

Climate Change and Transport Land-use,

A Case Study in London

Alistair Ford, Newcastle University

Symposium for the Integration of Land-Use and Transport Models $2^{nd} - 4^{th}$ November, 2016

Nations Unies

Conférence sur les Changements Climatiques 2015

COP21/CMP11

Paris, France

PARIS AGREEMENT

The Parties to this Agreement,

Being Parties to the United Nations Framework Convention on Climate Change, hereinafter referred to as "the Convention",

Pursuant to the Durban Platform for Enhanced Action established by decision 1/CP.17 of the Conference of the Parties to the Convention at its seventeenth session,

In pursuit of the objective of the Convention, and being guided by its principles, including the principle of equity and common but differentiated responsibilities and respective capabilities, in the light of different national circumstances,

Recognizing the need for an effective and progressive response to the urgent threat of climate change on the basis of the best available scientific knowledge,

Also recognizing the specific needs and special circumstances of developing country Parties, especially those that are particularly vulnerable to the adverse effects of climate change, as provided for in the Convention,

Taking full account of the specific needs and special situations of the least developed countries with regard to funding and transfer of technology,

86 Parties have ratified of 197 Parties to the Convention

On 5 October 2016, the threshold for entry into force of the Paris Agreement was achieved. The Paris Agreement will enter into force on 4 November 2016. The first session of the Conference of the Parties serving as the Meeting of the Parties to the Paris Agreement (CMA1) will take place in Marrakech in conjunction with COP 22 and CMP 12. More information available soon.

Arnaud Bouissou

Paris Agreement

"Limit global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius."

- **BUT:** little action in last 15 years, emissions now 60% higher than in 1990, CO₂ at highest levels in 800,000 years.
- 5 to 8 years of current global emissions will use up 1.5° budget.
- Limiting warming to 2° will require unprecedented change.
- "For a successful policy, reality must take precedence over public relations, as nature cannot be fooled"

Richard Feynman

Implications

Courtesy Kevin Anderson, Tyndall Centre

- 10% reduction every year
- 50% reduction by 2020
- 90% reduction by 2030
- Fully-decarbonise by 2035

(EU's submission to Paris Agg: 40% by 2030)

Paris City Hall Declaration

Over 1000 city leaders pledged to:

Advance and exceed the expected goals of the 2015 Paris Agreement to be reached at COP 21 to the full extent of our authorities;

Produce and implement participatory resilience strategies and action plans to adapt to the rising incidence of climate-related hazards by 2020;

Deliver up to 3.7 gigatons of urban greenhouse gas emissions reductions annually by 2030, the equivalent of up to 30% of the difference between current national commitments and the 2 degree emissions reduction pathway identified by the scientific community;

Support ambitious long-term climate goals such as a transition to 100% renewable energy in our communities, or a 80% greenhouse gas emissions reduction by 2050;

Engage in partnerships among ourselves and with global organizations, national governments, the private sector, and civil society to enhance cooperation and capacity-building programs, scale-up climate change solutions, develop metrics and promote innovative finance mechanisms and investments in low-emission projects across the world.

Cities: the problem...and solution

- <u>**Cities need to adapt**</u>, but beyond 3 degrees of global warming adaptation becomes questionable and uncertain
- Cities play an important role in the **sustainability transition**
- Certain cities are more efficient than others in terms of emissions
- Cities are perfect places to generate <u>co-benefits</u>
- Cost assessments should make clear where we have <u>limits</u>
- Knowledge about gross effects are needed for global policy making, while on the ground more <u>detailed information is needed for more</u> <u>concrete policy-making</u>
- Land-use and transportation are key to the post-Paris transition in cities

Adaptation vs Mitigation

Response	Potential benefit	Potential negative impact
Air conditioning	Reduce heat stress	Increase energy needs and emissions
Densification of cities	Reduce public transport emissions	Increase urban heat island intensity and exposure to grater noise pollution
Desalination plants	Secure water supply	Increase greenhouse gas emissions
Irrigation	Supplying water for food	Salinisation of soil, degradation of wetlands,
Biofuels for transport and energy	Reduce GHG emissons	Encourage deforestation; replace food crops raising food prices; can increase local air quality pollutants such as NO_x
Catalytic convertors	Improve air quality	Large scale mining and international resource movements
Cavity wall insulation	Reduce GHG emissions	Increase damages from a flood event
Raise flood defence	Reduce flood frequency	Encourage more development (positive feedbacks)
Pesticides	Control vector borne disease	Impact on human health, increased insect resistance
Conservation areas	Preserve biodiversity and ecosystems	Loss of community livelihoods
Insurance/disaster relief	Spread the risk from high-impact events	Reduce longer term incentive to adapt
Traffic bypasses or radial routes	Displaces traffic from city centre, improving air quality and reducing noise	Can increase congestion and journey times (consequently overall greenhouse gas emissions)
Vehicle user charging	Discourage vehicle use to reduce greenhouse gas emissions	Lead to greater social inequality

