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Davidson diagram

Platform

Y

Context > Forecasts

We build forecasting We are most often

models to inform public engaged to develop
policy and investment forecasts of future
decisions. What story are  conditions. What range
we trying to tell, and who of assumptions and what
is the audience? What properties of the
are relevant performance modelled system are
measures? being tested?

> Model

We can decide on the
most appropriate
modelling approaches
and methods once we
have the larger context
defined.

Once we understand the
context, analytical
requirements, and most
appropriate model(s) we
can decide upon the
best data, software, and
hardware solutions.



Ideal framework?

Long-term choice replanning (3rd order effects)

Rarely seen in
practice other Tour replanning (2nd order effects)
than ad hoc
allocation of Tactical replanning (1st order effects)
assumed Not yet found
regional growth in practice v v v
Macro—_ Market. and Population Long-term | _| TO;.!I"OI' L Tour Network | _| Replanning/
economic = behawqral g synthesis choices ac N'ty scheduling model(s) feedback
futures dynamics generation
Regional and Specify changesin ~ Synthetic Home, Daily tour QF"' Spatial and -Roadway and Disaggregate
sometimes inter- vehicular households, workplace, and activity’ temporal “-transit models use
regional technologies,  persons, firms,  school location, generation structure of assighments  feedback loops
forecasts, to  mobility services, and visitor auto ownership ' tours, to include (macroscopic in (aggregate
include trade  and autonomous  populations or sufficiency .-~ allocation to and Emme, .. replanning), but
estimates — vehicle market characterization mesoscopic in "MATSIim acts on
commodity flows  penetration, of trip segments MATSim) fndivfg‘ual plans
changes in traveller A
tastes and
preferences, etc. . .
The tour scheduling step has several sub-models that can vary in structure and
complexity, sometimes with its own feedback loops (basic activity-based model shown)
Mandatory Joint non- Solo non- Stop .
tour —»| mandatory [ mandatory [—» TO:I: n_'(l:ode —»| frequency Tr(':‘; njgde
schedule tour schedule| [tour schedule oice and location oice




The case for activity and tour-based models

Where advanced models are superior to traditional models:

Pricing studies

Equity analyses

Analyses of complex public transport choices
Multi-scale modeling

Incorporating network reliability

Dynamic network modeling

New transport modes

Data mining opportunities
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Architectures and artifacts

Modeling systems

Macroeconomic
Population synthesis
Resident travel
Visitor model(s)
Commercial vehicles
Network assignment
Evaluation

Markets

Traditional metrics

Emerging metrics

Sketch planning models
Trip-based models
Activity-based models
Data-driven models
Probabilistic models
Generative models
Machine learning
System dynamic models
Random numbers
Group consensus

Households and persons

Residents making local trips
Residents making long-distance trips
Visitors

Firms and economic sectors
Commodities by mode of travel
Imports and exports

Long-distance trucks

Urban trucks

Aggregate network statistics (VKT, VHT, ...)

Travel times and reliability

Empty kilometres of travel (CVs)
Aggregate accessibility measures

Per-capita change in VKT, non-auto travel, ... | Consumer surplus or user benefits

Wide economic benefits

Degree and extent of congestion
Public transport and pricing revenues

Environmental impacts
Network level of service
Cost-benefit analyses

Network reliability and resilience
Social welfare statistics

Pricing revenues and equity
Risk and uncertainty analyses

Topologies Agents Agent properties Objects
Global Persons Preferences Buildings
State Households Budgets Facilities
Places (polygons) Vehicles Choices Vehicles
Places (points) Roadways Activities Signals
Agents Intersections Tours Sensors
Objects Mobility service providers Trips Roadways

Public transport operators Routes Junctions (intersections)

Jurisdictions Transit lines

Firms

Establishments

Buildings

Gateways




Distortion field
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Platform




What could go wrong?

Internal

Creeping complexity and compli-
catedness

Overfit models

Increasing computational burdens
Noise vs signal

Parameter storm

Outdated assumptions

Inaccurate forecasts

Lack of resources

External

Uncertainty
Issue evolves faster than models

Accelerating social, behavior, and
technological changes

Uncertainty

Ransomware infections
Loss of confidence
Irrelevance to policymaking
Lack of time



Forecasts vs reality

From Figure 5-1, TRB Special Report 288
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Telecommuting trends over time

Historical telecommuting data from Levinson et al. (2013)
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Changes in vehicle fleet

Autos Trucks
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Davidson diagram

Internal

»| Platform

> Model

External
Context »| Forecasts
We build forecasting We are most often
models to inform public engaged to develop
policy and investment forecasts of future

decisions. What story are  conditions. What range
we trying to tell, and who of assumptions and what

is the audience? What properties of the
are relevant performance modelled system are
measures? being tested?

