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Introduction 

 

Abstract  

The thesis aims to analyze the bicycle crashes in the city of Munich, based on the data 

collected from opensource platforms. This included the data obtained from Untfallatlas 

and Geofabrik portal. Some data was also acquired from traffic data provider TomTom, 

which included the average travel speed data for limited sections of street for the city of 

Munich. The data obtained included the information regarding the crash locations, the 

location of infrastructure associated with road like traffic signals, road crossings, location 

of educational buildings etc. The dataset was constructed using QGIS, a free GIS and 

mapping software. Through the literature review, it was established that when analyzing 

accident data and count data, certain models perform better than others. This included 

Poisson model, Negative Binomial model and Zero-Inflated Negative Binomial (ZINB) 

models. Since typical count data used in crash analysis consists of significant number of 

zeroes, the ZINB model was suggested to work better. This was verified first by investi-

gating the data for observing significantly high number of zeroes and then by analyzing 

all four models. Based on statistical tests and predicted values, it was concluded that the 

ZINB model does indeed perform better as compared to the other three models, due to 

it’s ability to model the count data and zeroes independently. Two spatial models were 

also explored on a trial basis. The spatial lag model and spatial error models, both per-

form based on the spatial weights established based on understanding on the data. Both 

models performed good as compared to an ordinary least square model, but they did not 

predict the crashes accurately as compared to the ZINB model. The model suggested 

that streets with mixed right of way are more susceptible to bicycle crashes. Based on 

the predicted and analyzed values from the ZINB model, the sections of city more prone 

to bicycle crashes were identified as being located close to the city center and primarily 

include the districts of Altstadt-Lehel, and Ludwigsvorstadt-Isarvorstadt. The solution 

proposed for these central districts was a car free zone, which was modeled and ob-

served to be successful in reducing crashes. Although there were some limitations to the 

models and the data used in analysis, they have been mentioned in respective sections.  
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1 Introduction 

With the Rapid climate change happening around the world, several governments have 

called for use of more environmentally friendly and sustainable modes of transport. This 

has led to a huge change in the use of private vehicles, Public Transport and Bicycles 

etc. In Germany, the use of Bicycles has seen a positive trend over the last few years. 

According to the Mobility in Germany study published by BMVI (Bundesministerium für 

Digitales und Verkehr informiert) which suggests that the usage of bicycles has seen an 

upward trend, meaning that the distance travelled by bicycles has increased significantly 

over the last few years (Follmer & Gruschwitz, 2019). Accident statistics published by 

the Statistisches Bundesamt (Destatis) show that although the bicycle crashes have not 

shown a significant increase, they have not decreased either. While there are many 

reasons for crashes happening and the reasons could range from a rider’s lapse of 

judgement to something related to the environmental condition at the time of the crash, 

insufficient infrastructure or external influence. The investigation of these incidents could 

lead to an increase in safety and general satisfaction associated with the use of a bicycle. 

Increasing the safety of road users is always of paramount concern for Governments 

and city administrations. The Nationaler Radverkehrsplan 3.0, which was adopted by the 

Federal Government of Germany in 2021 also focuses on the importance of  Cycling. It 

presents various initiatives which should prioritise Cycling as a mode of Transport 

throughout Germany, as it helps tackle the Climate Change and plans to increase the 

Bicycle infrastructure to help promote these goals (Bundesministerium für Digitales und 

Verkehr (BMDV), 2022). Taking this into account, the work done as part of this thesis 

takes a look at the bicycle crashes that have happened around the city of Munich over 

the last five years, beginning from 2016 to 2020. 

Crashes are analyzed by many researchers with different scopes, based on one’s field 

of study or focus. While there are many ways to perform this analysis, one of the popular 

ways to do this is by using statistical models. Quite a lot of research has been conducted 

around the use of linear regression models for analyzing and predicting crashes. While 

it can provide a good platform for analysis in many cases, more often it fails to fully 

establish the relationship of crash data due to its nature. The work done as part of this 

thesis explores different models to analyze crashes and identify the regions with a high 

number of crashes. The motivation behind this work stems from the use of bicycles to 

travel around the city of Munich frequently. While one may draw a conclusion based on 

personal experience, exploring crash data can help provide differentiation between 

perceived and actually dangerous locations. While both can be high-risk locations, it is 

important to understand the reasoning behind them to provide meaningful solutions for 

both. 

The study area comprises the city of Munich is located in the southern part of Germany 

and is the capital of the state of Bavaria. It has a population of 1.56 million and is the 

third-largest city in Germany (Landeshauptstadt München, 2022a). There are a total of 
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75 districts within the city boundaries. The city is popular for it’s various festivals 

throughout the year, which attract a lot of tourists and induces a significant travel 

demand. There are many international universities including the Technical University of 

Munich and the Ludwigs Maximilian University located in the district of Maxvorstadt. 

While the central station and the city centre are located in the districts adjacent to this 

district. This means that regularly, many people travel within and across this district for 

various purposes. The city of Munich also has 8 subway trains and 8 suburban trains, 

which cater to the city and the it’s surroundings (Landeshauptstadt München, 2022b).   

The thesis is structured as follows: 

1. Introduction: Introducing the Thesis and the study area 

2. Literature Review: Here, the base for research was established. Various research 

papers and their conclusion is summarised in this section which was used as a 

basis for analysis. 

3. Data Collection: The data used in the analysis are discussed here, the collection 

and their interpretation and how the finalized data was used to generate a dataset 

for analysis. 

4. Analysis: This section details the work that was done as part of the data 

exploration and data analysis. This includes different statistical and spatial 

models along with validation of results. 

5. Applications: Some solutions for identified regions are discussed here. A possible 

solution has also been modelled as part of this section. 

6. Conclusion: This details the conclusion of the work done for the thesis, followed 

by the limitations and the future research scope. 

 



Literature Review 

3 

2 Literature Review 

Crash analysis and prediction are typically used to improve the safety of road users and 

improve the quality of driving. Several factors contribute to crashes, this could be due to 

driver error, insufficient or faulty infrastructure, environmental reasons, traffic density or 

volume etc. While no one reason can be blamed in particular for a crash happening, 

there is a possibility to understand the influence of all of these factors on the reasons 

behind a crash. This can be typically done using various methods, like deep or self-

learning models or statistical models. While the field of machine learning is relatively 

new, statistical models have been used for a long time for crash analysis. But the anal-

ysis starts at the beginning where the data is gathered, so it is important to understand 

this process. 

2.1 The data collection for crashes 

The approach to crash analysis starts with the process of data collection. The first im-

portant thing is to classify the data for the analysis. Crash data is primarily collected by 

the police as incident reports, which are then used by institutions to research and pro-

pose improvements. These reports generally arise when a crash is reported, either by 

an observer or a party involved in the crash. The Police then document the details of the 

crash and this is later used for analysis. (Imprialou & Quddus, 2019) in their paper about 

crash data quality state that typically, the crash data collected is categorized by aspects, 

these are crash location, crash severity, crash time, users and vehicles involved in a 

crash, and crash contributing factors. Depending on the analysis, the factors can be 

chosen for analysis but not all five of these factors are considered equally important. The 

crash location is considered to be one of the most important factors for crash analysis. 