Adapted from: Dawson (2011) Potential pitfalls on the pathway to sustainable cities ... and how to avoid them, *Carbon Management*, Vol 2(2)

Mitigation: reducing energy demand

- London target: 60% reduction by 2025
- Transport emissions (currently 22% of total)¹⁴
 - 48% reduction by 2025
 - Vehicles and control systems
 - Passenger and freight (train 76% vs lorry)
 - Technology vs behaviour
 - Urban form
- Building emissions
 - Residential (36%)
 - Commercial
 - Industrial } (42%)

Civil Engineering

osciences

T۲		Total	Petrol	Diesel	Alternative fuel	
	Belgium	490 369	169 665	319 863	841	
	Bulgaria	199 963	:	:	:	
	Czech Republic	164 627	:	:	:	
	Denmark	:	:		:	
	Germany	2 952 431	1 502 784		46 534	
"Avoide	Estonia	19 690	12 209		137	lo and
Avoide	Ireland	74 960	*		640	le allu
engine r	Greece			\cdot	:	anges in
	Spain ⁽²⁾	710.67		NON	192	
the buil	France	1			975	11″:
	Croatia		· CO		72	
	Italy		n^{2}			
— av	Cyprus					
SC	Latvia				11	
	Lithuania ⁽³⁾				534	
- re	Luxembourg ⁽²⁾		.0			re then 10 years
()(Hungary			543	1 917	
- m	Malta	05) '	5 267	27	
tr	Ne	へい ノ		:	:	
u			50 689	181 061	1 285	
– lo	P		449 741	468 097	69 971	
D€	Pol	52	:	:	:	
	Rom	279 740	141 921	136 673	1 146	
UI I	Slove	51 968	23 942	28 016	10	46 830 116 care
Q€	Slovaki	113 876	:	:	:	40,039,110 cars
– re	Finland	103 450	64 194	38 697	2 000	
m	Sweden	292 162	108 067	176 485	7 610	
fre	United King	1 907 411	924 509	958 536	24 366	
110				:	:	
	Liechtenstein	1 920	1 041	858	21	
	Norway	176 019	67 701	97 464	10 854	
Technolo	Switzerland **	334 000	200 600	125 000	8 600	
	Montenegro	:	:	:	:	
- EI	The former Yugoslav Republic of Macedonia (*)	32 870	:	:	:	
	Serbia ⁽⁹⁾	28 951	18 393	7 364	3 194	
	Turkey	654 905	256 506	383 904	14 495	

Civil Engineering & Newcastle University

Aspirations vs Reality

Transport transition- the modelling challenge

LUTM can aid the transition!

- Systemic change is a long process
 - Involves institutional change (Beddoe et al, 2009)
 - Models are leverage points in the system
 - Models can help speed-up change
- **Backcasting** we know where we need to be, but how do we get there?
- "Transport modelling shows that we can't do that because queues will be too long."
- "To make O'Connell Street how we want it we need to reduce traffic, so use your models to work out how to do it."

Beddoe, R. Costanza, R. Farley, J. Garza, E. Kent, J. Kubiszewski, I. Martinez, L. (2009), 'Overcoming System Roadblocks to Sustainability: The Evolutionary Redesign of Worldviews, Institutions, and Technologies'. Proceedings of the National Academy of Sciences, 106(08): 2483-9

London Mitigation Options

- Three main sources:
 - Transport, domestic, non-domestic
- Supply from National Grid

 No imminent decarbonisation
- Demand reduction vital
 - How to achieve? How to model?
 - Portfolios of measures?
 - Land-use, transport, economics...
 - Passengers and freight
 - Energy efficiency = energy waste?

Modelling transitions

- Hickman and Bannister (2009)
 - Developing future scenarios
 - Packages of options
- Ruhr Model (Wegener et al)
- ReVisions multi-scale
 - Sustainable urban development
- Kohler et al (2009)
 - Transition theory for mobility
 - Uptake of new regimes
 - Role of space and urban form?
- How radical can we be?!

Radical 'futures'

"Three main civilian uses have been found for the motor vehicle: the ordinary motor car for the transport at will of the owner and his family, the bus and coach for the mass transit of people, and the goods vehicle. *Private motor cars constitute by far the largest group of* motor vehicles, but it may be questioned whether they play a key or dominating part in economic affairs... A test that may be applied is to consider what the effect would be if by some means all cars were suddenly to be withdrawn from use. Supposing this to happen, it seems doubtful whether any severe breakdown or dislocation of business or industry would follow, though there would certainly be much inconvenience."

1958

Thanks to John Dales, UrbanMovement.co.uk

What about adaptation?

- Even 1.5°C warming is a significant change
- How to improve resilience?
- Where best to intervene?
 - Grey adaptation
 - Green adaptation
 - Soft adaptation
- Cost vs effectiveness
- Not sacrificing mitigation
 - Trade-offs and complexities

Risk from Multiple Hazards

Risk = Hazard * Exposure * Vulnerability

Spatial Heat Risk Framework

Heat Hazard:

Current day surface temperatures. UK Met Office weather stations. **UKCP09** Climate Projection Statistical spatial weather g **Population Vulnerabili** 2001 & 2011 census data. Population model 2020, 2050, ..., 2100.

