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Background

• Teleworking is a major lifestyle 
change that was widely adopted 
during the pandemic.

• Many employers now want workers 
back in the office, while employees
want to keep working from home.

• Permanent teleworking options 
and hybrid work are trendy.

20%

71%

Pre-COVID During-COVID

Share of “usual” TWers among 
TWing-feasible workers

Source: Parker, Horowitz, & Arditi (2020)

Post-COVID new normal: 
the long tail of COVID-generated teleworking



Some potential (COVID-induced) impacts on personal 
travel

• Some related mostly to WFH, others may be broader
• They are not equally likely or equally impactful
• There will be local variations 
• Multiple factors will counteract each other
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Post-COVID changes vehicle-miles vehicle-trips
More WFH
Impact on nonwork travel?
Longer commute distances
Higher vehicle ownership
Lower transit share
More long-distance auto travel?



• Objective: quantify and compare the impact of teleworking  
(TW) on (self-reported) weekly vehicle-miles driven (VMD)

• Compare for different types of workers, classified by
• Teleworking frequency category (non-, non-usual, usual)

• Teleworking-related motives (travel-stressed or not)

• Calculate unbiased “treatment effects” of teleworking
• Accounting for self-selection biases

Considering all the changes due to teleworking, will it 
reduce the total distance traveled on net?



Outline

Data description: online survey

Methodology: model & treatment effects

Treatment effect: general patterns by TW freq. cat. (NTW, NUTW, UTW)

Treatment effect: considering teleworking motives (esp. travel stress)

Conclusions & next steps



Online survey overview
• Funded by Cintra (Ferrovial)

• Impact of COVID-influenced TW on toll revenues 
• Survey focus

• Telework and work patterns before, during, and 
after COVID-19

• Study areas
• Dallas-Fort Worth-Arlington (DFA)
• Washington-Arlington-Alexandria (WAA)

• Respondent sources
• Cintra database (DB): current and potential 

customers who consented to be surveyed
• Online panel (OP):  three vendor companies

• Data collection Feb. 24 - April 30, 2021



• Sample was weighted (by region) to 
reflect pop. distributions on:

• Gender
• Age
• Race
• Ethnicity
• Education
• HH income
• Employment status
• Pre-COVID shares of 

• Non-TWers
• “Non-usual” TWers (< 3 days/wk)
• “Usual” TWers (3+ days/wk)

Sample weights



Working sample size N = 1,584
• Data inclusion criteria

• Employed, but not self-employed
• One-way commute distance ≤ 70 mi
• Weekly VMD ≤ 700 mi

Weekly VMD
Mean = 114.4 miles

• Teleworking frequency
• Non-TWer: never teleworks
• Non-usual TWer: teleworks < 3 times/wk
• Usual TWer: teleworks ≥ 3 times/wk

Weekly VMD (miles)

because of this skewed distribu-
tion, we log-transformed VMD →
ln(VMD+1) to improve normality

TWer shares (weighted)



A tale of two types of travel diary studies of TWing
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Mokhtarian et al. 1995; He & Hu 2015; Kim et al. 2015; Zhu 2013; Zhu & Mason 2014

TW program 
evaluations

• Early (1980s – 1990s)
• Small, unrepresentative 

samples
• Focused on TWing
• Panel data (before-after)
• Found travel reductions 

(TW decreased travel)

General travel 
surveys

• Later (2000s – 2010s)
• Large, representative 

samples
• No emphasis on TWing
• Cross-sectional data
• Finding complementarity 

(TW increases travel)



Why the difference?

• Our suspicion: TWers differed from “observationally equivalent” 
non-TWers (in ways that caused them to travel more) even before 
starting to TW

• In more autonomous occupations?
• More work-related travel?
• More active non-work lifestyle?
• More risk-taking, adventure-seeking?

• What if TWing reduced their travel from “far above average” to 
merely “above average”?

• In a cross-sectional study, it would appear only that TWers travel 
more than non-TWers, implying complementarity
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Longitudinal v. cross-sectional inference
in cross-sectional studies,

we need the missing
counterfactual



Enter the endogenous switching regression model (ESRM)

• Designed to deal with self-selection bias…
• Unobserved factors that influence teleworking adoption & frequency may also 

influence how much a person drives. Again, for example:
• In more autonomous occupations?
• More work-related travel? More active non-work lifestyle?
• More risk-taking, adventure-seeking?

