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ADAPTS/POLARIS implements an agent-based activity-travel demand framework using
variety of statistical/behavioral models

 ADAPTS models dynamic activity-travel engagement:

* Generation: deciding what needs to be done on a given day
* Activities are generated continuously on-the fly
* Based on needs growth over time, household requirements, mandatory acts...
* Planning: determining the who/where/why/when/how of activity episodes
* Attribute choices made dynamically and updated throughout the simulation
» Dependent on the order / priority in which activities are planned
* Scheduling: maintaining a consistent daily activity-travel plan
* Order in which activities are planned and executed is reflected
 Activities (including travel, work, charging...) compete for time resources
* Intra-person, intra-household, resource scheduling, all accounted for
* Execution: moving from planning to physical moves on the simulated network
* Continuous integration with multi-modal network model

* An agent-based execution — persistent agents moving through networks based on their individual
choices.



ADAPTS/POLARIS, initiated by UIC TransLab, has been further developed by
Argonne National Lab to address key research questions

Originally proposed:
Flexible activity planning/scheduling

Improve model integration / Enhance
Interoperability among existing tools

Model technology / ITS Systems for
planning applications

Core Goals of the Effort:

and Protocols
Modeling Environment

to the Transportation Community
Common Modeling
Maintain

Modeling

and Modularity

FTA funding to:

1. Understand transit rider behavior and
response to disruptions

2. Develop system short-term forecasting tools

from big data sources
3. Simulation for transit planning and response
and recovery to emergencies

Multi-modal

* Freight and logistics

* Ridesharing, car-sharing
* Enhanced bus service

* Bike-sharing

* Intermodal travel

* Modal energy use

Vehicles and Infrastructure
* Refueling infrastructure
* Traffic management center
* Connected signals

* Bike-share stations
* Bike and walk lanes

Connectivity and Automation

e Autonomous vehicles / fleets

ACC / CACC

Transit signal priority
Eco-approach / departure
Traveler information

Impacts of level 3/4/5 automation

Urban Science

* Data collection from vehicles and
infrastructure

* Supporting future growth plans

* Landuse

Decision science

* Understanding mode choice behavior

* Providing useful information to travelers
* Incentivizing energy efficiency

* Increasing ‘choice’ ridership

* CAV impact on behavior



Transportation Systems Simulator Design...

( Long term choices




POLARIS Workflow

* Key modeling features: Computational performance:

Full-featured activity-based model * Fully agent-based
Integrated demand, network * Integration with external optimization solvers

assighment and traffic flow (CPLEX, Gurobi, GLPK)

Includes freight shipments and local * High-performance C++ codebase
deliveries e Large-scale models with 100% of agents

High-fidelity vehicle energy *  4-6 hr runtime for up to 10 million agents
consumption * Cross-platform implementation can run on
EV charging and grid integration Linux HPC clusters

Connection to UrbanSIM land use

Traveler behavior impacts of VOTT
across many choices
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Inputs for Population,

Traffic analysis zones:
MPOs (base and forecast):
Population
Employment by category
Housing
Land use by type (civic, residential, business,...)
Network skims

Special generators

Employment
density
I 10252568
B 2s65-4772
W a72-78%
B 7856 - 12901
B 12991-20411
W 20411-43525
W 525 - 01681

Census data (Summary file, ACS...):
Marginal population distributions
Population microdata
Economic census
Forecasts (UrbanSim)

Vehicles, and Land Use

Location / Parcel data
Land use category
Size / sq. footage
Use restrictions
Parking & access
Forecasts

HH Surveys (GPS and diary based)
Activity engagement

Routing
Travel and activity times
Travel party
Mode choice

HH demographics
Commute patterns

Advanced behavior surveys: Vehicle purchase,
travel attitudes, experiences, ...

» Stated preference for travel decisions
* New technology purchases

* Experiences / familiarity with new tech
* Travel attitudes and personality factors

Vehicle distributions
Segment by powertrain by technology
Detailed location data (zip code, TAZ,...)
Advanced technology adoption
Forecasts by detailed demographics
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Detailed Inputs for Network and Mode Choice Modeling

