additional time organizing their ride before the trip [11].
Additionally, DRS services may not always be reliable, which can be a concern for users
who prioritize consistency and reliability [10].

2.2.3 Situational Factors

Situational factors refer to the circumstances surrounding the user’s trip, such as trip
distance, trip departure time, schedule flexibility, alternative modes condition, population
density, and DRS platform availability and quality [1].

The duration of the trip and the departure time are two factors that can significantly impact
the user decision [10]. Additionally, areas with reliable and efficient public transport
(PT) systems may reduce the likelihood of using DRS services, as users may prefer the
convenience and reliability of PT [2], [16].

Population density is another situational factor, as a high population density increases the
chance of finding a compatible ride match [2], [10]. Furthermore, having a fixed travel
schedule can contribute to consistent user behavior [1]. Moreover, the availability and
quality of DRS platforms are crucial considerations that can sway a user’s decision, as
users tend to favor platforms that are reliable and have a bigger user base [17].

2.2.4 Psychological Factors

Psychological factors such as perceived ease of use, safety, privacy, comfort, flexibility and
environmental awareness can also play a role on the user’s choice. For example, a user
may prefer a DRS service that is easy to use, with an intuitive interface [2]. Environmental
awareness may also influence the user to reduce emissions footprint by sharing rides with
others [1], [10]. Factors like safety and privacy are also critical considerations for users [18].

2.3 Policies and Interventions

Encouraging commuters to DRS remains a challenge. Solo-commutes continue to account
for the majority of car travel [19].

Technology has enabled the development of DRS platforms that can effectively connect

7
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and match more people than traditional ride-sharing methods. However, the success of
these platforms depends on their ease of use and their ability to cater to local needs [2], [5],
[9].

Additionally, it’s important to ensure that the platforms can attract a wider user base.
Many platforms are not initially designed to be scalable, which would make it challenging
to reach a critical mass, reducing the chances of users finding a suitable ride match [17].

Therefore, developing DRS city-wide platform or establishing interoperability among
numerous DRS databases could significantly improve the user experience [2], [9]. Open
source data sharing among DRS platforms could enable members to find matches across
all databases.

Moreover, destination-based DRS programs have a higher likelihood of success. For
instance, workplaces is a typical destination for employees within a company who often
share similar departure times and sociodemographic characteristics. Thus, it’s essential
to form partnerships with regional and large employers to encourage their workers to
participate in DRS services [20].

It should be emphasized that developing a DRS platform alone is not sufficient to guar-
antee a critical mass. DRS platforms should be accompanied by various interventions to
encourage users to share rides [21].

These interventions may include reduced parking costs, whether at park and ride (PR)
facilities or at the destination parking facility [7], [9], [22], as well as prioritized parking for
DRS users [21]. Additionally, financial incentives could be provided to drivers to encourage
them to share their vehicle [7], [9], [23]. The provision of HOV lanes can also improve the
efficiency of DRS services [9].

To further enhance the effectiveness of DRS services, mobility guarantees could be im-
plemented [2], [21], such as providing a taxi or a shuttle in case a rider couldn’t find a
match. Environmental awareness campaigns [9], [21] and marketing initiatives can also
be effective in promoting the benefits of DRS services [7], [9], as many people may not be
aware of the DRS possibilities available to them.

Overall, it is essential to consider a range of interventions that complement the technology-
facilitated DRS matching platforms to encourage users to adopt DRS services effectively.
Table 2.2 shows the different interventions and policies collected from literature that can
promote DRS.

2.4 Modeling Dynamic Ride-Sharing

This section provides an overview of existing literature that has examined and constructed
models for ride-sharing.

8
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Table 2.2: Dynamic ride-sharing interventions (own illustration)

Policies and Interventions

Financial incentives
User friendly platforms

Marketing strategies
HOV lanes

Mobility guarantee
Reduced parking costs

Environmental Awareness campaigns
Prioritized parking

Destination based programs
Integrated platform

2.4.1 Statistical Models

For a meta analysis, two papers assembled studies from 1981 till 2013 and from 2014 till
2018 related to evaluating and modeling ride-sharing [1], [10]. The assembled studies
attempted to understand the factors influencing the behavior of ride-sharing users and
non-users, as well as to evaluate the impact of different interventions and policies using
statistical models.

In examining the factors influencing commuters’ mode choice and ride-sharing behavior,
various researchers employed different methods. For instance, [24] used a nested logit
model to evaluate the impact of interventions such as parking priority, HOV lanes, and
financial incentives on mode choice, while [25] used an ordered probit model. [26], on the
other hand, employed a multinomial logit model to assess the effect of parking cost on
mode choice.

[27] used a hybrid discrete choice model to calculate the interventions’ impact on com-
muters, and [28] used a multilevel regression model to evaluate the impact of work location
on large workplace commuters’ decisions. Different regression models such as logistic,
ordered logit, stepwise and probit were also used to study the determinants of ride-sharing
behavior [29]–[32]. Table 2.3 shows the assembled studies objectives and methodologies
used.

Table 2.3: Studies and methodologies, table compiled from [1], [10]

Study Objective Methodology

[26] Parking cost impact on commuter
mode choice

Multinomial logit model

Continued on next page...
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Table 2.3 – Continued from previous page

Study Objective Methodology

[25] HOV/parking priority/mobility
guarantee/incentives impact on

mode choice

Ordered probit model

[29] Sociodemographics correlation
with commuter mode choice

Logistic regression analysis

[27] Interventions impact on commuters
mode choice

Hybrid discrete choice model

[24] HOV/parking priority/incentives
impact on commuters mode choice

Nested logit model

[28] Location and promotions impact
on large workplaces commuters

Multilevel regression model

[33] Determinants of ride-sharing
behaviour

Logistic regression analysis

[34] Immigrants’ propensity to ride
share

Multinomial logistic regression

[35] Effect of ride-sharing interventions Multinomial logit model
[36] Ride-sharing potential in

non-metropolitan areas
Binomial logistic regression

[37] Factors simulating commuters to
ride share

Mixed multinomial logit model

[38] Potential for peer-to-peer
ride-sharing system

Ordered logit regression

[39] Impact of ride-sharing
interventions

Multiple regression

[40] Preferences to create ride-sharing
system

Stated preferences regression

[30] Ride-sharing users behaviour in
France

Ordered logit regression

[31] Motivations underlying
ride-sharing

Stepwise regression

[32] Factors affecting individuals’
ride-sharing decisions

Probit regression

2.4.2 Agent-Based Models

ABM offers several benefits for modeling DRS, including its ability to capture the com-
plex interactions between agents and simulate their behaviors under different scenarios.
However, there is currently limited literature on the use of ABM for modeling DRS.