Depending on the chosen form of analysis, the depth of data to be used may vary which 

can also result from the data collection or generation process. They also talk about un-

derreporting or misreporting of reasons for crashes during reporting, due to the complex-

ity of the issue. These issues could lead to a lack of depth in data, meaning a lack of 

details associated with the crash. So, the selection of attributes or factors affecting 

crashes should be carefully decided for the analysis, depending on the general 

knowledge about the location of the analysis and the general factors that result in 

crashes. 

(Miler et al., 2016) in their paper discuss the process of crash data collection and the 

accuracy of the location reported for crashes. Traffic locations need to be evaluated to 

better implement the resources to counteract the crashes. Their research confirmed that 

many inaccuracies can be introduced in the data when reporting the location of crashes 

like incorrect latitude and longitude. This inaccurate data cannot be discarded or used 

entirely reliably for the purpose of analysis. While there are several ways to deal with 

such inaccuracies, one effective way is to smooth the data over a small area. While the 

location of reported crashes is important, it is also crucial to look at the kind of crashes 

that are reported, especially when talking about bicycle crashes. (Shinar et al., 2018) talk 

about this issue in great detail. Along with a group of researchers from 17 countries 
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around the world, they surveyed the reporting of crashes and reveal some surprising 

findings. They state that the reporting of bicycle crashes is severely biased against the 

less severe crashes or crashes that do not involve a motorized vehicle. While they ar-

gued the definition of what constitutes a crash in different countries, Germany is one of 

the countries where a moving vehicle has to be involved to be reported as a motor vehi-

cle crash. Their study concluded that in most cases, the reporting of a bicycle crash 

depends on the severity of the injury i: e needs to go to a hospital or first aid etc. Another 

factor was the type of crash i: e collision with a vehicle or falling down a bike. While falling 

off the bike was the most common crash type, it was the most underreported type of 

crash. If reported, these types of crashes and the reasons behind them could help ex-

plore the possibility of crashes happening due to infrastructure or lack thereof. Along with 

this, the non-severity of crashes was also one of the biggest reasons for underreporting. 

Such underreporting could be the reason for the existence of additional zeroes in the 

dataset and can be called locations with no crash “reported”, which gets mixed in with 

locations where no crashes were “observed”. (Medury et al., 2019) conducted a study 

regarding reporting bicycle crashes involving other bicycles and pedestrians. This was 

done based on open-source data gathered from surveying people in the study area and 

the official reported crash record. Their study revealed that a significant number of 

crashes went underreported which involved bicycles and pedestrians. Although in most 

cases there were no physical injuries reported, such underreporting hinders the improve-

ment of safety on streets for the vulnerable users. This study confirms the existence of 

bias in reporting crashes. While the existence of zeroes in a crash analysis for larger 

areas like a city or district will result in most locations having no observed crashes for a 

time certain period, such underreporting can increase this value in generating a false 

sense of safety in the study area.  

2.2 Use of custom grid in crash analysis 

The smoothening of data can be done using several methods, one of these is to use a 

spatial grid of fixed cell size. Although there exists a notion that the relationship between 

the number of crashes and a grid is difficult to model, the study by (Kim et al., 2006) 

presents some interesting findings regarding crash analysis using grids. They conducted 

a study of crashes over the county of Honolulu, Hawaii wherein they used grids to rank 

zones based on the density of crashes. A grid analysis can help establish zones which 

can be useful for more focused planning and measures. (Cai et al., 2017) also conducted 

a similar analysis where they proposed using grids of different sizes for crash analysis 

and testing different sized grids for analysis. Their analysis suggested that the smaller 

grid zones also known as Traffic analysis districts (TAD) perform better as compared to 

bigger statewide traffic analysis zones. This also helps reign in the inconsistency be-

tween different attributes used for analysis. Their study concluded that the TADs offered 

best fit types when comparing to other methodologies for zone crash analysis. Such a 

grid structure is also useful when constructing count model datasets, as they provide the 

flexibility to count attributes in a study area with same consistency.  
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2.3 Models for crash analysis 

When it comes to statistical analysis, several models can be employed in data analysis. 

One of the most common models for such is the linear regression model. While a regres-

sion model can be ideal to plot linear relationships between independent variables in a 

model, it can often lead to inconclusive results when the data does not have a linear 

relationship. While there exists a possibility to manipulate the data before employing a 

linear regression model (Abdel-Salam et al., 2008), it may change the relationship be-

tween the variables which is crucial for crash data analysis. Several other statistical mod-

els can be used for the analysis of crashes, typically for crash data Poisson or Negative 

binomial models are used due to the presence of discrete and non-negative values in 

the crash data (Shankar et al., 1997) (Hadi et al., 1995). Poisson models, while useful 

operate under an assumption that the variance should be equal to the mean. But if the 

data does not hold this condition, there must be an existence of under-dispersion or over-

dispersion. This can result in a varied standard error and generate senseless output 

(Chiou & Fu, 2013). One of the drawbacks of a standard Poisson model is that it does 

not provide any flexibility to accommodate this over or under-dispersion that is observed 

in the data. (Park & Lord, 2009) in their study and analysis, different mixtures of models 

were used to analyse crashes and predict them. They suggest that a mixture of Poisson 

or Negative binomial model are more suitable to use in analysis when the data is gener-

ated from a heterogenous set. Since crash data typically consist of over dispersion, a 

Negative binomial (NB) model is more suited for analyzing crashes, since the NB model 

can assess the different crash processes and generate more reliable results. Their anal-

ysis suggested that for such data with dispersion, a mix of the model must be considered 

to overcome this problem.  

The reason for the existence of this dispersion is generally related to the existence of 

extra zeroes, that result from the data generation process for count models for crash 

analysis. (Lambert, 1992) suggests that this excess number of zeroes can be addressed 

by a two-step regression model like a Zero-Inflated regression model. They explain how 

the zero-inflated model works under the assumption that the existence of zeros is due to 

two different reasons. (Garay et al., 2011) in their paper, take a look at the Zero-inflated 

Poisson (ZIP) and Zero-inflated Negative binomial models (ZINB), and compare them 

based on model estimates like AIC. They conclude that for data with an excess number 

of zeroes, a ZINB model shows a better fit than a ZIP model if there are zeros in the data 

generated through two different processes. (Hauer, 2001) also suggest modelling crash 

count data using the ZINB model, as they address the distribution of zeroes much better. 

While there are people, who suggest that ZINB models can lead to incorrect model out-

puts in the sense that the model assumes that there are places which can result in a 

crash always or never having a crash (Lord et al., 2005). They further suggest that a 

good fit should not be the prime factor in selecting one model over the other and clarify 

that the models may not be best suited for highway entities  (Lord et al., 2007). 