Taxi and TNC data :
Transit network data: : gludre Pickup / drop-off Red light / speed cameras
. ; o DO PO i
. £ 5 o Wait times
* Stop locations OP/YIEIE Slg Vehicles
. Schgdule and fares i : ST A Driver surveys
* Vehicles i Passenger info
D e 3 O O o
rl J_/ =1 1
T & ‘ =H DS N
LE == 2
S _ i S £ Rz Bike share:
SN ek Z LA S : * Volume
} 14 ; 4
ﬁgﬁ_ 9 i 5 1181 * Ridership
1A
o

transit_ops #{;— =] ; :-
* CTA T S A DS Ex & . .
° METRA B SRR, ip Aty = i y Vehicle charging
= = Rig] : & .
o PACE 4%—55_4 £ 7;1,; 5 231} s s 2 SRR (i L Volume / capacity
tranci i e f:‘_— 7l 5 4O NN & s Charging events
ransit_links j A = fii | i ! = ® Camera detectors L é & ® .
— ' YRR A ® Hwy Loop detectors A \ PrOfI|e
 METRA - | EREN “ Divvy_Bicycle_Stations o S b 41L& )
— pace i £ * #_charging_stations 5 A Location (EVI-PRO)
— CMAPCommercialParkingInventory + = & AR &
link &
Road ne 0 0 atio PO = < #
Transit Data: Agencies, MPO DOT, Open source
« Automated passenger counts . e Traffic counts: State DOT, traffic studies,
 Fare card data FEG. SaEEE. EEEETE permanent counters, etc. Parking inventory
e AVL data r Neralka: e leestifie w o B =t S TR * Type and ownership
On—boa rd i_:;gemomCTAS(zlion A::z:’: A:;:Fsr A:E‘zlg O e . ‘ o = : s " < ° Fees
95th/Dan Ryan CTA Station 34467 28188 62655 * : g = : .
surveys o T e e 5557 35 | 3532 e restrictio I EmEtE a0 * Volume and capacity
Midw:yCTAZlalian 1:824:7 1:516:0 3:340:7 D & = ':4
Elgin Terminal/Elgin Transportation Centr 1,400.1  969.7 2,369.8 D e d d e

Jefferson Park CTA Station 15764 1,228 2,799.2




Behavior Models Example: Activity Time-of-day and Duration Choice Models Allow
Travelers to Respond to Changing Traffic Conditions and Opportunities

1 Variability | TOD choice for
. . . . t Travel time | TOD choi morning and afternoon
* Model jointly estimated for start time s i i
. S i \%m Elasticaty { ol = Cross Elasticaty
and duration ik s S N
* Significant copula parameters: joint ST T el | [ ODchocetor |
model valid D e BN
| Afternoon TOD choice w o S fo;‘l';” il i6 e
* Implemented as a parameterized e NS
C h (0] | ce e e :.:::m poskhiowe 3'5,3 ‘;’,3, 2 1 Scheduled activities in
Night time 0.11 0.53 : afternoon
o . ﬂﬂﬁi?;fi' g (7); ;gg g:i 1 Morning TOD choice
* Sensitive to key scenario parameters — MR AR A G 08 & 33 )
i.e. travel times and variability, e o \
. . e . ;‘m‘::':k : 333; : 1 Afternoon van'abilify
act |V|ty pressure, etc. — S Afocnsethow . o» . | 1Alother TODchoice
Night time - -0.06 -

Flexible, endogenous timing of all activities in the model,

that is responsive to network conditions,
captures realistic choice behavior...




Behavioral Models Example: Mode Choice Specification to Capture Multi-
modal Decisions and New Mobility Options

* Updated ADAPTS/POLARIS mode choice model to include TNC:
* Leveraged benefits of large household travel survey

Key model results:

* Combined with smaller, choice-based sample Waiting more burdensome than trave“ng
* Identified and addressed differences between survey datasets Taxi has hlgh value, followed by drive
*  Constructed full multi-modal options using POLARIS router Ral| has |OW value due to Signiﬁcant in-vehicle

* (Cross)-Nested choice structure allows significant flexibility in modal substitution patterns

Personal car

Drive Get Rlde
from HH
member

multi-tasking

ravel component | 50000 30000 75000 12000

Drive  time in motion $15.36 $18.59 $20.24 $21.09
Drive  parking "vot" $66.66 $80.68 $87.85 $91.53
Taxi time in motion $59.37 $71.86 $78.25 $81.53
RailDrv IVTT + Ac/Eg $3.27 $3.96 9$4.31 $4.49
RailDrv Waiting time $5.04 $6.10 $6.64 $6.92
Hired Non_ RailWlk IVTT + AC/Eg $2.53 $3.06 $3.33 $3.47
Bus Rail motorized RailWlk Waiting time $399 $4.83 $526 $5.48
XitDrv  total time (IV,Ac/Eg,Wait) $1.70 $2.06 $2.25 $2.34
/\ /\ XitWlk  IVTT + Ac/Eg N1.04 $13.36 $14.55 $15.16
XitWlk  Waiting time 8\16 $11.08 $12.07 $12.57
Taxi PNR Walk PNR Walk Bike  Walk
Access Access TNC / auto access to transit
Alone Pooled

NN

Conv. Automated




Data

- Chicago Metropolitan Agency for Planning
(CMAP) Travel Tracker Survey conducted on
2018-109.