For instance, [41] used ABM to simulate the interactions of agents and to analyze the
effects of change in factors related to the infrastructure, behavior and cost. They use agent
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profiles and social networks to initiate the agent communication model and then employ a
route matching algorithm and a utility function to model the negotiation process between
agent.

Whereas, [42] presented a conceptual design of ABM of a set of ride-sharing users. The
proposed model is used for simulating the interactions between agents. The model enables
communication to trigger the negotiation process. Furthermore, it measures the effect of
pickup-dropoff on the ride-sharing trips.

Unlike previous studies, [43] used the ABM simulation framwork MATSim, which enables
large-scale transport simulations involving various transport modes [44]. In their study,
DRS was integrated in MATSim, enabling drivers to accept ride requests while en route.

2.5 Research Gap and Questions

This section defines the research gaps and outlines the research hypothesis and relevant
research questions that will be addressed in this thesis.

2.5.1 Research Gaps

Several research gaps that exist in the existing literature on modeling DRS are addressed
in this section. Firstly, the statistical models used in previous studies were limited in their
ability to represent real behaviour as they relied on stated preference data. Furthermore,
these models didn’t consider other factors that could influence ride-sharing adoption,
which were identified in section 2.2.

Secondly, the agent-based models that have been developed thus far have only focused
on modeling the matching and communication between agents, assuming that the agents
are already willing to use DRS. Thirdly, there has been a lack of research conducted on
modeling DRS within a whole multi-modal transport system.

Finally, while one paper has utilized MATSim to model DRS within a whole transport
system, this model was limited by its implementation of DRS while agents are already en
route, which is an application that is still not widely implemented due to safety concerns
and advanced technology requirements.

2.5.2 Research Questions

The purpose of this research is to incorporate DRS into MATSim to simulate the behavior
of DRS agents and include DRS as one of their transportation options. The study will use
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the newly developed extension to evaluate the potential impact of financial incentives for
DRS drivers on reducing vehicle kilometers travelled (VKT).

The hypothesis is that providing DRS drivers with financial incentives would increase the number
of shared rides anc consequently reduce VKT.

To determine the validity of the hypothesis, the thesis will address the following research
questions:

1) How could the DRS behavior of drivers and riders be modelled in MATSim?

2) What is the impact of financial incentives for DRS drivers on reducing the VKT?
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3 Methodology

This chapter is divided into four sections. The first section examines the MATSim cycle
and its components, while the second section outlines the necessary steps to simulate DRS.
The third section involves integrating these steps into the MATSim cycle. Whereas the
final section, section four, describes the scenarios preparation process. The methodology
workflow is illustrated in Figure 3.1.

Figure 3.1: Methodology workflow (own illustration)

3.1 MATSim Cycle

MATSim is a co-evolutionary transport simulation framework, that was developed by
Kay Axhausen from ETH Zurich and Kai Nagel from TU Berlin. In MATSim, each agent
optimizes its daily activity schedule over iterations [44]. A MATSim simulation involves a
configurable number of iterations, which are represented by the cycle shown in Figure 3.2.

3.1.1 Initial Demand

In MATSim, individuals are represented as "agents." Each agent is initially assigned at
least one plan that includes activities and legs. Typically, agents’ plans are generated based
on empirical data using either sampling or discrete choice modeling techniques [44].
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3.1.2 Execution

In MATSim, the execution step involves taking one "selected" plan per agent and imple-
menting it in a synthetic reality, also called network loading. To simulate traffic flow,
MATSim employs a spatial queue representation [44].

3.1.3 Scoring

Scoring in MATSim can be perceived as utilities. After each iteration, all agents evaluate
the score of their executed plans. Time spent in traveling is perceived negatively while
time spent in activity is perceived positively [44].

3.1.4 Replanning

At the start of each iteration, some agents modify their plans based on various choice
dimensions, such as route, mode, time of day, and location. Since other agents may also
change their behavior, the previous score of a plan can be altered in subsequent iterations
[44].

3.1.5 Analyses

After finishing simulation, MATSim generates various output files that provide information
on the simulation results such as events file which includes all different types of events
happened to agents during the simulation [44].

Figure 3.2: MATSim cycle[44]
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3.2 Dynamic Ride-Sharing Steps

According to [41], the DRS process involves several steps, which include (i) generating a
motivation to ride-share, (ii) communicating this motivation to other interested agents, (iii)
negotiating a plan with the interested agents, (iv) implementing the agreed-upon plans,
and (v) providing feedback to all concerned agents.

This thesis will draw inspiration from these steps to design a DRS procedure using an agent based
approach. Step (i) would represent the generation of initial demand. Whereas, step (ii) stands for
the matching algorithm. Step (iii) symbolizes the adjustments in plans needed to be done by the
drivers and riders to perform ride-sharing, while step (iv) stands for the execution step and step (v)
represents the score of the executed plan.

Since step (i) and (v) are already incorporated into MATSim, this section proposes a procedure
consisting of steps (ii) (iii) and (iv) along with an additional step to model DRS agents within an
ABM framework.

3.2.1 Matching Algorithm

The matching algorithm aims to find the best possible matching between drivers and riders,
while considering the constraints of the system, such as vehicle capacity, pickup/dropoff
locations, and arrival/departure times [45].

There are various ride-sharing system options available for both drivers and riders. A
driver can offer a ride to either one or multiple riders. Similarly, a rider can request a ride
with a single driver or multiple drivers, and transfer from one driver to another while
en route to their destination [46]. Consequently, there are four fundamental ride-sharing
system variants, as demonstrated in Table 3.1.

Table 3.1: Dynamic ride-sharing variants [46]
Single Rider Multiple Riders

Single Driver Matching of pairs of drivers
and riders

Routing of drivers to pickup
and deliver riders

Multiple Drivers Routing of riders to transfer
between drivers

Routing of riders and drivers

To solve the DRS matching problem of ’multiple riders and single driver’, ’multiple riders
and multiple drivers’ and ’single rider and multiple drivers’, enumeration or brute-force
search can be used, which involves trying every possible arrangement of ride-sharing
routes. Even though it is a solution method that guarantees the optimal solution for small
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problems. For larger simulations, the magnitude of the set of possibilities is too high to be
computationally feasible [47].

