Consistency across time, space, and vehicle allocation

David Ory, WSP
Seeon Symposium on Activity-based Models
September 11, 2022

Proper Title

Problems and opportunities with consistency in time, space, and vehicle allocation in practical (i.e., used in practice by governments in support of planning studies) activity-based models (including tour-based simulation models that are commonly referred to as "activity-based") in the United States.

Agenda

- Time
- Space
- Vehicle allocation
- Hypotheses
- Proposal
-

Time

Father

Mother

Child

Car

Work
Home

Time

Person	Activity	Activity Start (from ABM)	Activity End (from ABM)	Travel Mode	Network Travel Time
Father	Home	3 am	8 am	-	-
	Travel	8 am	8 am	Transit	45 minutes
	Work	9 am	5 pm	-	-
	Travel	5 pm	5 pm	Transit	90 minutes
	Shop	5 pm	5 pm	-	-
	Travel	5 pm	5 pm	Walk	30 minutes
	Home	5 pm	3 am	-	-

Time

Person	Activity	Activity Start (from ABM)	Activity End (from ABM)	Travel Mode	Network Travel Time
Father	Home	3 am	8 am	-	-
	Travel	8 am	8 am	Transit	45 minutes
	Work	9 am	5 pm	-	-
	Travel	5 pm	5 pm	Transit	90 minutes
	Shop	5 pm	5 pm	-	-
	Travel	5 pm	5 pm	Walk	30 minutes

Time

What share of a model run's synthetic itineraries cannot be completed when considering simulated travel time?

Time

Space

Home
School
Work

σ

Space

Work
Home

School

Space

Person	Activity	Activity Start (from ABM)	Activity End (from ABM)	Travel Mode	Network Travel Time
Child	Home	3 am	8 am	-	-
	Travel	8 am	8 am	Shared Ride	7 minutes
	School	9 am	3 pm	-	-
	Travel	3 pm	3 pm	Walk	2 minutes
	After care	3 pm	5 pm	-	-
	Travel	5 pm	5 pm	Walk	30 minutes
	Home	5 pm	3 am	-	-

Space

Person	Activity	Activity Start (from ABM)	Activity End (from ABM)	Travel Mode	Network Travel Time
Mother	Home	3 am	8 am	-	-
	Travel	8 am	8 am	Shared Ride	7 minutes
	Chauffeur Stop	8 am	8 am	-	-
	Travel	8 am	8 am	Drive Alone	20 minutes
	Work	9 pm	5 pm	-	-
	Travel	5 pm	5 pm	Drive Alone	20 minutes
	Home	5 pm	3 am	-	-

Space

Does the Mother make a stop on the inbound leg of her work tour at the same place as the Child's school?

Does the Father make a stop on the outbound leg of his work tour at the same place as the Child's school?

Space

Does the Mother make a stop on the inbound leg of her work tour at the same time as the Child's school trip?

Does the Father make a stop on the outbound leg of his work tour at the same time as the Child's school trip?

Vehicle Allocation

Father

Mother

Child

Car

Space

Work
Home

Space

Is the simulated family's single car in two different places at the same time?

Vehicle Allocation

Hypotheses

Father

Mother

Child

Automated vehicles

Automated vehicles

Work
Home

School

Automated vehicles

> Relief from chauffeuring duties and mobility constraints provided by personally-owned automobile sharing will be a key benefit - perhaps second only to reduced accidents - of vehicle automation.

Key Hypothesis \#1

Relief from chauffeuring duties and mobility constraints due to personally-owned automobile sharing will be a key outcome of vehicle automation.

Key Hypothesis \#1

We can only estimate the benefits (e.g., a broader range of employment options and schedules) from relieving chauffeuring responsibilities and mobility constraints if we represent them in the first place.

Constraints

Many model owners and users do not realize the simplifications most practical activity-based make that result in inconsistencies in time, space, and vehicle allocation.

Key Hypothesis \#2

Many model owners and users do not realize the

 simplifications most practical activity-based make that result in inconsistencies in time, space, and vehicle allocation.
Key Hypothesis \#2

Particularly problematic for reasonable forecasting when assuming broad adoption of personally-owned AVs.

Proposal

Step 1

Let's develop some standard metrics and assess the performance of existing, practical activity-based models.

Proposal

Step 1

Let's develop some standard metrics and assess the performance of existing, practical activity-based models.

Proposal

1 What share of person-level itineraries can be accomplished when simulated travel times are considered?

2 For what share of parent-child chauffeur movements is the parent taking the child to the same place and at the same time, as detailed in the parent's N/A (i.e., chauffeur movements are itinerary, as the child is going, as detailed in the child's itinerary? not described in sufficient detail to therary, as the child know)

3 For single automobile households, in what share of households is the family's
25 percent single vehicle in a different place at the same time?

4 For multiple automobile households, in what share of households are
individual vehicles in a different place at the same time?

N/A (i.e., individual vehicle movements are not described in sufficient detail to know)

Proposal

1 What share of person-level itineraries can be accomplished with simulated travel times?

2 For what share of parent-child chauffeur movements is the parent taking the child to the same place and at the same time, as detailed in the parent's N/A (i.e., chauffeur movements are itinerary, as the child is going, as detailed in the child's itinerary? not described in sufficient detail to
know)

3 For single automobile households, in what share of households is the family's
25 percent single vehicle in a different place at the same time?

4 For multiple automobile households, in what share of households are
individual vehicles in a different place at the same time?
N/A (i.e., individual vehicle movements are not described in sufficient detail to know)

Proposal

1 What share of person-level itineraries can be accomplished with simulated travel times?

2 For what share of parent-child chauffeur movements is the parent taking the child to the same place and at the same time, as detailed in the parent's N/A (i.e., chauffeur movements are itinerary, as the child is going, as detailed in the child's itinerary? not described in sufficient detail to
know)

3 For single automobile households, in what share of households is the family's
25 percent single vehicle in a different place at the same time?

4 For multiple automobile households, in what share of households are
individual vehicles in a different place at the same time?
N/A (i.e., individual vehicle movements are not described in sufficient detail to know)

Proposal

1 What share of person-level itineraries can be accomplished with simulated travel times?

2 For what share of parent-child chauffeur movements is the parent taking the child to the same place and at the same time, as detailed in the parent's N/A (i.e., chauffeur movements are itinerary, as the child is going, as detailed in the child's itinerary? not described in sufficient detail to

3 For single automobile households, in what share of households is the family's 25 percent single vehicle in a different place at the same time?

4 For multiple automobile households, in what share of households are individual vehicles in a different place at the same time?

N/A (i.e., individual vehicle movements are not described in sufficient detail to know)

Proposal

Academic Interest?

The practical community is rapidly adopting simple ABM formulations. Adapting these formulations for consistency is a formidable challenge.

Academic Interest

Questions?