* Including approximately 14,000 households’ activity and
travel records for 24 hours.

- Google Maps Direction APl including travel time
for Transit, Walk and Bike modes

- POLARIS simulated data including travel time
and costs for Auto and park & ride modes.

9/13/22

Commute
N=11442

TNC @ 1.16%
& 2.34%
Walk to transit | - J 22.40%
[ J 18.10%
Auto Drive J 35.98%
&3 2.93%
Walk E , J 17.09%

0.00% 10.00% 20.00% 30.00% 40.00%

Non-commute
N=15931

TNC @0.97%
#0.36%
Walk to transit G 8.88%
l J 23.96%
Auto Drive | J 46.60%
& 1.95%
Walk Gy 17.28%

0.00%10.00920.00%30.00%0.00950.00%
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Telecommuting Model Development

Data source

Travel Tracker Survey conducted by the
Chicago Metropolitan Agency for Planning
(CMAP)

Includes complete travel information of
10,500 households who were asked to report
their travel diary for one or two randomly
assigned days

Information collected

* Socio demographics (e.g., age, gender,
income, etc.

* Household features (e.g., number of
vehicles, residential location, etc.)

* Trip-related characteristics (mode, time-of-
day, trip duration, etc.)

* Activity-related features (e.g., activity type
and duration, location, etc.)

Do not telecommute Once a week
88.57% 4.29%

Telecommute

11.43% Once a month

3.91%

Distribution of telecommuting frequency in the sample
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Telecommuting Model Development

= A set of land-use and built-environment measures is calculated at the level of census
tracts based on the available information about individuals’ residential and work

locations.

= A Zero-inflated hierarchical ordered probit model with correlated errors estimated

telecommuting adoption and frequency.

N Population Density
Persons per square mile
0-1000
1000 - 2000
[ 2000 - 5000
I 5000 - 10000
I 10000+

0 |5 10 Miles
| |

Housing Density

Houses per square mile
0-500
500 - 1000

[ 1000 - 2000

I 2000 - 5000

I 5000+

i

0 |5 10 Miles
| O )

N Employment Density
Employees per square mile
0-500
500 - 1000
[ 1000 - 2000
I 2000 - 10000
I 10000+

0 5 10 Mies
I

Distribution of derived built-environment factors in Chicago Metropolitan Area
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[ ] [ ] [ ]
I e | e CO I I l I I I u t I n g M O d e | E St I l I I at I O n Estimation Results of zero-inflated hierarchical ordered probit model with correlated errors.

Variables Parameter t-Stat

Participation equation (Potential of Telecommuting Model):

* Telecommuting adoption and frequency G o "y
Income: low -0.64 -5.64
model suggests e = o
HH worker 018" 3.04
* Occupatiqn.typ_e aISO plays a n importa nt r0|e in g:crlll(pgtenf)irl]):iltirt:nsportﬂ!ion 0—?)924 6—81165
both participation and frequency level. Occuption: management “oer oy
Occupation: health -0.38 -3.30
Employment density: high 0.34"" 3.00
. . . o Population density -0.07"" —-3.46
b Educatlon and InC-Ome Ieye-l Slgnlflca ntly affect Activity equation (Level of Telecommuting Model):
both telecommuting participation and the e = e 2
freq uency level. 33 o : gi? 33;
Trizc?iu?;'i;:m e 0:23'" 3:06
. . HH vehicle 0.14""" 415
* flexibility of work schedule increases the ot N o o
probability of both telecommuting participation Occupation: communieaion 031" 227
and frequency. e msipising Coz Tano
Threshold variables:
. . . Work duration 0.03""" 2.89
* importance of trip-related and land-use variables Velicle svallily bl iz
on telecommuting choice: I | |
| | . e o
* travel time and distance to workplace & 043" 4.64
Co;rclanon coefficient: _— 51
* popu |at|on denSIty log-likelihood at convergence —3206.05

Note: *** ** * jndicate significance at 1%, 5%, and 10% level.