Other methods such as tabu search, ant colony optimization, genetic algorithm and simulated
annealing, can be used to solve the DRS matching problem of multiple riders and drivers [47].
However, this thesis focuses only on matching pairs of single driver and single rider. The following
steps and Figure 3.3 explain how the matching algorithm works.

• Requests Collection:

In this step, drivers and riders send requests for every DRS trip they plan to take.
These requests contain specific information, including the origin coordinates, desti-
nation coordinates, and departure time of the trip. For modeling and simplification
purposes, it is assumed that all DRS drivers and riders requests are known in advance
prior to the execution of the matching process.

• Zonal and Temporal Filtration:

This step entails several key actions. Firstly, a grid of cells is created from the network.
The size of the grid cell is a configurable value that can be adjusted. Next, each
rider’s origin and destination are allocated to their respective designated cells within
the grid. Following this, the algorithm iterates over each driver and uses their request
information to identify matching requests from riders. Specifically, the algorithm
filters out requests that do not share the same origin and destination cells as the
driver’s request. Additionally, time segments are also created in this process. The
time segments length is a configurable value that can be adjusted. The departure
times of the riders are used to determine the appropriate time bin for each request.
Only the requests with a departure time in a bin similar to the driver’s departure
time are considered. In this manner, the pool of candidate riders for each driver
is narrowed down to only those whose requests meet the necessary criteria for a
successful ride match.

• Departure Time Filtration:

In this step, the riders who satisfy the aforementioned criteria are selected, and
subsequently, the driver’s estimated arrival time at the pickup point is computed.
Then, the algorithm checks whether the driver’s estimated arrival time at the pickup
point falls within an acceptable range of the rider’s willingness to adjust their
departure time. Only riders matching this criteria would be selected to proceed to
the next step. The riders’ willingness to adjust their departure time is a configurable
value that can be adjusted.

• Optimal Request Matching: In this step, the travel time of the driver’s initial trip from
the origin to the destination is calculated, and subsequently, the travel time of the
trip if the driver performs a detour to pickup and dropoff the rider is calculated. For
each rider, the algorithm computes the driver detour factor by dividing the ’driver
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travel time with detour’ by the ’driver original travel time’. Subsequently, the rider
with the lowest detour factor is selected as the match for the driver. Once matched,
the rider and the driver are removed from the DRS pool, and the algorithm proceeds
to the next driver.

Figure 3.3: Matching algorithm (own illustration)

3.2.2 Plans Adjustment

Following the matching step, if a driver is successful in finding a match, their plan will
be updated to include two new activities for pickup and dropoff with all relevant details
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including pickup location, dropoff location and pickup time. However, if a driver is unable
to find a match, their original plan remains unchanged.

On the other hand, if a rider finds a match, they may need to adjust their departure time if
the driver arrives earlier than the rider’s planned departure time. If a rider is unable to
find a match, no change will happen to their plan. Figure 3.4 shows the plans adjustment
flow chart.

Figure 3.4: Plans adjustment flow chart (own illustration)

3.2.3 Plans Execution

After adjusting the plans, a set of rules are followed for plans execution. If a driver has
a match, they will pick up the appropriate rider from the pickup point, drop them off at
their destination, and then continue to their next activity. However, if a driver doesn’t have
a match, they will proceed directly to their next activity.

On the other hand, if a rider has a match, they will be picked up by the appropriate driver
and dropped off at the drop-off point as per the planned route. However, if a rider doesn’t
have a match, they will be teleported to their destination with a low score to reflect the
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inconvenience of not being able to share a ride.

3.2.4 Undoing Plans Adjustments

After executing the plans, any changes made to the original plans are undone. For riders,
this involves restoring the original departure time of their activities. Similarly, for drivers,
any extra plan elements added to accommodate DRS are removed, thereby restoring the
original plan. These steps ensure that the agents are ready for the next iteration, and any
future DRS allocations in the next iterations can be made from a clean state.

3.3 Integrating Dynamic Ride-Sharing in MATSim

This section builds upon the previous two sections and provides an integration framework
for the DRS steps within MATSim. Figure 3.5 shows DRS integration in MATSim.

Figure 3.5: Dynamic ride-sharing integration in MATSim (own illustration)

3.3.1 Matching Algorithm in MATSim

MATSim provides the flexibility to extend its functionality through the use of controller
listeners. This feature allows users to halt the simulation at specific points in the cycle and
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make necessary extensions or adjustments [48].

The ’ReplanningListener’ in MATSim is used as the integration point for the matching
algorithm. This algorithm is applied after agents have replanned and selected their travel
modes. For each DRS trip, a driver or a rider request is created. In the beginning of each
iteration, the requests are collected and shuffled to insure that each iteration the order of
agents is not the same. The matching algorithm is then applied to pair drivers with riders.
The resultant paired requests are stored and passed on to the subsequent step of plans
adjustment.

3.3.2 Plans Adjustment in MATSim

In the same listener, the matched data between drivers and riders is utilized to modify the
plans of these agents. For drivers, two new activities - pickup and dropoff - are added to
their plans for each DRS trip, along with information about the pickup/dropoff locations
and times. During the creation of the pickup activities, an additional attribute, "riderId", is
included, tohelp link the driver and the rider later in the next steps.

The departure time of the rider may also be adjusted if the driver’s arrival time at the
pickup point is earlier than the planned departure time of the rider. If the activity departure
time is modified, an attribute is added to the activity known as the "original departure
time", which is also used in later steps of the process.

3.3.3 Plans Execution in MATSim

In MATSim, the execution of DRS agent trips is managed by an engine that implements
three existing MATSim classes: ’MobsimEngine’, ’ActivityHandle’, and ’DepartureHan-
dler’. These classes are responsible for handling agent activities and departures. The new
engine implementation ensures that each matched rider waits for their designated driver
to arrive. On the other hand, unmatched riders departure is handled by another MATSim
engine which teleports them to their next destination.

The engine also takes on the task of managing pickup and dropoff activities of drivers.
Using the riderId attribute of the pickup activity, the engine checks if any rider with such
an Id is already waiting. If the rider is not waiting, the driver will wait until the end time
of the pickup activity and leave if the rider does not show up. If the rider is waiting, they
will enter the driver’s vehicle, and both will stay in the vehicle until reaching the next
activity, which is the dropoff activity. At the dropoff activity, the rider is removed from the
vehicle.

Furthermore, the driver’s profit is calculated by a function that determines the distance
they drove together, multiplied by the profit per kilometer. The profit per kilometer is a
configurable values that is set before the simulation. In MATSim, the drivers perform this
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money exchange using ’PersonMoneyEvent’ which is a type of event in MATSim that can
be thrown anywhere during the simulation and affects the overall monetary budgets of the
agents.