On the other hand, (Pew et al., 2020) suggest that dismissal of the ZINB model solely 

based on theory is not the best decision. Since the Negative Binomial model is not re-

stricted by the condition of the mean being equal to variance, the Zero-inflated negative 
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binomial model addresses the overdispersion in data which is not taken into account in 

the case of a Zero-inflated Poisson model. The authors compared three different models 

for the same crash data, and based on different statistical tests confirmed that the ZINB 

model can help in identifying the crash hotspots better as compared to the ZIP. At the 

end of their research, they conclude that the probability function of a zero-inflated ran-

dom variable, which assumes a nonzero probability for positive integers, so the model 

cannot assign or suggest a location to be inherently safe. So, the ZINB models can be 

reliably used for crash analysis and prediction, given that they are evaluated against 

other models.  

(Washington et al., 2020) in their book also give extensive details regarding the ZINB 

model and its workings. They also talk about the probability of an event not happening 

based on two conditions, where an event was not observed or the inability for the event 

to occur. They state that the biggest disposition for a zero state is the preponderance of 

zeroes in the data, which are typically unexpected in a poison model. While there is 

always a possibility that overdispersion will include excess zeros, it must be determined 

whether excess zeroes arise from true over dispersion or from an underlying process. 

One of the ways to address this issue is to model the data in both NB and ZINB states 

and run a statistical test. This will ensure that the selection of the model is based on 

correct parameters like the existence of two processes in data generation. They also 

state the relevance of using Vuong’s test for selecting the better model between a Neg-

ative Binomial model or a Zero-inflated Negative Binomial model. (Vuong, 1989) sug-

gested using a likelihood ratio-based test for selecting the optimum model, especially for 

zero-inflated models, along with another criterion like AIC. Although, there has been 

some criticism regarding the use of the Vuong test for testing the Zero-inflated models, 

(Wilson, 2015) states that the Vuong test is applicable for the nested models only and 

states that the test cannot be applied to models like ZINB, as they are fitted using a link 

function, which does not fit with the assumptions of Vuong test. So, using a Vuong test 

to verify the model is not the best solution. One way to test if using ZINB is better than 

the NB model is to calculate a chi-squared test statistic. (McHugh, 2013) states that for 

large datasets, this test can be significantly useful and can be performed when the sam-

ple sizes are unequal and more importantly the distribution of data shows a certain level 

of skew. This test statistic can be used to reject the null hypothesis, in this case, the NB 

model (Algeri et al., 2020). This can be done manually using the likelihood ratios ob-

tained from the model summary and the degrees of freedom, usually depending on the 

independent parameters used in the analysis.  

2.4 Spatial Regression 

While crash prediction is a complicated subject in the sense that modelling all the factors 

responsible for a crash at the same time would result in a very large and complicated 

model. One of the interesting models in crash prediction is using a spatial regression 
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model. Spatial regression can allow an understanding of the relationship between neigh-

bours or different observations in a specific region (Anselin, 1988) (LeSage, 2005). More 

commonly it is observed that when data is collected in a definite study region, the points 

are found to be spatially dependent, this suggests that the observations close to each 

other show some sort of similarity. (LeSage, 2008) explains the process of spatial re-

gression in great detail and suggested that the traditional assumption of independent 

observations has some sort of spatial relationship with the elements of the dataset. In 

their study, they establish the relationship between the commuting times and the effect 

on them based on the neighbouring counties. To establish this relationship, they suggest 

using spatial weights, which can account for the relationship between an element and its 

neighbours, based on the individual parameters or properties. They discuss two kinds of 

sptial models, namely the Spatial autoregressive (SAR) model and the Spatial error 

model (SEM). They conclude by suggesting the superiority of the Spatial regression 

model over the traditional regression model, owing to the use of spatial dependence 

between observations.  

(Rhee et al., 2016) analyzed the traffic crashes in the city of Seoul using Spatial regres-

sion models. While, different kinds of data have been used for spatial regression, which 

includes area characteristics or data describing driver behaviour. Their study involved 

the use of traffic analysis zones (TAZ), but opted to use a nonstandard TAZ and defined 

their own, which they concluded yielded better results for safety analysis. The data used 

in the analysis involved demographic data, income, age, gender, socioeconomic and 

road data. They concluded that while the use of TAZ is ideal for road safety analysis, it 

adds a certain level of complexity when it comes to analyzing mixed land use and it is 

difficult to segregate commercial and residential zones in such cases. While, the selec-

tion of TAZ cannot be uniform for all models or analyses, as the study area and the depth 

of data change, the TAZ should be adjusted accordingly.  They also compared the results 

between the OLS and the spatial models, concluding that the Ordinary Least Square 

model fails to account for the over or under-dispersion in data, which is balanced by 

spatial regression models. Their tests revealed that the spatial error model performs bet-

ter when compared to the spatial lag model. While the performance of the spatial model 

highly depends on the attributes provided to the model, which should be rich and diverse 

in their nature and explain more details about the study area. On the other hand, (AL-

Hasani et al., 2019) compared the SAR and SEM in their study of crashes in Oman. They 

compared the results for both of the spatial models with the Ordinary least square model 

(OLS). They concluded that the Spatial lag model performs better than the Spatial Error 

model when tested in various statistics like AIC and loglikelihood.  

(Jia et al., 2018) conducted spatial regression analysis for an administrative country in 

China. They also compared the results from OLS to a spatial lag and spatial error model. 

While their study revealed that the spatial error model performs better than the lag model, 

both models suggest the existence of spatial correlation. They also identify the lack of 

detailed data in analysis for complications in spatial crash analysis. (Gao et al., 2006) in 

their analysis of spatial models explain the importance of having more data should im-

prove the quality of the model. They explain that if a spatial model performs significantly 

well against a regression model, it confirms the existence of spatial relationships within 
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the data. (Anselin, 2002) also explained the lack of clarity while selecting the specifica-

tion for spatial weights and suggests the selection based on the better model output.  
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3 Data Collection 

All the data used for the analysis was gathered from open-source platforms. Some of the 

data gathered includes: 

1. Analysis Grid 

2. Crash data for the city of Munich for the years 2016-2020 

3. Traffic Network and travel speed data for the city of Munich 

4. OpenStreetMap data for the City of Munich 

All the data was gathered from open-source platforms and processed using QGIS and 

R-studio. Their information is explained below. 

3.1 Crash Data 

The crash data was obtained from Untfallatlas for the years 2016 through to 2020 

(Statistische Ämter des Bundes und der Länder, 2022). The crash data obtained for each 

year contained shape files and database files along with all the information needed to 

project the crashes in mapping software, namely QGIS. The shape file contained infor-

mation on individual crashes all across Germany, their date, time, the kind of crash, the 

vehicles involved in crashes and the X-Y coordinates. Since the crash data included data 

for all of Germany, the first steps included sorting out the Crashes for the city of Munich. 