* employment density
13



Implementation in POLARIS

o The results endorse the fact that telecommuting policy has the potential
to reduce network congestion and vehicular emissions specifically

during rush hours

o As a sustainable transportation policy, Telecommuting can alleviate
network congestion by reducing the total daily VMT and VHT by up to

2.4% and 4.15%

o Telecommuting policy also has the potential to reduce GHG and PM2.5

emissions by up to 2.65% and 2.95%

Changes in Emissions and Fuel Consumption in Telecommuting Scenarios

L Flex-25 vs. Flex—50 vs.
Emissions . .
base scenario base scenario
-329.5 -766.3
Average Daily GHG (US ton)
(-0.3%) (-0.7%)
-164.2 -367.5
Average Daily PM, 5 (1b)
(-0.05%) (-1.1%)
-0.03 -0.08
Average Daily Fuel Consumption (Million Gallons)
(-0.3%) (-0.8%)

“ N Traffic Volume
I } base

A Traffic Volume i
25% vs base
\
)

(a) Baseline traffic volumes

(b) changes in network traffic volumes:

Flex 25% vs. base

Flex 50% vs. base

(c) changes in network traffic volumes:



Long-Distance Travel Overview

Purpose

— Critical to understand — what happens when travelers replace their average day trip with
long-distance trips

— Simulation of long-distance travel model is warranted

* To represent travel demand in a more behaviorally realistic way

* To provide solutions for the travel demand increment due to airport expansions

Presents long-distance trip generation model and appropriate behavioral models
representing the choice of airport access/egress mode including the high-speed rail

Implements long-distance travel models within POLARIS and establishes linkages with
activity-based models



Long-distance Travel Model Development

e Data source

* Multi-wave survey of long-distance travel behavior for state of lllinois

* Responses: 1791 households; 2,225 individuals; 3012 long-distance trips
* Information collected:

» Socio-demographics and Household features (e.g., housing income, vehicle ownership, etc.)

* Details about all long-distance trips of the individual within a determined period (e.g., number of long-

distance trips, start day and time, main mode of the trip, access/egress mode if applicable, party size, origin
and destination, trip purpose, etc.)

* Long-distance travel models developed (for business trips and non-business)

* Trip frequency models
 Start time choice model

e Access mode choice model
* Egress mode choice model




Implementation in POLARIS

e At first, long-distance (LD) trip frequency models generate trip
decisions and number of trips using zero-inflated negative
binomial model

e For trips = 0, activity generation model generates average day
trips and its attributes

* No. of long-distance trips > 1 triggers the implementation of
other trip attributes

* LD travel module replaces daily activity generation model,
and generates long-distance trip attributes

* For each trip,

e start time model generates time-of-day of the long-distance trip
start time using multinomial logit model

* destination is generated using nested logit model

* finally, runs mode choice processes using multinomial logit model
for access, main and egress modes

Long-distance trip generation

Number of
trips?

Daily activity generation

Start time

\ 4

Destination locations

Access mode

!

Main mode

Egress mode




Micromobility

E-scooters/e-bike/shared-bike provide people more options for short-distance trips
Supplement transit services by providing more access/egress alternatives
Carbon-free mobility - contributes to sustainable city development

Purpose:

* To better understand the role of shared micromobility in urban mobility
* To explore how people adopt mcromobility

 How frequently they use them
Presents micromobility adoption choice model
Implements the adoption behavior within POLARIS

Run operational scenarios to understand the effect of future micromobility usage



Data

* E-Scooter Adoption Model Survey: 603 respondents

* Collected information

Demographics

E-scooter adoption behavior (frequency of use) based on e-scooter pilot program participation

Reasons for e-scooter use

Daily travel mode choice (mode and usage frequency)

Residential location

* Additional data: EPA Smart Location Database, E-scooter API for trip service characteristics



Model

e Differentiate users

* Potential users (access to e-scooters but have not used it)
* Non-users (no access to e-scooters)
* Four level of usage considered for potential users

* Do not use

e Few times during pilot (3 months) 3.13%
. 0_\

1%_——
4.90%

* Few times per month

* Few times per week

m Potential users = Non-potential users = Did not use

¢ Ze I’O-I nﬂ ate d O rd e FEd p ro b |t m O d e I m Few times in Pilot Few times per Month Few times per Week

* Bi-level approach, dealing with excessive zero counts

* Jointly investigates intention to adopt e-scooters and associated usage frequency

20



Scenarios

5 operational scenarios of e-scooter
Bloomington

* Demand for e-scooters depended S ot 11,549
on e-scooter availability by time of Sx | 2,500 e P
day ’
10x | 5,000 15,382 -4.5% -5.6%

 Since some short auto trips can be
replaced by e-scooters, VMT savings 25% (12,500 [

17,030
up to 8% are observed

50x | 25,000 -8.3% -11.1%

* Shift away from walk also helps 18,343

0
lower overall PHT up to 11% VMT — Vehicle Miles Traveled

PHT — Person Hours Traveled
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