• In such cases, a conventional regression approach will yield biased parameters
• … in a cross-sectional setting, where we only observe people in one state
• And want to obtain an unbiased estimate of the effect of treatment

(TWing frequency, here) on the outcome of interest (VMD, here)
• Traditional ESRM only deals with binary states: treated or untreated
• We have three states: not TWing, non-usual TWing, and usual TWing



Key components of a binary selection ESRM

• A selection model (binary probit): 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑾𝑾𝜸𝜸 + 𝜀𝜀
• 𝑾𝑾 = explanatory variables, 𝜸𝜸 = coefficients, 𝜀𝜀 = error term

• Two outcome models (linear regressions): 
• If teleworking (“treated”): ln(𝑉𝑉𝑉𝑉𝑉𝑉 + 1) = 𝑿𝑿𝜷𝜷𝟏𝟏 + 𝜂𝜂1
• If not teleworking (“untreated”): ln(𝑉𝑉𝑉𝑉𝑉𝑉 + 1) = 𝑿𝑿𝜷𝜷𝟐𝟐 + 𝜂𝜂2
• 𝑿𝑿 = explanatory variables, 𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐 = coefficients, 𝜂𝜂1, 𝜂𝜂2= error terms

• Trivariate normal assumption for the error term distribution:
𝜀𝜀
𝜂𝜂1
𝜂𝜂2

~ 𝑁𝑁
0
0
0

,
1 𝜌𝜌1𝜎𝜎1 𝜌𝜌2𝜎𝜎2

𝜌𝜌1𝜎𝜎1 𝜎𝜎12 0
𝜌𝜌2𝜎𝜎2 0 𝜎𝜎22



Multinomial logit switching regression (MNLSR) model
• A selection model (multinomial logit, MNL): 

• Probability of TWing category 𝑡𝑡 being selected: 

𝑃𝑃𝑡𝑡 = 𝑃𝑃 𝑈𝑈𝑡𝑡 ≥ max
𝑡𝑡𝑡∈𝑇𝑇
𝑡𝑡≠𝑡𝑡𝑡

𝑈𝑈𝑡𝑡𝑡 =
𝑒𝑒𝑉𝑉𝑡𝑡

∑𝑡𝑡𝑡∈𝑇𝑇 𝑒𝑒𝑉𝑉𝑡𝑡𝑡

• 𝑈𝑈𝑡𝑡 = 𝑉𝑉𝑡𝑡 + 𝜀𝜀𝑡𝑡 = 𝑾𝑾𝜸𝜸𝑡𝑡 + 𝜀𝜀𝑡𝑡,     𝑡𝑡, 𝑡𝑡′ ∈ 𝑇𝑇 = 𝑁𝑁,𝑁𝑁𝑁𝑁,𝑈𝑈

• 𝑾𝑾 = explanatory variables, 𝜸𝜸𝑡𝑡 = coefficients , 𝜖𝜖𝑡𝑡 ~i.i.d.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 0, 𝜆𝜆
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• An integrated outcome model with group-specific coefficients (linear regression): 
ln(𝑉𝑉𝑉𝑉𝑉𝑉 + 1) = 𝟏𝟏𝑁𝑁 𝑡𝑡 � 𝑿𝑿𝑁𝑁𝜷𝜷𝑁𝑁 + 𝟏𝟏𝑁𝑁𝑈𝑈 𝑡𝑡 � 𝑿𝑿𝑁𝑁𝑈𝑈𝜷𝜷𝑁𝑁𝑈𝑈 + 𝟏𝟏𝑈𝑈 𝑡𝑡 � 𝑿𝑿𝑈𝑈𝜷𝜷𝑈𝑈 + 𝜂𝜂

• 𝑿𝑿𝑁𝑁,𝑿𝑿𝑁𝑁𝑁𝑁, 𝑿𝑿𝑈𝑈= explanatory variables, 𝜷𝜷𝑁𝑁,𝜷𝜷𝑁𝑁𝑁𝑁,𝜷𝜷𝑈𝑈= coefficients, 𝜂𝜂 ~ 𝑁𝑁 (0,𝜎𝜎2)

• Connecting the selection and outcome models:

𝔼𝔼 𝜂𝜂 𝑡𝑡 = ∑𝑡𝑡′∈𝑇𝑇
𝑡𝑡′≠𝑡𝑡

𝛼𝛼𝑡𝑡′ � 𝑃𝑃𝑡𝑡
′

1−𝑃𝑃𝑡𝑡′
𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡′ − 𝛼𝛼𝑡𝑡 � 𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡

• 𝛼𝛼𝑡𝑡′ is the scaled correlation between 𝜂𝜂 and 𝜖𝜖𝑡𝑡′ Dubin & McFadden 1984; Dubin 1982  



Calculation of treatment effects (TEs)

Treatment

Observed
untreated group:

NTWer

Observed
NUTW-treated group: 

NUTWer

Observed
UTW-treated group: 

UTWer
A: If untreated 

(i.e., if a NTWer)
fact. ln(VMD+1)

𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵]
cfact. ln(VMD+1)

𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵]
cfact. ln(VMD+1)

𝔼𝔼{𝑈𝑈𝑈𝑈𝑈𝑈} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵]

B: If NUTW-treated 
(i.e., if a NUTWer)

cfact. ln(VMD+1)
𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵]

fact. ln(VMD+1)
𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵]

cfact. ln(VMD+1)
𝔼𝔼{𝑈𝑈𝑈𝑈𝑈𝑈} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵]

C: If UTW-treated 
(i.e., if a UTWer)

cfact. ln(VMD+1)
𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑼𝑼𝑼𝑼𝑼𝑼]

cfact. ln(VMD+1)
𝔼𝔼{𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁} l𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝑼𝑼𝑼𝑼𝑼𝑼]

fact. ln(VMD+1)
𝔼𝔼{𝑈𝑈𝑈𝑈𝑈𝑈}[l𝑛𝑛(𝑉𝑉𝑉𝑉𝑉𝑉 + 1)|𝑼𝑼𝑼𝑼𝑼𝑼]