The crashes were first sorted for the individual states with the categorical attribute 

“ULAND”, which for the state of Bavaria was “09”. This sorts all the crashes for the state 

of Bavaria out of the whole crash dataset for the whole country. The next step involves 

sorting the crashes for the government districts, with the category “UREGBEZ”, meaning 

“Regierungsbezirk” which means the Government districts. For the region of Munich, the 

code used was “01”. Finally, the crashes for the district of Munich are sorted, using the 

categorical attribute “UKREIS”. The district of Munich uses the code “62”. After pro-

cessing the data through these steps, the only crashes left are for the district of Munich, 

which is the area of interest for this thesis. The next step includes sorting out all the 

crashes that involve a bicycle. This was done by using the attribute “IstRad” which sig-

nifies that there was a crash that involved a bicycle. The “IstRad” column consists of “1” 

and “0”, where 1 signifies that a crash happened involving a bicycle and 0 the crash 

which did not involve a bicycle. Using the Attribute selector, for the column “IstRad”, once 

all of these crashes are sorted for only bicycles for one year the same process was 

applied to the dataset for all the years, from 2016 to 2020. All the annotations and the 

metadata can be obtained from the Geofabrik portal (Statistische Ämter des Bundes und 

der Länder, 2022). A sample of the sorted data for the year 2016 is shown in the table 

below: 
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Attribute Value 

OBJECTID 60859 61160 61566 62079 62342 

ULAND 9 9 9 9 9 

UREGBEZ 1 1 1 1 1 

UKREIS 62 62 62 62 62 

UGEMEINDE 0 0 0 0 0 

UJAHR 2016 2016 2016 2016 2016 

UMONAT 1 1 1 1 1 

USTUNDE 15 14 5 15 7 

UWOCHENTAG 1 5 4 4 6 

UKATEGORIE 2 2 3 3 3 

UART 3 5 5 5 5 

UTYP1 6 2 2 2 3 

ULICHTVERH 0 0 2 0 1 

IstStrasse 1 0 1 0 1 

IstRad 1 1 1 1 1 

IstPKW 0 1 1 1 1 

IstFuss 0 0 0 0 0 

IstKrad 0 0 0 0 0 

IstGkfz 0 0 0 0 0 

IstSonstig 0 0 0 0 0 

LINREFX 688689.2 684357.2 691762.5 683848.2 681146.4 

LINREFY 5335742 5332118 5331942 5335423 5335922 

XGCSWGS84 11.5368 11.47705 11.57636 11.47164 11.43557 

YGCSWGS84 48.14692 48.11561 48.11184 48.14547 48.15073 

Table 3.1 Attribute table for original crash data 

3.2 Analysis Grid 

To analyze the data, instead of using the predefined city zones, a grid covering the city 

of Munich was used. The district zones of the city of Munich are too big to be critical and 

they event out the crash data, preventing having to look at more critical locations and 

understanding whether the whole district has a high number of crashes or just a small 

region in the district. It does not help in addressing the crash hotspots. The size selection 

of the grid blocks was done on a trial-and-error basis. Three grid cell sizes that were 

investigated are 250 m X 250 m, 500 m X 500 m and 1000 m X 1000 m. While the 250 

m X 250 m cell-sized grid block resulted in a very high computation time in QGIS for 

different functions. For example, for the function “join attributes by location”, the compu-

tation time was around 3504.8 seconds, which is approximately 60 minutes and for the 

other two, it was relatively low. This high computation time is due to the several attributes 

being closely located to one another, which increases the processing time for several 

functions of the GIS software. A 1000 m X 1000 m cell-sized grid smoothed the crash 

data and resulted in a very sparse grid, an example seen below in Figure 3.1. Both 

Karsplatz and Sendling Tor become part of the same grid cell, but since they are both 
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locations with a high number of crashes, it smoothed out the data. So, to be more con-

cise, a grid was used with each grid cell of a fixed size of 500 m x 500 m, which addresses 

both the issues face by a 250 m X 250 m and 1000 m X 1000 m grid. An example of the 

grid cell of size 1000 m X 1000 m is shown below, showing the cell covering a signifi-

cantly big area. 

 

Figure 3.1 One block of 1000 X 1000 m grid 

The map below shows the crash data together for all five years. 
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Figure 3.2 Overview of Grid and crash locations from 2016-2020 

As seen in the map above, the grid covers the entire district of Munich. The grid size is 

selected in a way that all the crash points are covered by the grid. The bicycle crash 

points from the years 2016 to 2020 are plotted together and the grid size is fixed in 

consideration of the same. This ensures that the grid selected does not exclude any 

crashes. Attempts were made to mask the grid to fit the size of the Munich district map’s 

borders, but this was unsuccessful. As both the layers are not the same, i:e the Munich 

district map is a raster layer and the grid is a vector layer. The grid is placed in such a 

way that the approximate centres of the grid and the city match together, which will make 

for easy interpretation of the grid in later sections. 

3.3 Open Street Map data for the city of Munich 

The Open Street Map data was obtained from the open-source platform Geofabrik 

(GEOFABRIK, 2022). The shapefiles provided by Geofabrik consist of OpenStreetMap 

data for the region of Oberbayern. This data is categorized into three types, point fea-

tures, line features and polygon features, but polygon features are not of any interest to 

this thesis. 
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3.3.1 Point Features 

The point features contain the data with six further categories each represented by its 

shapefile, which are explained using code, “fclass”, description and OSM tag. The attrib-

ute “fclass” was used to classify the different kinds of attributes and the code is the 

unique ID for each class used to further identify each class. The six categories are as 

follows: 

1. Places: This shape file includes the location of cities, towns and villages etc, and 

they’re marked at the approximate centre of the cities. The different locations are 

differentiated using the “fclass” attribute. 

2. Points of Interest: This shapefile includes different points of interest which are 

categorized as Public, Health, Leisure, Catering, Accommodation, Shopping, 

Money, Tourism and Miscellaneous. It includes information regarding locations 

like the police station, school, university, cage, hospitals etc. which were identi-

fied using the “fclass” attribute. 

3. Places of Worship: As the name suggests, the data included in this layer consist 

of all the different kinds of places of Worship, with categories like Christian_cath-

olic, Christian_baptist, Jewish, Sikh etc which can be identified with the “fclass” 

attribute. 

4. Natural: This shape file consists location of all the natural things like trees, lakes, 

etc. 

5. Traffic: This shape file consists of both point and area features. Traffic signal 

stops and crossing are some of the point features. 

6. Transport: This shapefile also consists of both area and point features. Transport 

stops including train stops, tram stops, bus stops and other public transportation-

related halts are included in this shape file. 