Future Population Scenarios

Simple Lowry-style model Headline scenarios

- Simple assumptions
- Quick to run
- Easy to explain

Ward-level employment figures

• 10 industrial sectors

Attractor-driven

Accessibility, Floorspace, Land available

Three future planning scenarios

• BA, Decarbonisation, Deregulation

Future scenario drivers

- Transport infrastructure
- Employment locations
- Planning controls

Accessibility and travel costs

Planning Policy – Thames Flooding

Planning Policy – No floodplain development

Competing land-use pressures

Indirect Impacts

- Impacts on urban function
 - Flooded transport links
 - Closed stations
 - Rail buckles from heat
 - Catenary blown down
- Complex interactions
 - Interdependency
 - Spatial distribution
 - Knock-on effects

Geosciences

Transport and Floods

Vulnerability

Pluvial flooding

Linked Dynamic Simulations?

Costs and Benefits

HIGHER PROBABILITY EVENTS

scer	nario	curre	nt	2080	2080s	
label	no. link hardened	total time of delay [hrs]	person hour delay	total time of delay [hrs]	person hour delay	
NA	0	2088.91	16847	2791	22238	
LH_1	1	1947.50 (-6.85%)	16037 (-4.8%)	2707.33 (-3.0%)	21679 (-2.6%)	
LH_2	2	1886.81 (-9.7%)	15725 (-6.6%)	2565.31 (-8.1%)	20824 (-6.4%)	
LH_3	3	1818.30 (- 13.0%)	15456 (-8.3%)	2503.61 (-10.3%)	20570 (-7.5%)	

LOWER PROBABILITY EVENTS

scei	nario	current		2080s	
label	no. link hardened	total time of delay [hrs]	person hour delay	total time of delay [hrs]	person hour delay
NA	0	2791	22238	4224	33594
LH_1	1	2707.33 (-3.0%)	21679 (-2.6%)	4081.18 (- 3.4%)	33594 (-2.3%)
LH_2	2	2565.31 (-8.1%)	20824 (-6.4%)	3933.38 (-6.9%)	32720 (-4.8%)
LH_3	3	2503.61 (-10.3%)	20570 (-7.5%)	3808.13 (-9.4%)	32270 (-6.1%)

Cost of adaptation? Picture of green vs grey? Co-benefits?

Pregnolato M, Ford A, Glenis V, Wilkinson S, Dawson R. Potential impact of climate change on flooding disruptions to urban transport networks, ASCE Journal of Infrastructure Systems, Accepted for Publication.

Targeting adaptation

Betweenness centrality

0.000 - 0.005

0.005 - 0.010

0.010 - 0.05

0.100 - 0.28

0.25 0.5 Kiometer

- What type is most effective?
 Grey vs Green vs Soft
- Where are the critical locations?
 On links? Upstream? Dispersed?
- What are the costs and benefits?

 — Is VoT a valid measure?
- Incremental and flexible?
 Deal with uncertainty?

Pregnolato M, Ford A, Robson C, Glenis V, Barr S, Dawson RJ. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks. *Royal Society Open Science* 2016, **3**(5), 160023.

Making it all easier – co-benefits and externalities?

Models as discussion tools

- Models are often expensive, and misuse is dangerous!
 - Often black box, blunt, complex, and inaccessible
- What place for simple 'conversational modelling?'
- Co-creation?
- Participatory planning
- Getting community buy-in
 - Big changes require brave politicians
 - Easier if public opinion is on your side
 - The need to do the 'right' thing, not the popular thing!

Who will save us from the misuse of transport models?

Кеер	Replace	How		
Terminology	Inaccessible	Online tools		
Equations	Proprietary ownership	Open source licences		
Use of scenarios	Ageing software	New software		
	Narrow scenarios of future	Flexible models		
	Black boxes	Simple and open method		
Robinlovelace.net				

Civil Engineering &Geosciences

Uncertainty – ensembles of models?

THE END (OR IS IT THE BEGINNING?)

Alistair Ford + many, many colleagues Geospatial Engineering, Tyndall Centre, Centre for Earth Systems Engineering, Institute for Sustainability... Newcastle University a.c.ford@ncl.ac.uk

www.ncl.ac.uk/ceser www.ramses-cities.eu

This research is supported by:

The work leading to these results has received funding from the European Community's Seventh Framework Programme under Grant Agreement No. 308497 Project RAMSES - *Reconciling Adaptation, Mitigation and Sustainable Development for Cities.*

London Simulations

Surface flow only, RP = 50yrs

Surface flow + Drainage network, RP = 50yrs

CityCAT simulation within the Cloud Computing project 100Y return period/ 1 hour duration (37.3mm) time= 1 hour into simulation

Model depth=1.45cm

Model depth= 0.45cm