3.3.4 Undoing Plans Adjustments in MATSim

This step implements the ’IterationStartsListener’ to iterate through all agent plans before a
new iteration starts and determine if any changes have been made to those with DRS mode.
For drivers, it removes any DRS pickup and dropoff activities from their plans. Whereas,
for riders, it checks whether any activities contain the attribute "original departure time"
and sets the departure time of that activity to its original departure time.

3.4 Preparing Scenario

This section provides a comprehensive overview of the process of creating scenarios for the
Upper Austria region using MATSim, with a focus on the newly integrated DRS extension.

3.4.1 Population

The synthetic population is based on the Austrian mobility survey "Österreich Unterwegs"
from 2013/14 [49], which maps the mobility behavior of approximately 323,550 agents
from 167,686 households, representing 25% of the mobile population over 6 years and
corresponding to a total population of 1.295 million people (including cordon agents).

The agents use the modes of walking, cycling, PT, car and rider. The mode choice
model is based on a travel survey conducted by the Vienna University of Economics and
Business and the University of Natural Resources and Life Sciences, Vienna and includes
10 subpopulations, where the assignment of an agent to a subpopulation depends on their
socio-economic characteristics. The different utility functions for the 10 subpopulations are
shown in Table 3.2.

As data on DRS modes is not available in the travel survey, it is assumed that the DRS driver and
rider modes parameters are equivalent to those of the car and rider modes, respectively.
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Table 3.2: Mode parameters for subpopulations(own illustration)
Subpop cride ccar cpt βride βcar βpt βwalk βlineSwitch βdur

0 -12.987 0.768 0.124 -0.258 -12.348 -5.594 -11.625 -0.777 12.159
1 -13.056 0.699 0.114 -2.432 -12.463 -5.834 -12.074 -0.832 14.899
2 -13.096 0.659 0.108 0.716 -12.530 -5.974 -12.335 -0.864 12.470
3 -13.140 0.615 0.102 0.766 -12.604 -6.128 -12.622 -0.899 8.365
4 -13.186 0.569 0.095 -4.059 -12.681 -6.288 -12.923 -0.936 9.566
5 -13.230 0.525 0.089 -1.663 -12.754 -6.440 -13.206 -0.970 4.244
6 -13.252 0.503 0.086 -5.897 -12.791 -6.516 -13.350 -0.988 12.478
7 -13.324 0.431 0.075 -3.637 -12.910 -6.765 -13.814 -1.045 5.106
8 -13.364 0.391 0.069 -5.120 -12.976 -6.904 -14.074 -1.077 4.456
9 -13.442 0.313 0.058 -0.974 -13.106 -7.175 -14.580 -1.139 4.692

3.4.2 Network

The Upper Austria scenario covers the province of Upper Austria and certain areas in the
southwest of Lower Austria around Amstetten. The simulation uses a network comprising
418,000 links and around 185,500 nodes extracted from open street map (OSM). The
network includes PT network as well. Figure 3.6 shows Upper Austria’s network.

Figure 3.6: Upper Austria’s network (OSM)

In addition, approximately 449,950 facilities, including 642 for education, 3,622 for errands,
389,583 for home, 19,478 for leisure, 7,117 for shopping, and 29,508 for work, were also
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extracted from OSM and the Geostat population density grid (2011). These facilities are
available for agents to carry out their activities, such as private/home, work, education,
errand, shopping, and leisure.

Furthermore, to enable DRS agents to use the car network in the simulation, and since ’DRSDriver’
mode is treated as a separate mode from ’car’ mode, "DRSDriver’ mode is added as an allowed mode
to all car network links.

3.4.3 Configuration

A simulation in MATSim requires numerous configurations. This subsection provides
a clear explanation of all the configurations required to utilize the new DRS extension.
Table 3.3 shows the required configurations for DRS in MATSim.

Table 3.3: dynamic ride-sharing configuration (own illustration)

module param name value

strategy strategyName subtourModeChoiceForDRS
qsim mainMode car,DRSDriver

networkModes car,DRSDriver
plancalcScore monetaryDistanceRateDRSDriver cost/km excluding profit/km

dailyMonetaryConstantDRSDriver 0
dailyMonetaryConstantCar 0

riderDepartureTimeAdjustment 15 minutes
maxPossibleCandidates 20

timeSegmentLength 2 hours
drs cellsize 2000m

carAndDRSDailyMonetaryConstant -12.34
driverProfitPerKm cents/km

pickupWaitingTime 3 minutes
unMatchedRiderPenalty 10 EUR

• Subtour Mode Choice for Dynamic Ride-Sharing:

A new mode innovation strategy called ’subtourModeChoiceForDRS’ is created as an
adapted version of the MATSim innovation strategy ’subtourModeChoice’. The new
strategy adds by default the new DRS modes to the list of modes that can be chosen
by agents. In addition to that, it considers the DRS driver mode as a chain-based
mode, requiring the same mode to be taken for the return trip to the starting activity.
The strategy also checks which agents are eligible to be DRS drivers, only agents
with car availability and driving license can be drivers. In addition to that, the new
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subtour mode choice for DRS has a key feature of initiating all eligible agents to be
DRS drivers with a new plan comprising legs with the DRS drive mode. MATSim
guarantees to try out and score all un-scored plans of an agent before a different plan
is selected. This feature is critical to ensure the presence of a sufficient number of
DRS drivers at the beginning of the simulation, thus preventing the "starvation" of
individuals who choose the DRS rider mode. The ’subtourModeChoiceForDRS’ strategy
has to be added as a new strategy in the strategy module in MATSim.

• Main Modes and Network Modes:

In order for MATSim to handle the new DRS driver mode correctly, the new mode
DRSDriver has to be added as a main mode in ’qsim’ and a network Mode in the
’plancalcscore’.

• Daily Monetary Constant:

’dailyMonetaryConstant’ is a mode parameter in MATSim which refers to the mone-
tary amount an agent pays per day to use a mode. However, since DRS driver and
car mode are independent modes, it would be inaccurate to charge an agent twice
for both modes in a plan. Thus, it is crucial to set the daily monetary constant for
these two modes to zero when using this extension. A new configurable value called
’carAndDRSDailyMonetaryConstant’ is included for both modes and utilized by an
algorithm to verify the plan of the agents, where any agent who has either DRS
driver or car mode would be charged the daily monetary constant only once. The
new configurable ’carAndDRSDailyMonetaryConstant’ has to be used instead of the daily
monetary constant parameters of DRS driver and car modes.