The point data used for the analysis include the counts for supermarkets, beer gardens, 

Educational Institutes (including schools, Colleges and Universities), motorway junc-

tions, rail stops (including Subway stops, S-Bahn stops and other rail stops), crossings, 

bus stops, tram stops and traffic signals (OpenStreetMap Wiki, 2022). The names of the 

following attributes used in the analysis are “signal” for traffic signals, “tram” for tram 

stops, “busstop” for bus stops, “railstop” for all the rail stops including S-Bahn stops, 

ubahn stops  and main rail stops, “crossing” for all the road crossings, “junction” for mo-

torway junctions, “education” for all the education-related buildings, which includes 

schools, universities etc., “biergarten” for beer gardens, and “supermarkt” for all the su-

permarket locations. 

3.3.2 Line Features 

The Line features contain several transport-related line features such as roads and rail-

ways. Line features further have three categories. Roads and Paths, Railways, trams 

and Cable Cars and lastly, waterways. Although for the purpose of this thesis, waterway 

features are not used.  
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1. Roads and Railways: The Roads shape file consists of all the road routes, cate-

gorized using “fclass” attribute as a motorway, trunk, primary, secondary and ter-

tiary. There are also minor roads such as residential, pedestrian, living streets 

etc. There are further routes from non-motor vehicle streets like cycleways, foot-

paths and bridleways also available. 

2. Railways: The railway shapefile consists of information regarding all the rail 

routes. These include light rail, regular rail tracks, subways and trams etc.  

The Line features used in the analysis include the length of bicycle paths, primary 

streets, secondary streets, tertiary streets, residential streets, footways and unspecified 

paths. The Primary streets are mostly the roads that are classified as national roads, the 

secondary roads are the regional roads, the tertiary streets are the roads local to the 

region, residential streets are the streets in the residential areas, and bicycle paths are 

the paths designated for cycling, footway is the footpaths for pedestrians, and the un-

specified paths (OpenStreetMap Wiki, 2022). The names of the following attributes used 

in the analysis are “bicycle” for bicycle paths, “primary” for primary streets, “secondary” 

for secondary streets, “tertiary” for tertiary streets, “resident” for the residential streets, 

“footway” for footways and “path” for unspecified paths.  

3.4 Traffic Network and travel speed data for the city of Munich 

The traffic network and the travel speed data were obtained from TomTom, a mobility 

and location service developer, that also provides GPS services (TOMTOM, 2022). They 

also publish travel speed data for different regions across Europe. But the travel speed 

data was aggregated data from different users of GPS in the city of Munich. While using 

a trial version of TomTom, a shape file, which includes the transport network for the city 

of Munich, along with a database file which contained the information on travel speed in 

Munich was downloaded. In QGIS, the traffic network and the database file were com-

bined using a shared “ID” attribute in both files. The database file contains different var-

iables like Average Travel time, Average travel speed, median Travel speed etc. The 

Average travel speed was represented for small segments of the network, whose length 

was mentioned along with a segment-specific identification number, speed limit and a 

street name if available. The sample of data for speed is shown in the table below: 

 

Id 1 2 3 

Segment Id -1.3E+13 -1.3E+13 -1.3E+13 

NewSegId 

-00004435-3100-
0400-0000-
0000005b9142 

-00004435-3100-
0400-0000-
0000005b9163 

-00004435-3100-
0400-0000-
0000005b916a 

Length 129.19 77.46 75.96 

FRC 1 1 1 

SpeedLimit 50 50 50 

StreetName Chiemgaustraße Chiemgaustraße Chiemgaustraße 

AvgTt 23.21 6.33 6.34 

MedTt 22.04 5.62 5.83 
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ratio 1 1 1 

AvgSp 29.6 48.62 47.56 

HvgSp 20.04 44.03 43.16 

MedSp 21.1 49.6 46.9 

SdSp 18.3 10.22 11.8 

Hits 68376 66640 69509 

P5sp 11 30 29 

P10sp 12 35 34 

P15sp 12 40 37 

P20sp 13 42 39 

P25sp 13 44 40 

P30sp 14 46 42 

P35sp 15 47 43 

P40sp 16 48 44 

P45sp 18 49 46 

P50sp 21 50 47 

P55sp 26 51 48 

P60sp 31 51 50 

P65sp 38 52 51 

P70sp 44 53 53 

P75sp 48 55 55 

P80sp 51 56 57 

P85sp 53 57 59 

P90sp 56 60 62 

P95sp 60 63 67 

Table 3.2 Attribute table for travel speed data 

The annotations for the speed data attributes are as given in the table below:  

Id  
 The value used for linking the additional DBF files per time set to the 
Shapefile 

AvgTt   The arithmetic average travel time for this time period (seconds) 

MedTt   The arithmetic median travel time for this time period (seconds) 

ratio   Average travel time of comparison set divided by the base set 

AvgSp   The arithmetic average speed for this time period (kph) 

HvgSp   The harmonic average speed for this time period (kph) 

MedSp   The median speed for this time period (kph) 

SdSp   The standard deviation of the speed for this time period 

Hits   The number of measurements used for the calculation 

P5sp   The 5th percentile speed, 5 percent of speeds are above this value (kph) 

P10sp  
 The 10th percentile speed, 10 percent of speeds are above this value 
(kph) 

P...sp   Percentile speeds are given in steps of 5 centiles. 

P90sp  
 The 90th percentile speed, 90 percent of speeds are above this value 
(kph) 

P95sp  
 The 95th percentile speed, 95 percent of speeds are above this value 
(kph) 
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Table 3.3 Data Annotations for TomTom traffic data 

The next step was to identify the road segments that corresponded to each individual 

grid cell. This was done using the QGIS software and, the “join attributes by location” 

command. The modified network and the grid were combined together. The output re-

sulted in a new network, with repeated identification numbers for grid cells. A sample of 

this output table can be seen in the table below, here “id” is the unique identification 

number for each segment of the road and “id_2”  is the identification number for the 

corresponding grid cell number. 

Attribute Values 

Id 22480 22929 23188 

Segment Id 1.28E+13 1.28E+13 1.28E+13 

NewSegId 
bc390758-7ebd-

48f0-abe9-
37a17df4c4d3 

c55233fb-5956-
4cbb-afbc-

57d50a45fdea 

ca8a5a48-9033-
4774-9e8f-

94abd258f53d 

Length 20.26 110.3 82.53 

FRC 3 3 3 

SpeedLimit 50 50 50 

StreetName 
Lochhausener 

StraÃƒÅ¸e 
Lochhausener 

StraÃƒÅ¸e 
Lochhausener 

StraÃƒÅ¸e 

AvgSp 43.17 46.84 43.23 

HvgSp 40.75 42.43 40.11 

id_2 13 13 13 

left 677883.5 677883.5 677883.5 

top 5339139 5339139 5339139 

right 678383.5 678383.5 678383.5 

bottom 5338639 5338639 5338639 

area 250004.6 250004.6 250004.6 

Table 3.4 Initial attribute table for combined speed data 

It can be seen in the table above that the “id_2” row which represents the unique identi-

fication for the grid cells shows repetition. While the row “Id”, which represents the unique 

identification for Network segments for the city of Munich has unique values. The same 

cell number 13 is matched with a unique “Id” from the road network. These are the seg-

ments which overlap with the grid cell number 13. A similar matching and pairing of both 

IDs were present for all the other grid cell identification numbers from 1 to 1813, for which 

data was available.  