Change how | use them

We can decide on the
most appropriate
modelling approaches
and methods once we
have the larger context
defined.

Once we understand the
context, analytical
requirements, and most
appropriate model(s) we
can decide upon the
best data, software, and
hardware solutions.

Improve and expand our tools
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ML methods

Deep Boltzmann Machine (DEM)

Y
Deep Belief Networks (DBN) | )
-, Deep Learning

Convolutional Neural Network (CNN)
I

Stacked Auto-Encoders

Random Forest

N
Gradient Boosting Machines (GEM)

Boosting |

Bootstrapped Aggregation (Bagging) ‘L Ensemble

—

AdaBoost

Stacked Generalization (Blending) /|

Gradient Boosted Regression Trees (GBRT) /
Radial Basis Function Network (REFN)

.

Perceptron |

Back-Propagation
_—acx-rropagation

Hopfield Network
Ridge Regression
EALLL LU

Least Absolute Shrinkage and Selection Operator (LASSO) | /
~,_ Regularization

Elastic Net

_—

Least Angle Regression (LARS) /
Cubist

Y
One Rule (OneR) |

Zero Rule (ZeroR)

e R e

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) /
Linear Regression

Ordinary Least Squares Regression (OLSR) |
Stepwise Regression

Multivariate Adaptive Regression Splines (MARS)
Locally Estimated Scatterplot Smoothing (LOESS) Y
Logistic Regression /

- Neural Networks
4, NEUra] NETWorRs

| ’
- Rule System

Regression /

Maive Bayes
Averaged One-Dependence Estimators (AODE)

Bayesian Belief Network (BEN)
Gaussian Naive Bayes
Multinomial Naive Bayes

Bayesian

Bayesian Network (BN)
Classification and Regression Tree (CART)

[ Iterative Dichotomiser 3 (ID3)

I.'.I I_('
{ Cc4.5
—
C5.0
Chi-squared Automatic Interaction Detection (CHAID)

\_ Decision 5tump

I\_ Conditional Decision Trees

| M5
f/ Principal Component Analysis (PCA)
Partial Least Squares Regression (PLSR

- —— | sammon Mapping
Multidimensional Scaling (MDS)

Machine Learning Algorithms--‘:

.
[ Projection Pursuit

Principal Component Regression (PCR)
Partial Least Squares Discriminant Analysis

\\ Dimensionality Reduction

| Mixture Discriminant Analysis (MDA)

"-\_ Quadratic Discriminant Analysis (QDA)
"\ Regularized Discriminant Analysis (RDA)
',"-.\ Flexible Discriminant Analysis (FDA)

\_ Linear Discriminant Analysis (LDA)

k-Nearest Neighbour (kNN)
Vo [ Learning Vector Quantization (LVQ)
|\ \_ Instance Based |- —
. Self-Organizing Map (SOM)

\_ Locally Weighted Learning (LWL)

k-Means

."7

[ k-Medians

\_ Clustering = —
=

T

Expectation Maximization

Source: https://eulertech.wordpress.com/2017/10/03/machine-learning-algorithms-in-one-map/
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ML in a nutshell

Knowledge + insight
Continuous updates

Training data

v 5% l 80% 10% 0% 5%

Prediction

Use case Data
and design preparation

Evaluation

machine

Testing data

Continuous
updates



Quick intercity mode choice example

Table 5.4: Long-distance travel surveys

Category

Attribute

NHTS

TSRC

Extents

Years included

Total usable observations

2002
45,118

2012-14
167,481

Variables

Mode (of travel)
Age group

Gender

Education
Employment status
Occupation
Household income
Travel party size
Trip purpose
Nights away
Distance (one-way)
Year

Percent personally paid
Annual frequency

SNSANSNSNSNANSNSNASNANSNASN

SNSNSNSNSNSN SNSNAN
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Perfect case study in imbalanced data

Table 5.5: Number of observations by intercity mode of travel

NHTS TSRC
Mode Records Percent | Records Percent
Air 3,347 7.4 7,994 4.8
Auto 40,333 89.3 | 150,456 89.8
Bus 993 2.1 3,513 2.1
Other 77 0.2 3,427 2.0
Rail 392 0.9 1,268 0.8
Ship 36 0.1 823 0.5
Total 45,118 100.0 | 167,481 100.0




