Is teleworking always a “treatment” for reducing distance traveled? Investigating the roles of telework motivations and frequency using multinomial switching regression models

Xinyi Wang and Patricia L. Mokhtarian
September 14, 2022
Technical University of Munich
Activity-Based Modeling Symposium
Seeon, Germany
Background

• Teleworking is a major lifestyle change that was widely adopted during the pandemic.

• Many employers now want workers back in the office, while employees want to keep working from home.

• Permanent teleworking options and hybrid work are trendy.

Post-COVID new normal: the long tail of COVID-generated teleworking
Some potential (COVID-induced) impacts on personal travel

• Some related mostly to WFH, others may be broader
• They are not equally likely or equally impactful
• There will be local variations

• *Multiple factors will counteract each other*

<table>
<thead>
<tr>
<th>Post-COVID changes</th>
<th>vehicle-miles</th>
<th>vehicle-trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>More WFH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on nonwork travel?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Longer commute distances</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Higher vehicle ownership</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Lower transit share</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>More long-distance auto travel?</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
Considering all the changes due to teleworking, will it reduce the total distance traveled on net?

- **Objective:** quantify and compare the impact of teleworking (TW) on (self-reported) weekly vehicle-miles driven (VMD)
- Compare for different types of workers, classified by
 - Teleworking *frequency* category (*non-, non-usual, usual*)
 - Teleworking-related *motives* (*travel-stressed or not*)
- Calculate unbiased *“treatment effects”* of teleworking
- Accounting for *self-selection biases*
Outline

Data description: online survey

Methodology: model & treatment effects

Treatment effect: general patterns by TW freq. cat. (NTW, NUTW, UTW)

Treatment effect: considering teleworking motives (esp. travel stress)

Conclusions & next steps
Online survey overview

- **Funded by Cintra (Ferrovial)**
 - Impact of COVID-influenced TW on toll revenues

- **Survey focus**
 - Telework and work patterns before, during, and after COVID-19

- **Study areas**
 - Dallas-Fort Worth-Arlington (DFA)
 - Washington-Arlington-Alexandria (WAA)

- **Respondent sources**
 - Cintra database (DB): current and potential customers who consented to be surveyed
 - Online panel (OP): three vendor companies

- **Data collection Feb. 24 - April 30, 2021**
Sample weights

- Sample was weighted (by region) to reflect pop. distributions on:
 - Gender
 - Age
 - Race
 - Ethnicity
 - Education
 - HH income
 - Employment status
 - Pre-COVID shares of
 - Non-TWers
 - “Non-usual” TWers (< 3 days/wk)
 - “Usual” TWers (3+ days/wk)
Working sample size N = 1,584

- **Data inclusion criteria**
 - Employed, but not self-employed
 - One-way commute distance ≤ 70 mi
 - Weekly VMD ≤ 700 mi

- **Teleworking frequency**
 - **Non-TWer**: never teleworks
 - **Non-usual TWer**: teleworks < 3 times/wk
 - **Usual TWer**: teleworks ≥ 3 times/wk

Because of this skewed distribution, we log-transformed VMD → \(\ln(VMD+1) \) to improve normality.
A tale of two types of travel diary studies of TWing

<table>
<thead>
<tr>
<th>TW program evaluations</th>
<th>General travel surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small, unrepresentative samples</td>
<td>Large, representative samples</td>
</tr>
<tr>
<td>Focused on TWing</td>
<td>No emphasis on TWing</td>
</tr>
<tr>
<td>Panel data (before-after)</td>
<td>Cross-sectional data</td>
</tr>
<tr>
<td>Found travel reductions (TW decreased travel)</td>
<td>Finding complementarity (TW increases travel)</td>
</tr>
</tbody>
</table>

Why the difference?

- **Our suspicion:** TWers differed from “observationally equivalent” non-TWers (in ways that caused them to travel more) *even before starting to TW*
 - In more autonomous occupations?
 - More work-related travel?
 - More active non-work lifestyle?
 - More risk-taking, adventure-seeking?
- What if TWing reduced their travel from “far above average” to merely “above average”?
- In a cross-sectional study, it would appear only that TWers travel more than non-TWers, implying complementarity
Longitudinal v. cross-sectional inference

in cross-sectional studies, we need the missing counterfactual

longitudinal estimate of impact

\[Y_{1\,TW} - Y_{0\,TW} \] (reduction)

\[Y_{0\,TW} \approx Y_{1\,NTW} \]
Enter the endogenous switching regression model (ESRM)