The next stage was to combine all the unique network segments with speed data to-

gether for one of the grid cells. The speed data was averaged for individual grid cells 

together based on the weight for the length segment for each speed value. So, for the 

row “id_2”, all the corresponding average speed values were averaged based on the 

corresponding length of the segments. This was done through a simple code in R. The 

resulting output was an excel sheet with all the Grid IDs followed by columns for attrib-

utes and lastly with a weighted average for all the rows where data was available. A 

sample table can be seen below: 
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Id Weighted Average Speed 

13 38.56799 

17 53.83994 

20 45.41415 

21 56.68 

22 44.04622 

45 54.04837 

50 37.85586 

Table 3.5 Sample of final attribute table for the speed data 

In the table above, the “Id” column shows the identification numbers for individual grid 

cells and their corresponding travel speeds for a few cells, which were averaged using 

the segment lengths as the weights. Although the data for speed was processed, there 

was still a significant amount of grid cells, which had infrastructure but no data for speed. 

This was confirmed by looking at the Histogram for this newly generated data. 

 

Figure 3.3 Histogram for Weighted Speed Average 

As seen above, more than half of the values for speed were missing from the grid cells. 

Although there were some grids, where the value of speed should remain 0 owing to the 

lack of streets in these cells, the missing values for locations with a lack of data were 

addressed using a set of assumptions. For the cells without any infrastructure present, 

a value of 0 was kept as it is since there is no movement of vehicles in such zones. With 

the lack of data for speed in many segments of the roads for the city of Munch, it is 

understood that the city zone and streets are too complicated to individually assign a 

value for speed. But in the city of Munich, a concept called Tempo-30 has been intro-

duced which reduced the speed limit on many streets within the city to 30 km/h. In a 

report published by the “Referat für Stadtplanung und Bauordnung, Landeshauptstadt 
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München”, it suggests that almost 85% streets within the city of Munich already follow 

the speed limit of 30 km/h (Zorn, 2010, p. 8). So, in grid cells with positive integer values 

for infrastructure attributes and no speed value present, the assumption was made that 

the travel speed will be a minimum of 30 km/h based on the fact that these were inner 

residential streets. 

While there is a lack of demand data for the analysis, like the total number of cyclists 

and the total number of car users, this is represented indirectly in the model. An assump-

tion was made that since the travel speed data was generated from streets where there 

was a movement of cars, that shows the existence of cars in the model. Although this is 

not specified in terms of the number of cars, just the mere existence of cars. And the grid 

cells with no speed data can be considered to be the cells with no movement of cars. 

While this is not a very specific or a model altering assumption, this can be verified by 

making changes in the dataset while predicting the crashes.   

3.5 Final Dataset 

The final dataset used for the analysis comprises a grid that covers the entire city of 

Munich, with each grid cell of size 500 m X 500 m. The count data was generated using 

the ”count points in polygon” and “sum line lengths” commands. Count points in polygon 

command require two inputs, a polygon file and a points file. Individually for each attrib-

ute, the count dataset was generated which consists of the grid identification and the 

corresponding number of counts for the attributes. For the line attributes, the command 

“sum line by length” command was used. This command requires a polygon and line 

attribute as input and the resultant output is a new shape file, with the polygon file as the 

main attribute and the last column as the length of the line attributes corresponding to 

each polygon. For the analysis, the inputs were the main grid and the individual line 

attributes which include, bicycle paths, primary streets, secondary streets, tertiary 

streets, residential streets, footways and unspecified paths. 

Both these processes were done for all the point feature attributes and line features 

resulting in individual grid shape files for all of them. Lastly, to obtain the final dataset, 

all the grid shape files with count and length data were merged to obtain the final dataset. 

This was done using the “join” option from table properties and using “ID” as the target 

field, since “id” for all the grid remains consistent. A sample of the resulting dataset is 

shown in the table below: 

 

Actual attribute name Values 

Year 2016 2016 2016 2016 2016 

id 938 939 940 941 942 

Primary_id 2016938 2016939 2016940 2016941 2016942 

area 249977 249976.6 249976.7 249976.7 249976.9 

crashpoint 4 7 6 10 5 
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signal 6 14 7 18 3 

tram 0 2 1 3 0 

busstop 2 0 2 3 5 

railstop 2 0 0 0 0 

crossing 8 23 11 16 12 

junction 0 0 0 0 0 

education 0 0 0 0 1 

biergarten 0 0 0 0 0 

supermarkt 1 1 1 3 3 

bicycle 2736.157 2501.848 1235.563 2711.306 0 

primary 0 0 0 0 0 

secondary 1465.619 2135.413 1154.69 1463.527 510.1173 

tertiary 0 0 0 871.04 0 

resident 2364.203 2142.29 2569.949 2252.223 3745.116 

footway 3461.823 4787.104 2522.41 3978.755 5661.775 

path 49.03771 417.0872 61.86486 0 0 

Weighted Average Speed 44.27952 37.59701 29.71777 29.90535 27.71655 

Table 3.6 Final Dataset Attributes 

Since the infrastructure and speed data available was only for the year 2020, the same 

data is used for the different years from 2016-to 2019. So, using the steps mentioned 

above the dataset for all the years was prepared and saved as an excel file. Finally, the 

excel sheets for all years were concatenated to give a final combined dataset. This in-

cluded the year 2016-2019, which was used to analyze using the different statistical 

models and the data for the year 2020 was used for calibration. 

3.5.1 Dataset for Spatial Regression 

For spatial regression, the input data has to be shapefile with all the regression attributes. 

A shapefile is used to store information like the location and physical attributes of geo-

graphical features. The dataset for spatial regression consists of all the same attributes 

as used in the statistical regression models. While this can be easily done for the data 

for one year using the “count points in polygon” command, the data for different years 

cannot be merged or concatenated together as easily. This is because the shape file 

retains its shape of the grid for each individual year, so multiple years cannot be concat-

enated together but rather merged by taking an average. To overcome this issue, an 

assumption was made to take an average number of crashes for all four years from 

2016-to 2019. To obtain the dataset for spatial regression, first, all the attribute shape 

files were combined using the join function in QGIS. Then, for the attribute “crashpoint”, 

the crash locations for all years were simultaneously merged into one shape file. Using 

the “count points in polygon” command, these attributes were then merged into the new 

dataset for spatial regression. The resulting dataset has the same attributes as the da-

taset for regression analysis for the infrastructure, but the number of rows is reduced 

down to 1813 and the value for “crashpoint” is taken as an average of the count for all 

four years of data. 
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4 Analysis 

As part of the analysis, four models were evaluated based on the best statistical fit, and 

accuracy of predicted values. Based on the literature review, the selected models include 

the Multiple linear regression mode, Poisson regression model, the Negative binomial 

mode and the Zero-inflated Negative Binomial model. Along with these, two spatial re-

gression models were also used to analyze the data, although they were used on a trial 

basis, they have been explained in terms of goodness of fit and their limitations in this 

kind of analysis. The code that was used in the analysis can be found on the “GitHub” 

repository under the name Bicycle-crash-analysis-code. 