Starting position

Percent incorrect predictions

oo | ot | Ranlom
Air 15.1 95.6
Auto 42 10.3
Bus 69.7 98.2

Other — 97.9
Rail 51.8 99.2
Ship 100.0 99.8

Console

Termin

al Jobs

> combined$guess <- sample(observed_shares$mode, nrow(combined), r
prob = observed_shares$share)
> result <- xtabs(~mode + guess, data = combined, na.action = na.p

+

L)

> noquote(result)

mode

>

Air
Auto
Bus
Other
Rail
Ship

noquote(paste("Random guess accuracy =
0.81

guess
Air

383
7282
1lo4

181

69

53

Auto

7209
134980 3

3150

3061

1132

732

Bus
155
141
81
78
26
20

[1] Random guess accuracy =
> modal_accuracy(combined, combined$guess)
mode Correct Incorrect pctIncorrect

vV ooul b wmNnR

Air
Auto
Bus
Other
Rail
Ship

383
134980
&1

70

10

3

7611
15476
3432
3357
1258
820

Other
161
3057
74

70

25

12

95.2
10.3
97.7
98.0
99.2
99.6

Rail
49
1212
27
28
10

3

Ship
37
784
17

9

6

3

", accuracy(result)))

16



Simple decision tree

= Air
Auto
= Bus
Other (unused)

distance >= 1185 {70 ) Rail (unused)
Console  Terminal ©  Jobs ip (unused)
~/Library/Mobile Documents/com~apple~CloudDocs/ohplease/ =

> noquote(paste("All modes: decision tree accuracy =

0 r = rty_size < 20—
[1] All modes: decision tree accuracy = 0.94 distance >= 1870 pary_stme
> source("./feature_accuracy.R") uﬁ;
> noquote(feature_accuracy(df_test, mode, pred)) 3,

mode .groups Correct Incorrect pctlncorrect

Ai d 517 180 25.8 party_size <2 distance >= 688
ir rop .
Auto
Auto  drop 7936 138 1.7 o6 or
Bus drop 54 107 66.5 4%
Other drop 10 100.0 uccupatlun = PruMgtTec group_size <2

VvV oul b wmpNnE

(%]

Rail dl"Op Q 72 100.0 Auto
Ship drop 0 10 100.0 0.48
2%

income >= 16

Auto Auto

‘65 0.66

1%
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Maybe neural net

o 6'3?'541-3 /;\' o
age_group . -0.07508 \\L‘\. . i | W
SN AN e Auto
gender .
education . Air
employed N
Bus
income .
party size . oth
er
purpose .
distance km N Rail
nights away ,
Ship

year

L



Results

Percent incorrect predictions

Mode Logit Random Decision Bagged | Neural net SEDO SEDO +
model guess tree tree (h=24) |baggedtree | random
Air 15.1 95.6 41.7 29.2 10.1 9.5 9.5
Auto 4.2 10.3 0.5 1.4 7.4 0.8 0.8
Bus 79.7 98.2 100.0 91.1 24.8 26.9 21.8
Other — 97.9 100.0 94.9 77.5 36.5 29.3
Rail 81.8 99.2 100.0 93.4 40.0 77.4 37.9
Ship 100.0 99.8 100.0 96.8 63.3 64.4 60.3
Notes:

(a) Shaded cells indicate acceptable levels of predictive accuracy
(b) Values in bolded red indicate prediction with least error for each mode of travel




SEDO (3 levels)

L1 L2 L3
(auto vs. non-auto) (air vs. non-air) (remaining modes)
= Bus
auto non _air Bus = Other
0.10 47 53 39 .38 .14 .09 Rail (unused)
100% 100% 100% Ship (unused)

(yves -distance_km < 789

non_auto
0.76
5%

distance_km >=511 ——{yes Fincome < 2
Eagegroup < 21
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Final modeling system

Synthetic
population

Scenario
definition

Journey
generation

SEDO +
. random tails

Primary
destination
choice

mode
choice

Logit-based
> mode

Journey
patterns

A

Arrival
counts

choice

Adaptive
neural net

| (n=9) mode
choice

\ 4

Polling

Journey
router




My view

How can we build evidence-based planning models that overcome:

ML limitations

Doesn’'t comprehend larger

context

Data limitations (quality,

quantity, stationarity, ..