B-A NUTW-TE
on the untreated

NUTW-TE
on the NUTW-treated

NUTW-TE
on the UTW-treated

C-A UTW-TE 
on the untreated

UTW-TE 
on the NUTW-treated

UTW-TE 
on the UTW-treated

C-B UTW- and NUTW-TE diff. 
on the untreated

UTW- and NUTW-TE diff. 
on the NUTW-treated

UTW- and NUTW-TE diff. 
on the UTW-treated

fact. = factual
cfact. = counterfactual



Full sample model (2 treatments: NUTWing & UTWing)

• Focusing on the TEs (compared to not 
TWing) for the two observed TWer groups:

• ,      = factual

• ,      = (NTW) counterfactual

• VMD of non-usual TWers (16% of the 
sample) barely declines 

• VMD of usual TWers (32% of the sample) 
declines substantially

• On net, then, VMD declines for TWers



So far, so good, but…
• In preliminary explorations, counterintuitive results kept popping up

• Reminiscent of various unexpected results when using similar methods to 
quantify the effect of the built environment on travel behavior, in the presence 
of residential self-selection

• Going back to the original conceptual rationale of the ESRM:
• “The latent index [of the selection model] has the interpretation of the expected 

net utility derived from receiving treatment; individuals participate in a program 
[are treated] if net utility is positive (or nonnegative) and do not participate if 
net utility is negative” (Heckman et al., 2001, p. 211). 

• “Embodied in this concept [selectivity bias] is the notion that agents choose 
among competing alternatives at least in part on the basis of anticipated 
incremental returns. Rationality dictates that persons choosing a given 
alternative do so because they … [expect] a more favorable return than those 
who choose otherwise… (Nakosteen and Zimmer, 1980, p. 840)



So far, so good, but… (cont’d)

• In classic applications, the outcome equation explicitly measures the 
return (or benefit) of interest

• In economics, the treatment may be “getting a college education”, and the 
outcome is wages

• In agricultural economics, the treatment may be a new fertilizer, and the 
outcome is crop yield

• In such cases, it’s logical to presume that people choose the treatment (or 
decline it) if they think it will improve their return

• But is VMD the “return” that people necessarily want to improve when 
they decide whether or not to telework?



Is VMD the best measure of benefit for all TWers?

• For travel-stressed individuals, the key teleworking motive may 
relate to reducing travel – VMD is likely a good measure of the 
teleworking outcome

• However, reducing travel is not the only motive for all TWers
• In another study, we identified five teleworking-related motives by 

applying a latent class TW frequency model (Wang et al., 2022)
• Flexibility-motivated
• Travel-motivated 
• Career-motivated
• Workplace-discouraged
• Family-motivated



Is VMD the best measure of benefit for all TWers? (cont’d)

• TWers with other motives may have different travel patterns
compared to travel-stressed TWers. For example:

• Those who TW to have more time for family duties may have more/ 
longer non-work trips

• Those who TW to relocate to suburban areas may commute less often, 
but with longer distances

• Mixing all TWers together will mask the heterogeneity residing 
in the VMD outcome of the TWing treatment

• Based on attitudes, we separated the full working sample into 
• Travel-stressed (N=836 [53%], avg. VMD = 122.9 mi)

• Non-travel-stressed (N=748 [47%] , avg. VMD = 105.8 mi)



Comparison of both models (travel-stressed and non)



Travel-stressed model (treatments: NUTW & UTW)



Non-travel-stressed model (treatments: NUTW & UTW)



• This study quantifies and compares the impact of teleworking on 
vehicle-miles driven (VMD) for different types of teleworkers

• By teleworking frequency categories: non-TWer, non-usual TWer, usual TWer
• By teleworking-related motive: travel-stressed or not

• In all models, TWing reduced VMD on average, for its adopters
• So the cross-sectional results can be consistent with the longitudinal ones, 

when sample selection is accounted for

• TWing reduced VMD most for travel-stressed TWers (53% of the 
sample)

• A non-trivial number of non-travel-stressed non-usual TWers
increased VMD after beginning to TW

Conclusions (1)



• What should we do when we suspect a mismatch between the 
outcome variable we are interested in, and the returns (benefit) the 
respondent is interested in?

• Assuming the model shows even one significant correlation of error 
terms, we still have a selection bias to correct!

• So we should still use the endogenous switching approach

• However, awareness of this issue may
• Help explain some counterintuitive results

• Point to a segmentation or respecification that would be more meaningful 

Conclusions (2)



• Back-transform ln(VMD+1) to the raw scale, i.e., VMD
• May not have a neat analytical expression as is the case for the classic binary 

probit ESRM (Yen & Rosinski, 2008)

• Thus, we expect to apply numerical integration

• Develop ordinal probit switching regression models
• Aligning with the ordinal nature of teleworking frequency categories

Next steps



Thank you!
patmokh@gatech.edu

xinyi.wang@gatech.edu
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