Rediscovering the lost art of travel forecasting

Rick Donnelly | TUM Activity-Based Model Symposium 2022 | 12-Sep-2022

Davidson diagram

Ideal framework?

The case for activity and tour-based models

Where advanced models are superior to traditional models:

- 1. Pricing studies
- 2. Equity analyses
- 3. Analyses of complex public transport choices
- 4. Multi-scale modeling
- 5. Incorporating network reliability
- 6. Dynamic network modeling
- 7. New transport modes
- 8. Data mining opportunities

Architectures and artifacts

Modeling systems	Markets			Traditional metrics		Emergi	ing metrics	
Macroeconomic Population synthesis Resident travel Visitor model(s) Commercial vehicles Network assignment Evaluation	Households and persons Residents making local trips Residents making long-distance trips Visitors Firms and economic sectors Commodities by mode of travel Imports and exports Long-distance trucks Urban trucks			Aggregate network statistics (VKT, VHT,) Travel times and reliability Per-capita change in VKT, non-auto travel, Wide economic benefits Degree and extent of congestion Public transport and pricing revenues Environmental impacts Network level of service Cost-benefit analyses		Empty kilometres of travel (CVs) Aggregate accessibility measures Consumer surplus or user benefits Network reliability and resilience Social welfare statistics Pricing revenues and equity Risk and uncertainty analyses		
Sketch planning models Trip-based models Activity-based models								
Data-driven models	L		_					
Probabilistic models Generative models	Probabilistic models Generative models Topologies			Agents	Agent propertie	es	Objects	
<i>Machine learning</i> System dynamic models Random numbers Group consensus		Global State Places (polygons) Places (points) Agents Objects		Persons Households Vehicles Roadways Intersections Mobility service providers Public transport operators	Preferences Budgets Choices Activities Tours Trips Boutes		Buildings Facilities Vehicles Signals Sensors Roadways	

Jurisdictions

Establishments Buildings Gateways

Firms

Transit lines

Distortion field

What could go wrong?

Internal

- Creeping complexity and complicatedness
- Overfit models
- Increasing computational burdens
- Noise vs signal
- Parameter storm
- Outdated assumptions
- Inaccurate forecasts
- Lack of resources

External

- Uncertainty
- Issue evolves faster than models
- Accelerating social, behavior, and technological changes
- Uncertainty
- Ransomware infections
- Loss of confidence
- Irrelevance to policymaking
- Lack of time

Forecasts vs reality

RD analyses

Telecommuting trends over time

Historical telecommuting data from Levinson et al. (2013)

Changes in vehicle fleet

Engines: BEV = batter y electric vehicle, HEV = hybrid electric vehicle, ICE = internal combustion engine, MobSvc = mobility ser vices

Davidson diagram

Change how I use them

Improve and expand our tools

ML methods

ML in a nutshell

Quick intercity mode choice example

	Table 5.4: Long-distance travel surveys						
Category	Attribute	NHTS	TSRC				
Extents	Years included	2002	2012-14				
	Total usable observations	45,118	167,481				
Variables	Mode (of travel)	1	1				
	Age group	\checkmark	1				
	Gender	1	1				
	Education	\checkmark	\checkmark				
	Employment status	\checkmark	1				
	Occupation	\checkmark					
	Household income	\checkmark	1				
	Travel party size	1	1				
	Trip purpose	\checkmark	1				
	Nights away	\checkmark	\checkmark				
	Distance (one-way)	\checkmark	✓				
	Year	\checkmark	1				
	Percent personally paid	1	\checkmark				
	Annual frequency	\checkmark					

Perfect case study in imbalanced data

	NH	TS	TSRC		
Mode	Records	Percent	Records	Percent	
Air	3,347	7.4	7,994	4.8	
Auto	40,333	89.3	150,456	89.8	
Bus	993	2.1	3,513	2.1	
Other	77	0.2	3,427	2.0	
Rail	392	0.9	1,268	0.8	
Ship	36	0.1	823	0.5	
Total	45,118	100.0	167,481	100.0	

Table 5.5: Number of observations by intercity mode of travel

Starting position

Percent incorrect predictions						
Mode	Logit model	Random guess				
Air	15.1	95.6				
Auto	4.2	10.3				
Bus	69.7	98.2				
Other	_	97.9				
Rail	51.8	99.2				
Ship	100.0	99.8				