Data silos

Stochastic

Lack of interpretability
P-hacking

Al solutionism

Ethical concerns

)

Human limitations

Biases and prejudices
Linear thinking
Mistakes

Agendas

Replication mindset
Misinterpreting results

Difficulty comprehending multi-
dimensional interactions



Scenario thinking example

s

OUR NEW MODELS #15 THE SCENARID 215
OUTLINE A FEW BEST CASE | | NOT 50 GREAT.
POSSIBLE SCENARIOS. SCENPRID.
/T ® k @
&
()
QO
i)
TME —
SCENARIO 3 \JOULD | | THEN THERES IF NOT, WE
BE PRETTY BAD. SCEI:JHRIO 4. DEFINITELY
\JE THINK ITS A WANT TO
GRAPHING ERROR. AVOID IT.

0 \
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Scenario thinking

Future of work Automation + Al Autonomous vehicles Military presence

1. Return to 2019

2. Rolling sheltering
and isolation

3. Relative calm
between cyclical
pandemics

4. Rolling pandemics
the new normal

5. A universal vaccine
or cure emerges

1. Return to 2019

2. Increased telework
and hybrid office-
remote work

3. Sustained shift
towards remote
work

1. Al winter

2. Second Machine
Age scenario with
higher unemploy-
ment

3. Automation trends
plateau

4. Al dominance

. Bureaucratic and
regulatory inertia

. AVs remain niche

products

. Widespread

adoption of AVs

. Level 5 automation

dominates travel

1. Remain at current
levels

2. Digital warfare
focus reduces
traditional forces

3. Stronger Pacific
presence to deter
Chinese expansion

4. Drones replace
human warriors




“Methods of
combining data and
models” (Figure 2.1)

From H. Wu (2021),
Theory of ensemble
forecasting — with
applications to
transport modeling,
Unpublished PhD
thesis, The University
of Sydney

(

. Feed Data

R Make Prediction

Data Source Model Forecast Ensemble Ensemble \
Forecast of
Ensembles
Single Model Procedure A > Q
Data Fusion e : > O
Ensemble - O ad
(Combine Data) i O =
Ensemble A no0 T
(Combine Models) g
9}
SOl I Y S B S -
Ensemble o\
(Combine Data, Models, v
& Ensemble Methods)
.
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Davidson diagram redux

>  Platform

Context > Forecasts
We build forecasting We are most often
models to inform public engaged to develop
policy and investment forecasts of future

decisions. What story are  conditions. What range
we trying to tell, and who of assumptions and what

is the audience? What properties of the
are relevant performance modelled system are
measures? being tested?

> Model

We can decide on the
most appropriate
modelling approaches
and methods once we
have the larger context
defined.

Once we understand the
context, analytical
requirements, and most
appropriate model(s) we
can decide upon the
best data, software, and
hardware solutions.

Convergence:

Al has
advantage

Human
leverages
the Al
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Tear it apart?

WE COMPUTERS FINALLY
BEAT YOU HUMANS AT GO.

/ YUP
SUCKS FOR YOU! \
MM HMM.

)
L

WHAT'S NEXT? WHICH

QUINTESSENTIALLY HUMAN
THING SHOULD WE (EARN
T0 DO BETTER THAN YOU?

BEING ToO COOL TO
CARE ABOUT STUFFE

)

OKAY, TLL APPLY 10,000
YEARS OF CPU TIME TO
THE INITIAL—

SOUNDS LIKE YOU'VE
ALREADY LOST.
DAMIN. THIS 15 HARD. )

15 IT? NEVER
NOTICF:ED.

v
il

-
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Highly recommended

H. Wu (2021), Theory of ensemble forecasting — with applications to transport

modeling, Unpublished PhD thesis, The University of Sydney.
https://ses.library.usyd.edu.au/handle/2123/26252

W. Li & K. M. Kockelman (2021), “How does machine learning compare to
conventional econometrics for transport data sets? A test of ML versus MLE”, Growth
and Change, in press.

https://doi.org/10.1111/grow. 12587

D. Kahneman, O. Sibony & C.R. Sunstein (2021), Noise: A Flaw in Human Judgment,
Little Brown Spark, London.

“Machine learning” online Coursera course by Andrew Ng.
https://www.coursera.org/learn/machine-learning

A. Ben-2vi (2020), Scenarios for the COVID-19 future.

https://breakwaterstrategy.com/scenarios-for-the-covid-19-future/
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