• Designed to deal with self-selection bias...
 • Unobserved factors that influence teleworking adoption & frequency may also influence how much a person drives. Again, for example:
 • In more autonomous occupations?
 • More work-related travel? More active non-work lifestyle?
 • More risk-taking, adventure-seeking?
 • In such cases, a conventional regression approach will yield biased parameters
• ... in a cross-sectional setting, where we only observe people in one state
• And want to obtain an unbiased estimate of the effect of treatment (TWing frequency, here) on the outcome of interest (VMD, here)
• Traditional ESRM only deals with binary states: treated or untreated
• We have three states: not TWing, non-usual TWing, and usual TWing
Key components of a *binary selection* ESRM

- **A selection model** (binary probit):
 - *Telework adoption propensity* = $Wy + \varepsilon$
 - W = explanatory variables, y = coefficients, ε = error term

- **Two outcome models** (linear regressions):
 - If teleworking ("treated"): $\ln(VMD + 1) = X\beta_1 + \eta_1$
 - If not teleworking ("untreated"): $\ln(VMD + 1) = X\beta_2 + \eta_2$
 - X = explanatory variables, β_1, β_2 = coefficients, η_1, η_2 = error terms

- **Trivariate normal assumption** for the error term distribution:
 $$\begin{bmatrix} \varepsilon \\ \eta_1 \\ \eta_2 \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_1 \sigma_1 & \rho_2 \sigma_2 \\ \rho_1 \sigma_1 & \sigma_1^2 & 0 \\ \rho_2 \sigma_2 & 0 & \sigma_2^2 \end{bmatrix} \right)$$
Multinomial logit switching regression (MNLSR) model

• A selection model (multinomial logit, MNL):
 • Probability of TWing category t being selected:
 \[p^t = P \left(U_t \geq \max_{t' \in T, t' \neq t} U_{t'} \right) = \frac{e^{V_t}}{\sum_{t' \in T} e^{V_{t'}}} \]

 \[U_t = V_t + \varepsilon_t = W\gamma_t + \varepsilon_t, \quad t, t' \in T = \{N, NU, U\} \]

 \[W = \text{explanatory variables, } \gamma_t = \text{coefficients, } \varepsilon_t \sim \text{i.i.d. } \text{Gumbel} \left(0, \frac{\lambda^2}{2}\right) \]

• An integrated outcome model with group-specific coefficients (linear regression):
 \[\ln(VMD + 1) = 1_N(t) \cdot X_N \beta_N + 1_{NU}(t) \cdot X_{NU} \beta_{NU} + 1_U(t) \cdot X_U \beta_U + \eta \]

 \[X_N, X_{NU}, X_U = \text{explanatory variables, } \beta_N, \beta_{NU}, \beta_U = \text{coefficients, } \eta \sim N(0, \sigma^2) \]

• Connecting the selection and outcome models:
 \[\mathbb{E}[\eta \mid t] = \sum_{t' \in T} \alpha^{t'} \cdot \frac{p^{t'}}{1 - p^{t'}} \ln P^{t'} - \alpha^t \cdot \ln P^t \]

 \[\alpha^{t'} \text{ is the scaled correlation between } \eta \text{ and } \varepsilon_{t'} \]

Dubin & McFadden 1984; Dubin 1982
Calculation of treatment effects (TEs)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Observed untreated group: NTWer</th>
<th>Observed NUTW-treated group: NUTWer</th>
<th>Observed UTW-treated group: UTWer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: If untreated (i.e., if a NTWer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: If NUTW-treated (i.e., if a NUTWer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: If UTW-treated (i.e., if a UTWer)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{B-A: NUTW-TE on the untreated} \]
\[\text{C-A: UTW-TE on the untreated} \]

\[\text{C-B: UTW- and NUTW-TE diff. on the untreated} \]

\(\text{fact.} = \text{factual} \)
\(\text{cfact.} = \text{counterfactual} \)
Focusing on the TEs (compared to not TWing) for the two observed TWer groups:

- • = factual
- ○ = (NTW) counterfactual

- VMD of non-usual TWers (16% of the sample) barely declines
- VMD of usual TWers (32% of the sample) declines substantially
- On net, then, VMD declines for TWers
So far, so good, but…

• In preliminary explorations, counterintuitive results kept popping up
 • Reminiscent of various unexpected results when using similar methods to quantify the **effect of the built environment on travel behavior**, in the presence of **residential self-selection**