• Monetary Distance Rate:

The ’monetaryDistanceRate’ in MATSim is a mode parameter that indicates the
monetary rate paid per unit of distance. Incorporating the driver’s potential profit
in the monetary distance rate of the DRS driver mode within the ’planCalcScore’
module could result in inaccurate results because the monetary distance rate for
DRS drivers varies depending on whether they have a rider in the car or not. To
account for the profit earned by drivers when picking up a rider, a new configurable
value called ’driverProfitPerKm’ is introduced. This value represents the profit per
kilometer earned by the driver when sharing a ride. Thus, it is essential to configure
the monetary distance rate of the DRS driver mode to include the base monetary rate, while
accounting for the profit resulting from ride-sharing using the ’driverProfitPerKm’ value.

• Rider Departure Time Adjustment:

The configurable value ’riderDepartureTimeAdjustment’ represents the number of
minutes that a DRS rider is willing to adjust their departure time in order to find
a matching driver. This value is utilized during the matching process to evaluate
whether the driver and the rider have compatible departure times. Even though agents’
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willingness to adjust their departure time would be different in reality, in the scenarios in this
thesis, a value of 15 minutes is used for the departure time adjustment allowed for riders.

• Maximum Possible Candidates:

’maxPossibleCandidates’ is a configurable value that Limits the number of possible
riders requests considered for a driver during the matching process. This is important
to speed up computations. According to the Taxi extension in MATSim, values from 20 to
40 requests make a good trade-off between computational speed and quality of results. For the
scenarios in this thesis, a value of 20 is used.

• Time Segment Length:

The ’timeSegmentLength’ determines the time segment length used to filter riders in
the matching process. To avoid scenarios where a driver and a rider departure time
are close but cross a segment boundary, riders requests are token not only from the
current segment but also from the segment before and after. In this thesis, a value of 2
hours is used for the time segment length. The purpose of using time segments is mainly to
speed up the computations.

• Cell Size:

Similar to the ’timeSegmentLength’, ’cellSize’ determines the side length of the cells
created in the grid zonal system that is used in the matching process. The larger the
cell size, the more possible matches could happen. However, it is important to know that
an increase in cell size could yield in high detour values in addition to higher computational
time. In the scenarios in this thesis, a value of 2000m is used for the cell size.

• Pickup Waiting Time:

’pickupWaitingTime’ accounts for the amount of minutes the driver is going to wait
for in case the rider didn’t show up on time. Even though peoples’ willingness to wait
would differ from one to the other, in this thesis, a value of 3 minutes is used for the pickup
waiting time.

• UnMatchedRiderPenalty:

Due to the fact that DRS riders are teleported when a match cannot be found, this
could result in higher scores for the DRS rider mode. To address this issue and
simulate the inconvenience of not finding a match and having to search for an
alternative mode, a penalty is implemented for unmatched riders. This was done to
reflect the negative experience associated with DRS rider mode when a suitable match
cannot be found. Even though the perceived inconvenience of not finding a match would
vary between people, in this thesis, a value of 10 euros is used as a penalty for unmatched
riders.
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3.4.4 Scenarios

In this subsection, we define a range of scenarios that will be simulated using MATSim
and its new DRS extension. These scenarios will examine the impact of financial incentives
for DRS drivers on the transport system, specifically in terms of mode share and VKT. The
scenarios will vary based on the amount of money the DRS drivers receive per kilometer
when sharing a ride.

As mentioned in a previous subsection, DRS driver profit/km is configured using the
new configurable value ’driverProfitPerKm’ in the DRS config group. In this study, in
addition to a base scenario without the DRS modes, eight scenarios with eight values used
for the financial incentives ranging from 0.1 EUR/km to 0.8 EUR/km. Table 3.4 shows the
different values used for the financial incentives given to the DRS drivers.

Table 3.4: Simulation scenarios (own illustration)

driverProfitPerKm

0.1 EUR 0.2 EUR 0.3 EUR 0.4 EUR 0.5 EUR 0.6 EUR 0.7 EUR 0.8 EUR
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This section presents the results of the simulations conducted in this study. The section
is divided into two parts: simulation performance and scenarios results. The first part
presents an evaluation of the computational performance of the simulations and the ability
to reach an equilibrium. The second part presents the results of the simulation scenarios,
including the impacts of different financial incentives on requests success rate, modal split
and vehicle kilometers traveled.

4.1 Simulation performance

4.1.1 Scoring statistics

In a co-evolutionary multi-iteration ABM approach, the accuracy and consistency of results
rely on achieving a state of equilibrium in the overall system [50]. This state can be
indicated by relevant statistics such as the plan scores of agents. The plans score statistics
over iterations for a MATSim simulation with DRS compared to one without DRS are
illustrated in Figure 4.1 and Figure 4.2. The figure shows that the DRS scenario reaches
equilibrium within 100 iterations, similar to the base scenario.

Figure 4.1: Plans scores over iterations for base scenario (MATSim output)
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Figure 4.2: Plans scores over iterations for DRS scenario (MATSim output)

4.1.2 Requests statistics

The success rate of rider requests is a useful indicator of equilibrium in the simulation,
much like score statistics. When the simulation is in equilibrium, the number of successful
ride requests should stabilize and not fluctuate significantly. Figure 4.3 shows the riders
requests success rate statistics over iterations for a MATSim simulation with DRS. Towards
the end of MATSim’s iterations, agents stop their replanning activity, implying that they
do not select or experiment with new plans. The depicted figure demonstrates a significant
decline in requests around iteration 120 as a result of this phenomenon. Nonetheless, the
number of matched requests appears to have reached a state of equilibrium.

Figure 4.3: Riders requests success rate over iterations (own illustration)
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4.1.3 Computational times

In order to assess the computational performance of the new scenarios with the DRS
integration compared to the base scenario, the computational time of each simulation was
recorded. Figure 4.4 and Figure 4.5 show the computational time for the different steps
of MATSim over iterations for a MATSim simulation with DRS compared to a MATSim
simulation without DRS. The figure displays a marked rise in the computation time of
the iterationStartsListener and qsim in the scenario with DRS when compared to the base
scenario. On average, the iterationStartsListener adds an extra 2 minutes per iteration,
while mobsim adds an additional minute per iteration.