4.1 Data Correlation and exploration  

Before doing any sort of regression or modelling, a correlation between all the variables 

was established. This was done by simply using the “cor” command in R (R Core Team, 

2021). This command helps calculate the correlation between all the variables. This is 

generally done using the “Pearsons” method. It is one of the most common methods 

used to rank variables. The method uses numbers between -1 and 1 to assign a rank, 

based on how strong or weakly those variables are correlated. While a negative sign 

indicates a negative correlation and a positive sign indicates a positive correlation. A 0 

indicates the weakest correlation, 1 indicates the strongest positive correlation and -1 

indicates the strongest negative correlation (Nettleton, 2014). The table below shows the 

correlation between all the variables used for analysis. 

 

Figure 4.1 Correlation chart for all attributes 

The colour scheme shows the attributes with the strongest positive correlation with 

shades of green colour, while those with negative correlation in shades of red. As seen 

in the image above, the attribute “crashpoint” shows a positive correlation with almost all 

variables, except for the variables “junction” and “path”. This suggests that an increase 

in the number of junctions or length of the path in a grid should result in a decrease in 

the value of the number of crashes, or a reduction in crashes and a decrease in these 

attributes results in an increase in crashes. While a positive correlation with other varia-

bles indicates that the crashes should decrease with a decrease in the value of those 

Attributes crashpoint signal tram busstop railstop crossing junction education biergarten supermarkt bicycle primary secondary tertiary resident footway path
Weighted  

Average Speed

crashpoint 1

signal 0.64 1

tram 0.43 0.46 1

busstop 0.31 0.47 0.13 1

railstop 0.39 0.34 0.18 0.3 1

crossing 0.58 0.75 0.45 0.45 0.36 1

junction -0.02 0.02 0.03 -0.03 -0.04 0.01 1

education 0.39 0.31 0.24 0.16 0.19 0.3 -0.04 1

biergarten 0.18 0.14 0 0.15 0.09 0.15 -0.01 0.07 1

supermart 0.52 0.49 0.27 0.35 0.39 0.47 -0.03 0.26 0.11 1

bicycle 0.4 0.57 0.24 0.42 0.23 0.54 0.06 0.14 0.14 0.28 1

primary 0.15 0.27 0.07 0.17 0.02 0.19 0.03 0.02 0.01 0.07 0.28 1

secondary 0.5 0.66 0.36 0.4 0.26 0.61 0.03 0.23 0.14 0.35 0.6 -0.01 1

tertiary 0.13 0.22 0.09 0.29 0.13 0.2 0.02 0.09 0.07 0.11 0.16 -0.02 0.03 1

resident 0.35 0.34 0.15 0.43 0.19 0.37 -0.07 0.13 0.09 0.34 0.28 0.08 0.24 0.18 1

footway 0.37 0.4 0.24 0.39 0.27 0.42 -0.01 0.26 0.13 0.36 0.42 0.07 0.34 0.12 0.36 1

path -0.08 -0.08 -0.04 -0.07 -0.05 -0.06 -0.02 -0.02 0.03 -0.07 0.01 -0.05 -0.06 -0.07 -0.12 -0.01 1

Weighted 

Average 

Speed

0.16 0.25 0.08 0.3 0.1 0.25 0.14 0.05 0.07 0.12 0.47 0.21 0.29 0.17 0.36 0.35 0.01 1

https://github.com/pawanssingh/Bicycle-crash-analysis-code
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variables. At the same time, the “Weighted Average Speed” attribute shows the strongest 

correlation with the attributes “bicycle” and “resident”, this is due to the data manipulation 

done as part of data processing which included adding speed values corresponding to 

the residential streets. 

While, one of the strongest correlations exists between the pair, “Crossing and Signal” 

with a value of 0.75, which is appropriate considering that signals mostly exist at almost 

every road crossing. The highest negative correlation exists between “path and resident” 

attributes, with a value of -0.12. This suggests that unspecified paths reduce whenever 

residential streets increase, this is because most of the unspecified paths are located in 

parks and open grounds. 

These correlations can be easily influenced so they should be investigated more to un-

derstand the influence of outliers. This was done by visualizing the data and plotting 

histograms for all the attributes. For the data used in the analysis, most of the data is 

based on real-life observations from OpenStreetMap, meaning they exist in the real 

world. So, the existence of outliers could be detected statistically but that will not corre-

spond to the real world. While removing these values may be good for the model itself, 

it may reduce the real-world representation of the model. So, while looking at the histo-

grams for individual attributes, data should also be checked in QGIS to see if this data 

truly exists or is merely a counting error. First, we take a look at the attributes “crashpoint” 

and “Weighted Average Speed”, which represent the number of crashes in a grid cell 

and weighted average travel speed in a grid cell respectively. This data is most suscep-

tible to errors, as it is based on derived data. 

Weighted Average Speed 

The histogram for the weighted Average speed as shown below is different as compared 

from the one shown previously in Figure 3.3. The key difference between these two is 

the addition of new values in the speed data, which were the additions done for the inner 

streets of the city of Munich. 
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Figure 4.2 Histogram of modified Weighted Average Speed for the period 2016-2019 

As seen in the image above, for weighted speed data, values for 0 represent the streets 

where no cars or other automobiles are driven. It is important to understand the effect of 

the existence and non-existence of vehicles within the model. The frequency for values 

between 0 and 20 is missing significantly, as the speed data obtained from the data 

provider TomTom, only accounted for the data on primary and secondary streets. So 

when the data was worked on and values were added based on the assumption men-

tioned in section 3.4, the number of speed data for the value 30 increased. While, the 

speed data in places with no infrastructure was kept at 0, which explains the loss of 

values from 0 and the missing values between 0 and 20.   
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Number of crashes count 

 

 

Figure 4.3 Histogram of Crash point counts for the period 2016-2019 

For the attribute “crashpoint”, although 30 seems to be an outlier, the methodology by 

which the crash points were calculated as mentioned in section 3.5, the count 30 is just 

a summation of crash points over a grid cell. This was verified by looking at the shapefiles 

for respective grids and verifying the crash locations. First, the grid cell with the maximum 

value of attribute “crashpoint” was identified, this was done in R, by simply using the 

“which.max” command. Upon execution, the row with the highest value for attribute 

“crashpoint” is printed which includes the identification number of the grid cell. 

It was observed that the maximum value of the attribute “crashpoint” for the whole da-

taset is 29 and the corresponding year and grid cell number is 2016 and 1058. So, the 

dataset for the year 2016 and the grid cell with id 1058 were checked to verify whether 

29 crash points truly exist. This was done using QGIS. 
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Figure 4.4 Grid slot 1058 for the year 2016 

As seen in the image above, the grid cell for 2016 does correspond to the same number 

of accident counts i:e 29. So, this value was taken into consideration for our model as 

this grid cell represents the most severe crash zone in the dataset.  