Console	Terminal ×	Jobs ×				
~/Library	//Mobile Doc	uments/cor	n~apple~0	CloudDoc	s/ohplea	se/ 🖈
<pre>> combin + prob > result L)</pre>	ed\$guess < = observe <- xtabs(- sample(d_shares\$ ~mode + g	observed <u>.</u> share) uess, dat	_sharess ta = cor	Smode, r nbined,	nrow(combined), r na.action = na.p
> noquot	e(result)					
g	uess					
mode	Air A	uto Bu	s Other	Rail	Ship	
Air	383 7	209 15	5 161	49	37	
Auto	7282 134	980 314	1 3057	1212	784	
Bus	164 3	150 8	1 74	27	17	
0ther	181 3	061 7	8 70	28	9	
Rail	69 1	132 2	6 25	10	6	
Ship	53	732 2	0 12	3	3	
> noquot	e(paste("R	andom gue	ss accura	acy = ";	, accura	acy(result)))
[1] Rand	om guess a	ccuracy =	0.81			
> modal_	accuracy(c	ombined,	combined	\$guess)		
mode	Correct In	correct p	ctIncorre	ect		
1 Air	383	7611	95	5.2		
2 Auto	134980	15476	10	0.3		
3 Bus	81	3432	97	7.7		
4 Other	70	3357	98	8.0		
5 Rail	10	1258	99	9.2		
6 Ship >	3	820	99	9.6		

Simple decision tree

Console	Terminal ×	Jobs ×		
~/Library	/Mobile Docu	ments/co	m~apple~Cl	oudDocs/ohplease/
<pre>> noquot [1] All > source > noquot mode</pre>	e(paste("Al modes: deci ("./feature e(feature_a .groups Cor	l modes: sion tre _accurac ccuracy(rect Ind	decision e accuracy cy.R") (df_test, m correct pct	<pre>tree accuracy = t = 0.94 mode, pred)) cIncorrect</pre>
1 Air	drop	517	180	25.8
2 Auto	drop	7936	138	1.7
3 Bus	drop	54	107	66.5
4 Other	drop	0	10	100.0
5 Rail	drop	0	72	100.0
6 Ship >	drop	0	10	100.0

Maybe neural net

Results

Mode	Logit model	Random guess	Decision tree	Bagged tree	Neural net (h=24)	SEDO bagged tree	SEDO + random
Air	15.1	95.6	41.7	29.2	10.1	9.5	9.5
Auto	4.2	10.3	0.5	1.4	7.4	0.8	0.8
Bus	79.7	98.2	100.0	91.1	24.8	26.9	21.8
Other	_	97.9	100.0	94.9	77.5	36.5	29.3
Rail	81.8	99.2	100.0	93.4	40.0	77.4	37.9
Ship	100.0	99.8	100.0	96.8	63.3	64.4	60.3

Percent incorrect predictions

Notes:

(a) Shaded cells indicate acceptable levels of predictive accuracy(b) Values in bolded red indicate prediction with least error for each mode of travel

SEDO (3 levels)

Final modeling system

My view

How can we build evidence-based planning models that overcome:

ML limitations

- Doesn't comprehend larger context
- Data limitations (quality, quantity, stationarity, ...)
- Data silos
- Stochastic
- Lack of interpretability
- P-hacking
- Al solutionism
- Ethical concerns

Human limitations

- Biases and prejudices
- Linear thinking
- Mistakes
- Agendas
- Replication mindset
- Misinterpreting results
- Difficulty comprehending multidimensional interactions

Scenario thinking example

Scenario thinking

Contagions	Future of work	Automation + Al	Autonomous vehicles	Military presence
 Return to 2019 Rolling sheltering and isolation Relative calm between cyclical pandemics Rolling pandemics the new normal A universal vaccine or cure emerges 	 Return to 2019 Increased telework and hybrid office- remote work Sustained shift towards remote work 	 AI winter Second Machine Age scenario with higher unemploy- ment Automation trends plateau AI dominance 	 Bureaucratic and regulatory inertia AVs remain niche products Widespread adoption of AVs Level 5 automation dominates travel 	 Remain at current levels Digital warfare focus reduces traditional forces Stronger Pacific presence to deter Chinese expansion Drones replace human warriors

Davidson diagram redux

Tear it apart?

Highly recommended

- H. Wu (2021), Theory of ensemble forecasting with applications to transport modeling, Unpublished PhD thesis, The University of Sydney. https://ses.library.usyd.edu.au/handle/2123/26252
- W. Li & K. M. Kockelman (2021), "How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE", *Growth and Change*, in press. https://doi.org/10.1111/grow.12587
- D. Kahneman, O. Sibony & C.R. Sunstein (2021), *Noise: A Flaw in Human Judgment*, Little Brown Spark, London.
- "Machine learning" online Coursera course by Andrew Ng. https://www.coursera.org/learn/machine-learning
- A. Ben-Zvi (2020), Scenarios for the COVID-19 future. https://breakwaterstrategy.com/scenarios-for-the-covid-19-future/