Figure 4.4: Computational times for base scenario (MATSim output)

Figure 4.5: Computational times for DRS scenario (MATSim output)

29



4 Results

4.2 Scenarios results

4.2.1 Requests success rate

The success rate of requests may serve as a valuable metric to evaluate the efficiency of
the DRS system. As shown in Figure 4.6 and Figure 4.7, the success rate of both driver
and rider requests is illustrated for the different financial incentive scenarios. As the
financial incentives for drivers rise, there is an apparent increase in driver requests with
a corresponding slight increase in the success rate that remains within around 3% to 5%
range. On the other hand, rider requests also demonstrate a remarkable increase in the
number of requests as the financial incentives for drivers increase. Furthermore, the success
rate of riders requests is high, ranging from 68% to 78%, for all the scenarios with an
average increment of 1% to 2% per 0.1 EUR/km rise in financial incentives for drivers.

Figure 4.6: Drivers Requests success rate (own illustration)

Figure 4.7: Riders Requests success rate (own illustration)

30



4 Results

4.2.2 Modal split

Modal split refers to the percentage of trips made by different modes of transportation. The
modal split analysis provides valuable insights into the travel behavior of the simulated
population. Table 4.1 illustrates the modal split for each scenario, including the base
scenario. The results indicate a noticeable rise in the car mode share for all financial
incentive scenarios, compared to the base scenario. Conversely, other modes such as walk,
bike, ride, and PT depict a decline in mode share for the new scenarios compared to the
base scenario. The modal share for all previous modes exhibits slight fluctuations over the
financial incentives scenarios, without following a specific trend. Nonetheless, the DRS
driver mode share displays an increase with the rise of financial incentives, and so does
the DRS rider mode share. Furthermore, DRS unmatched riders indicate a constant value
of 0.05%-0.06%.

Table 4.1: Scenarios modal split (Own illustration)
Walk Bike Car Ride PT DRSdriver DRSrider DRSunmatchRider

Base 16.48% 3.62% 57.78% 15.03% 7.10% 0.00% 0.00% 0.00%
0.1 15.16% 2.93% 59.79% 14.62% 7.24% 0.11% 0.11% 0.05%
0.2 15.13% 2.92% 59.76% 14.64% 7.24% 0.13% 0.13% 0.05%
0.3 15.14% 2.92% 59.71% 14.63% 7.24% 0.15% 0.15% 0.05%
0.4 15.15% 2.91% 59.69% 14.63% 7.24% 0.17% 0.17% 0.05%
0.5 15.14% 2.91% 59.67% 14.63% 7.22% 0.19% 0.19% 0.05%
0.6 15.13% 2.92% 59.67% 14.63% 7.21% 0.20% 0.20% 0.06%
0.7 15.12% 2.90% 59.65% 14.63% 7.24% 0.21% 0.21% 0.06%
0.8 15.12% 2.91% 59.62% 14.65% 7.20% 0.23% 0.23% 0.06%

Based on the mode shares presented, it prompts an investigation to explore the user groups
that have shifted to DRS drivers and riders. To visualize this, sankey diagrams have been
created for each scenario, as shown in Figure 4.8. These diagrams provide insights into the
user groups that are transitioning to DRS drivers and riders, as well as any changes in this
pattern across the different scenarios. The sankey diagrams reveal that DRS drivers were
mostly initially car users, while about half of the DRS riders were previously using walk
and bike modes. Additionally, some DRS riders were previously car users, and a smaller
proportion transitioned from PT. Furthermore, the different scenarios didn’t show any
significant pattern for the modal shifts.
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Figure 4.8: Modal shifts to DRS drivers and riders (own illustration)
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4.2.3 Vehicle kilometers travelled

Figure 4.9 displays the overall VKT for each scenario compared to the baseline scenario.
The figure displays an observed increase of approximately 1.5 million kilometers in the
VKT for all scenarios relative to the base scenario. Moreover, the graph shows variability
in VKT among the different financial incentive scenarios, without any observable pattern.

Figure 4.9: Vehicle kilometers travelled for each scenario (own illustration)

Table 4.2 presents the breakdown of VKT for each scenario. Consistent with the earlier
findings, shared rides do not make up a significant portion of the total VKT, while
individual travel still accounts for the majority. Despite an increase in the shared ride VKT
with higher financial incentives, it does not necessarily result in a decrease in the total
VKT. The table also indicates that increase ride-shares lead to extra VKT due to the detour
to pickup and dropoff riders

Table 4.2: Vehicle kilometers travelled composition for each scenario (own illustration)
Scenario DRS travel ToPickup/AfterDropoff Individual travel

0.1 EUR/km 6125 3055 8183025
0.2 EUR/km 7343 3500 8175811
0.3 EUR/km 10056 4080 8169986
0.4 EUR/km 10421 4557 8170472
0.5 EUR/km 13180 5053 8167351
0.6 EUR/km 11982 5437 8172130
0.7 EUR/km 13794 5740 8165555
0.8 EUR/km 13365 6195 8163020
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5.1 Simulating dynamic ride-sharing in MATSim

• Simulation Equilibrium:

In real life, people usually try different options before settling on a specific choice.
Similarly, in a transportation model, modes of transport are the available options, and
agents try to optimize their travel plan by choosing the best option for them. However,
the decisions of other agents can affect an agent’s own decision. For instance, if an
agent is satisfied with a particular PT line, but many other agents start using the
same line, it may get overcrowded and impact the agent’s decision. Therefore, it is
crucial to evaluate the plan scores of agents over iterations and determine whether
they reach an equilibrium or not in an agent-based approach. The study’s findings
indicate that integrating DRS modes will still lead to an equilibrium in agents’ plan
scores within a reasonable number of iterations, and it is very similar to the baseline
scenario without DRS.

Likewise, an agent’s decision to be a DRS rider depends on the availability of other
drivers. Thus, the decision-making process in DRS is influenced by other agents’
decisions. Therefore, it is crucial to examine whether the number of requests and
success rate reaches an equilibrium. Figure 4.3 has illustrated the evolution of the
number of requests over iterations. Initially, there is a small and steady increase in
the number of requests as new agents try the mode in addition to those who have
already used and liked it. Around iteration 120, there is a sharp decrease in the
number of requests due to the shut down in innovation strategy where agents don’t
try new plans anymore and only those who have already used and liked it continue
to use it. However, there is a slight decrease in the number of requests after that
point because some agents may have other plans in their memory that are better
than the DRS rider mode. Towards the end, the number of requests and success rate
reaches an equilibrium, indicating that integrating DRS modes can still achieve an
equilibrium within a reasonable number of iterations.