• Going back to the original **conceptual** rationale of the ESRM:
 • “The latent index [of the selection model] has the interpretation of the **expected net utility derived from receiving treatment**; individuals participate in a program [are treated] if net utility is positive (or nonnegative) and do not participate if net utility is negative” (Heckman et al., 2001, p. 211).
 • “Embodied in this concept [selectivity bias] is the notion that **agents choose among competing alternatives at least in part on the basis of anticipated incremental returns**. Rationality dictates that persons choosing a given alternative do so because they … [expect] a more favorable return than those who choose otherwise…” (Nakosteen and Zimmer, 1980, p. 840)
So far, so good, but... (cont’d)

• In classic applications, the outcome equation explicitly measures the return (or benefit) of interest
 • In economics, the treatment may be “getting a college education”, and the outcome is wages
 • In agricultural economics, the treatment may be a new fertilizer, and the outcome is crop yield
 • In such cases, it’s logical to presume that people choose the treatment (or decline it) if they think it will improve their return

• But is VMD the “return” that people necessarily want to improve when they decide whether or not to telework?
Is VMD the best measure of benefit for all TWers?

• For **travel-stressed individuals**, the key teleworking motive may relate to reducing travel – VMD is likely a good measure of the teleworking outcome

• However, reducing travel is not the only motive for all TWers

• In another study, we identified five teleworking-related motives by applying a latent class TW frequency model (Wang et al., 2022)

 • Flexibility-motivated
 • Travel-motivated
 • Career-motivated
 • Workplace-discouraged
 • Family-motivated
Is VMD the best measure of benefit for all TWers? (cont’d)

• TWers with other motives may have different travel patterns compared to travel-stressed TWers. For example:
 • *Those who TW to have more time for family duties* may have more/longer non-work trips
 • *Those who TW to relocate to suburban areas* may commute less often, but with longer distances

• Mixing all TWers together will mask the heterogeneity residing in the VMD outcome of the TWing treatment

• Based on attitudes, we separated the full working sample into
 • Travel-stressed (N=836 [53%], avg. VMD = 122.9 mi)
 • Non-travel-stressed (N=748 [47%], avg. VMD = 105.8 mi)
Comparison of both models (travel-stressed and non)

Treatment effect summary (travel-stressed)

- **Type**
 - Non-TW (N=230)
 - Non-usual TW (N=189)
 - Usual TW (N=417)

Treatment effect summary (non-travel-stressed)

- **Type**
 - Non-TW (N=305)
 - Non-usual TW (N=133)
 - Usual TW (N=310)
Travel-stressed model (treatments: NUTW & UTW)

- Treatment effect (travel-stressed)
 - NUTW-treated vs. untreated
 - UTW-treated vs. untreated
 - UTW-treated vs. NUTW-treated

Graphs:
- In(VMD+1) when TWing < 3 times/week
- In(VMD+1) when not TWing
- Ref. line: VMD when NUTW-treated = VMD when untreated
 - fact.: factual; cfact.: counterfactual

Legend:
- Non-TWer (N=230)
- Non-usual TWer (N=189)
- Usual TWer (N=417)
Non-travel-stressed model (treatments: NUTW & UTW)
Conclusions (1)

- This study quantifies and compares the impact of teleworking on vehicle-miles driven (VMD) for different types of teleworkers.
 - By teleworking frequency categories: non-TWer, non-usual TWer, usual TWer.
 - By teleworking-related motive: travel-stressed or not.

- In all models, TWing reduced VMD on average, for its adopters.
 - So the cross-sectional results can be consistent with the longitudinal ones, when sample selection is accounted for.

- TWing reduced VMD most for travel-stressed TWers (53% of the sample).

- A non-trivial number of non-travel-stressed non-usual TWers increased VMD after beginning to TW.
Conclusions (2)

• What should we do when we suspect a mismatch between the outcome variable we are interested in, and the returns (benefit) the respondent is interested in?

• Assuming the model shows even one significant correlation of error terms, we still have a selection bias to correct!
 • So we should still use the endogenous switching approach

• However, awareness of this issue may
 • Help explain some counterintuitive results
 • Point to a segmentation or respecification that would be more meaningful
Next steps

- **Back-transform** $\ln(VMD+1)$ to the raw scale, i.e., VMD
 - May not have a neat analytical expression as is the case for the classic binary probit ESRM (Yen & Rosinski, 2008)
 - Thus, we expect to apply numerical integration

- Develop **ordinal probit switching regression models**
 - Aligning with the ordinal nature of teleworking frequency categories
Thank you!

patmokh@gatech.edu

xinyi.wang@gatech.edu

Acknowledgement:
The study is funded by the private transport company Cintra, as an independent research investigation. Any opinions, findings, and conclusions or recommendations expressed in this study are those of the authors and do not necessarily reflect the views of the sponsor organization.
References