• Computational Times:

The simulations for this study ran on a server with an Intel Xeon CPU E5-2660 v3
@ 2.60 GHz processor and 30 GB RAM. The base scenario with 150 iterations was
completed in approximately 12 hours, while the scenarios incorporating DRS took
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between 19 to 22 hours for simulations with 150 iterations. As shown in Figure 4.5
and discussed in the results section, the increase in run time was mainly occurring at
the iterationStartListener and qsim. Knowing that the undoing of plans modification
step in DRS utilized the iterationStartListener, while executing the plans was part of
qsim, these findings suggest that the algorithms employed to undo plan modifications
can be improved further to reduce simulation time. The results also indicate that
the matching algorithm used does not consume much computational time, which
justifies the use of the single drive- single rider matching approach and suggests that
other approaches could be considered and tested for feasibility.

• Success Rate:

Results showed a low success rate for driver requests, which can be attributed to
the small number of riders available for matching. Even if all the available riders
were matched, a large number of drivers would remain unmatched due to the high
ratio of drivers to riders. However, the success rate for rider requests is shown to be
high, reaching around 70% for various scenarios. This value is consistent with other
studies that have used different matching algorithms and case studies [51]–[53]. It is
important to note that the success rate can vary depending on various factors such as
driver to rider ratio, critical mass, population density, and the specific configurations
and settings of the matching algorithm. Therefore, the success rate results should be
interpreted with consideration of these factors.

5.2 Financial incentives impacts

The central hypothesis of this thesis assumed that offering financial incentives to drivers
would reduce DRS by increasing ride sharing, as drivers would be incentivized to share
rides and thereby increase the driver-to-rider ratio. This, in turn, would boost the probabil-
ity of riders finding a match and encourage more people to become riders. The net result
would be increased shared rides, improved vehicle occupancy, greater transport efficiency,
and ultimately, reduced VKT.

However, the results of this study suggest that the financial incentives attracted not only
car users, but also individuals who otherwise might not have used cars to take advantage
of the incentives. The findings also show that around 50% of the riders were originally
using bike and walking, however the size of the rider pool still remained small, leading to
a low success rate for drivers’ requests and many new car drivers driving alone without
the ability to share a ride.

Despite this, the increase in the number of drivers suggests that individuals tend to
continue using cars, even if the benefits are infrequent due to the small pool of riders.
Occasionally, they may find a match and receive incentives, but for most of their trip, they
end up driving alone. Consequently, the study results indicate an increase in VKT, contrary
to the original hypothesis. Figure 5.1 provides a comparison between the hypothesis and
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the study findings.

Figure 5.1: Hypothesis vs. Results (own illustration)
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This thesis has contributed to the field of DRS modeling and simulation. The integration of
the behavior of DRS drivers and riders into MATSim provides a powerful tool for testing
different scenarios and interventions of DRS within the context of the entire transport
system. The thesis has utilized the extension to evaluate the impact of money incentives
on people’s decision-making and the overall vehicle kilometer traveled. These findings
provide valuable insights into the behavior of DRS drivers and riders and can inform
the development of more effective policies and interventions to promote sustainable
transportation. This work serves as a solid foundation for future studies and applications
in the field of DRS modeling and simulation.

The conclusion section of this thesis summarizes the key findings and answers the research questions.
In addition to that, it highlights the potential applications of the DRS extension within the MATSim
framework, as well as the limitations and areas for future research.

6.1 Lessons Learned

This thesis has explored the possibility of integrating DRS behavior in the MATSim
simulation framework. The model was utilized to examine the effect of offering financial
incentives to drivers on reducing VKT in Upper Austria. The work attempted to answer
the following research questions that were mentioned earlier at the end of the literature
review section. The research questions and their answers are as follows:

1) How could the DRS behavior of drivers and riders be modelled in MATSim?

The thesis offers a comprehensive methodology for modelling DRS and outlines the steps
involved in integrating it with MATSim. The results suggest that MATSim is a potent tool
for modelling DRS, owing to its capability of capturing the spatio-temporal dynamics of
the system and providing a holistic approach within the transport system. This opens
up various potential applications for future research. Nevertheless, it is important to
acknowledge that the extension has certain limitations that need to be addressed through
further research to improve the modelling accuracy of DRS.

2) What is the impact of financial incentives for DRS drivers on reducing the VKT?

The study showed that drivers did respond to the incentives by offering rides. However, the
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incentives also attracted other users to use cars. Furthermore, due to the lack of incentives
for riders, drivers only occasionally got matched, leading to an increase in the VKT. It is
concluded that financial incentives for drivers alone were not enough to reduce the VKT,
and that other push measures such as HOV lanes and increasing fuel costs should also be
implemented to encourage the use of DRS.

6.2 Possible Applications

While this study focused on the impact of financial incentives on reducing the VKT, the
DRS extension has potential for a wide range of applications. Some examples of potential
applications of the DRS extension are as follows:

• Spatial Analysis: The DRS extension offers the possibility of analyzing the relation-
ship between situational factors (such as population density, PT availability, and
quality) and the success of DRS services. The extension provides an output that
displays the origin-destination (OD) pairs of the DRS trips, including both matched
and unmatched trips. By utilizing this output and conducting an analysis of the
aforementioned situational factors, it is possible to gain insight into the success of
DRS services in different contexts. For example, it is possible to explore whether
DRS services are more successful in areas with higher population densities and
better PT access. Such applications is useful to identify areas where DRS systems
may be particularly effective, as well as areas where additional interventions or
improvements may be necessary to encourage greater usage of these services.

• Temporal Analysis: A promising application of the DRS extension is the imple-
mentation of demand-responsive financial incentives. Such incentives can be easily
incorporated into the extension and can be used to analyze the impact of financial in-
centives on the number of vehicles on the network during peak hours. By examining
the resulting changes in the number of single-occupancy vehicles on the roadways
and the corresponding increase in the number of shared rides, this type of analysis
can provide valuable insights into the effectiveness of demand responsive financial
incentives as a tool to promote DRS usage and reduce congestion during peak hours.

• Trip Purpose Analysis: The output generated by the DRS extension also includes the
type of activity associated with each destination of the DRS trips. This information
can be used to analyze the distribution of trip purposes for DRS riders and drivers,
shedding light on the most common and rare trip purposes. Such an analysis can
provide insights into the behavior of DRS agents and inform the development of
interventions that are more likely to be effective in promoting the adoption of DRS.

• Trip Length and Duration Analysis: Studying the trip length and duration of shared
rides is another important area of analysis. By examining these factors, we can gain
insight into the preferences and behaviors of users in terms of intra-city and inter-city
trips. For instance, if users tend to prefer shorter intra-city trips, we may need to
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design incentives that are more appealing for such trips. Similarly, if users prefer
longer inter-city trips, we may need to offer different incentives to encourage more
shared rides on those routes.

• Equity Analysis: DRS extension can also be used for equity analysis. By analyzing
the characteristics of the DRS agents such as their socio-economic status and location,
the extension can provide insight into the potential equity impacts of dynamic
ride-sharing interventions. For example, the extension could evaluate whether DRS
interventions would disproportionately benefit or burden certain groups of people,
such as low-income individuals or those living in areas with limited PT options.

6.3 Limitations

Despite the promising results and potential applications of the DRS extension within
MATSim, there are also several limitations that should be acknowledged. These limitations
are important to consider in order to understand the scope and generalizability of the
findings, as well as to guide future research in improving the extension. Some of the
limitations are stated below:

• Single Driver and Rider Matching: One limitation of the DRS extension is the fact that
it only allows for one rider to be matched with one driver at a time. This means that
the potential for ride-sharing is limited, and the full potential of the DRS system may
not be realized. The extension does not account for the possibility of multiple riders
being matched with a single driver. This limitation could impact the effectiveness
of the DRS system in reducing congestion and emissions, as it limits the number
of vehicles that can be taken off the road. Additionally, it may limit the economic
benefits of ride-sharing for both drivers and riders, as the cost savings of sharing a
ride may not be fully realized.

• Before Day Start Matching: For the purpose of modeling, collecting requests before
the day starts may not significantly impact the results compared to collecting requests
dynamically. However, it should be noted that this approach does not reflect the
actual operation of a DRS service and may not be practical for real-world implemen-
tations. Collecting requests and matching dynamically could be more appropriate
for scenarios involving autonomous vehicles, where requests can be generated and
matched in real-time based on the vehicle’s location and availability.

• Door to Door Service: The DRS extension implemented in this study assumes a door-
to-door service, where the driver picks up and drops off the rider at their respective
origins and destinations. However, this approach may have some limitations in
terms of efficiency and service quality. A stop-based system, where riders walk
to designated pickup and dropoff points, could potentially reduce travel time and
improve system performance. However, implementing such a system would require
routing algorithms to efficiently allocate riders to stops, as well as considerations for
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accessibility and convenience for riders. Further research could explore the trade-
offs between door-to-door and stop-based systems and develop efficient routing
algorithms to improve the overall performance.

• Teleportation Instead of Picking Another Mode: One limitation of the DRS extension
is the approach taken to handle unmatched riders, where they are teleported to their
destination instead of choosing an alternative mode of transportation. While this
approach simplifies the modeling process, it is not reflective of real-world scenarios
where riders have other options available to them in case of not finding a match.
The downside of teleportation is that it can affect the accuracy of the results as it
assumes that the rider would not use an alternative mode of transportation, leading
to potentially inaccurate statistics.

• Sociodemographics in Matching Process: Another limitation of the DRS extension
is that matching is solely based on distance and time, without taking into account
sociodemographic factors. In reality, riders and drivers may have preferences for
matching based on their sociodemographic characteristics, such as age, gender, or
profession. Future extensions could consider incorporating sociodemographic factors
into the matching process to improve the accuracy and realism of the model.

6.4 Future Research

This thesis represents an important milestone in the integration of DRS in MATSim.
While the research has yielded valuable insights into the possibility of integrating DRS in
MATSim, there is still much room for further development and future research since the
DRS extension is still in its early stages of development. Below are some potential areas of
future research that could build upon this thesis work. Additionally, Table 6.1 provides a
summary of potential future work based on the limitations and future research section.

• Mode Choice Model Including DRS Modes: This study made an assumption that
the mode parameters of DRS drivers and riders is similar to that ’car’ and ’rider’
modes, respectively. This was done because there was no available data to estimate
the mode parameters of the new DRS modes. Although this assumption simplifies
the modeling process, it may lead to some inaccuracies in the results. To improve
the accuracy of the model, future studies can address this issue and estimate a mode
choice model that includes these new modes.

• Cell Size: The cell size of 2000 used in this thesis work was chosen as a trade-off
between system efficiency and computational power. However, it is worthwhile
for future studies to investigate the impact of the cell size value on the number of
matches and the resulting detour. It would also be interesting to explore whether
different cell sizes should be used in different urban contexts, given that the optimal
cell size may vary depending on the density and layout of the road network. By
addressing these questions, future studies can provide insights into the optimal range
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of cell size for different contexts, which can lead to more accurate models and results.

• Unmatched Rider Penalty: As noted in previous sections, unmatched riders in the
simulation are teleported and given a penalty to reflect the inconvenience of not
finding a match. In this study, a penalty of 10 euros was applied to unmatched riders.
A small penalty may not be significant enough to discourage agents from using the
rider mode even after experiencing difficulty finding a match. Conversely, a high
penalty can disproportionately affect an agent’s plan if they have multiple legs of
the rider mode, with only one leg being unmatched. Therefore, further research is
needed to determine the optimal penalty that can effectively discourage the use of
DRS rider mode without disproportionately impacting the overall plan score.

• Rider Departure Time Adjustment: In this thesis, DRS riders were given the option
to adjust their departure time up to 15 minutes to increase their chances of find-
ing a match with other DRS drivers. However, this value was arbitrarily chosen
and requires further investigation. Future studies could gather information on the
willingness of agents from different sociodemographic backgrounds to modify their
departure time. This would enable the identification of the appropriate value that
reflects the readiness of agents to adjust their departure time based on sociode-
mographic variables. As a result, the DRS model could achieve a more precise
representation of travel behavior.

• Pickup Waiting Time: Similar to the departure time adjustment, maximum waiting
time for drivers to at pickup point was arbitrarily chosen in this thesis. Further studies
are needed to explore different waiting time values for different sociodemographic
groups. This can improve our understanding of the willingness of drivers to wait
and lead to more accurate modeling of dynamic ride-sharing systems.

Table 6.1: Potential areas for future research (own illustration)

Potential Future Research

Multiple riders and drivers matching algorithm
Dynamic matching
Door to door DRS

Picking another mode when unmatched
Sociodemographic preferences in matching process

DRS parameters estimation
Cell size configuration

Unmatched rider penalty configuration
Rider departure time adjustment configuration

Driver pickup waiting time configuration
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