For the other attributes, the summary obtained through R was analyzed carefully to find 

out any substantial outliers. The table below shows the min, median, mean, and maxi-

mum values for all the attributes that were considered for the different models. This was 

done to understand the presence of any unusual values in the dataset, that could be 

verified using the data in QGIS before proceeding with the actual analysis. The table 

below shows the values for all the attributes that are considered in the analysis.  
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Sr. 
No. 

Attribute Parameter Value 
Sr. 
No. 

Attribute Parameter Value 

1 

crashpoint Min.: 0 

10 

bicycle Min.: 0 

crashpoint Median: 0 bicycle Median: 397 

crashpoint Mean: 1.157 bicycle Mean: 651.8 

crashpoint Max.: 29 bicycle Max.: 4136 

2 

signal Min.: 0 

11 

primary Min.: 0 

signal Median: 0 primary Median: 0 

signal Mean: 1.821 primary Mean: 75.58 

signal Max.: 29 primary Max.: 2551.75 

3 

tram Min.: 0 

12 

secondary Min.: 0 

tram Median: 0 secondary Median: 0 

tram Mean: 0.1081 secondary Mean: 261 

tram Max.: 6 secondary Max.: 3241.1 

4 

busstop Min.: 0 

13 

tertiary Min.: 0 

busstop Median: 0 tertiary Median: 0 

busstop Mean: 1.522 tertiary Mean: 117.35 

busstop Max.: 19 tertiary Max.: 1610.91 

5 

railstop Min.: 0 

14 

resident Min.: 0 

railstop Median: 0 resident Median: 842 

railstop Mean: 0.08549 resident Mean:  

railstop Max.: 3 resident Max.: 4439 

6 

crossing Min.: 0 

15 

footway Min.: 0 

crossing Median: 0 footway Median: 959.78 

crossing Mean: 3.47 footway Mean: 1556.42 

crossing Max.: 51 footway Max.: 10905.77 

7 

junction Min.: 0 

16 

path Min.: 0 

junction Median: 0 path Median: 252.09 

junction Mean: 0.05405 path Mean: 513.89 

junction Max.: 4 path Max.: 5901.13 

8 

education Min.: 0 

17 

Weighted_Average.Speed Min.: 0 

education Median: 0 Weighted_Average.Speed Median: 30 

education Mean: 0.1197 Weighted_Average.Speed Mean: 30.19 

education Max.: 7 Weighted_Average.Speed Max.: 59.83 

9 

biergarten Min.: 0 

18 

supermarkt Min.: 0 

biergarten Median: 0 supermarkt Median: 0 

biergarten Mean: 0.03751 supermarkt Mean: 0.3067 

biergarten Max.: 2 supermarkt Max.: 7 

Table 4.1 Summary of all attributes used in the analysis 

The attributes which show some possible outliers are, “signal”, “crossing”, “busstop”, 

“footway”, “bicycle”. One of the easiest ways to identify outliers is by using some form of 

plot. Here, this was done using the histogram for all the attributes with possible outliers. 
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Histogram of number of traffic signals per 

grid cell for the period 2016-2019 

Histogram of number of Crossings per 

grid cell for the period 2016-2019 

  

Histogram of the length of footpath per 

grid cell for the period 2016-2019 

Histogram of the length of bicycle path per 

grid cell for the period 2016-2019 

Figure 4.5 Histograms for attributes with possible outliers 

The histogram for the attribute’s “signal”, “crossings”, “footpath” and “bicycle” is as shown 

above. The maximum values for these attributes were previously considered to be unu-

sual, however, the histogram plots show that the data is smoothly distributed across the 

X-axis with almost no missing values in between, except for the attribute “signal”. This 

suggests that the values, even though unusually high are not outliers, confirmed through 

the histogram plots. QGIS was also used to verify these high values after visualizing 

individual attributes and checking the corresponding grid cell against the original data.  

After exploring the data, the next step was modelling the data and this is discussed in 

the next section. 
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4.2 Multiple Linear Regression  

The first statistical model was a simple regression model. Linear regression is one of the 

most basic models which can be used to understand the relationship between two or 

more variables. It can be plotted simply by using the equation:  

Y = axn+b, where y = dependent variable, xn = nth independent or explanatory variable, 

a = slope of the regression line, b = intercept. 

In r, this was done using the “lm” package in r, which uses a formula to run the regression 

of the independent variable against the dependent variable (R Core Team, 2021). For 

the first iteration, all the attributes were used in the linear model, but the attributes which 

were not significant were discarded and the rest were used for the final iteration. 

The output for the final iteration is shown in the figure below:  

Residuals:      

 Min 1Q Median 3Q Max 
 -9.3514 -0.5508 -0.003 0.2116 19.4074 
      

Coefficients: 

     

Estimate Std. Error t value Pr(>|t|)  

(Intercept) 2.98E-03 4.77E-02 0.063 0.95  

signal 2.20E-01 1.18E-02 18.616 <2E-16 *** 

tram 6.58E-01 5.25E-02 12.536 <2E-16 *** 

busstop -1.26E-01 1.26E-02 -10.027 <2E-16 *** 

railstop 1.10E+00 7.79E-02 14.16 <2E-16 *** 

crossing 2.80E-02 5.82E-03 4.801 1.61E-06 *** 

education 8.27E-01 4.47E-02 18.484 <2E-16 *** 

biergarten 1.06E+00 1.11E-01 9.607 <2E-16 *** 

supermarkt 6.18E-01 3.26E-02 18.96 <2E-16 *** 

primary 5.65E-04 9.33E-05 6.063 1.40E-09 *** 

secondary 7.39E-04 7.05E-05 10.479 <2E-16 *** 

resident 3.02E-04 2.27E-05 13.274 <2E-16 *** 

WeightedAverage 
Speed 

-7.15E-03 1.58E-03 -4.522 6.23E-06 *** 

---      

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' '    1 
      

Residual standard 
error: 

1.808 on 7239 degrees of freedom 

Multiple R-squared: 0.5533, Adjusted R-squared: 0.5526 

F-statistic: 747.2 on 12 and 7239 DF, p-value: <2E-16 

Table 4.2 Output summary for Linear Regression model 

The final iteration of linear regression against the attribute “crashpoint” gives 12 highly 

significant attributes out of a total of 17 that were considered initially. Here the Adjusted 

r-squared value was 0.5526. But as compared to the first iteration with all the attributes, 

the adjusted R-squared value was reduced by a very small margin, from 0.533 to 0.5526. 

This is a result of having fewer attributes as part of the regression, even if the dropped 



Analysis 

28 

 

variables are statistically insignificant, they affect the model fit and the R-squared value. 

To understand the influence of the attributes on the dependent variable, the standardized 

variables should be looked at. They are shown in the table below. 

Attributes Standardized Coefficients 

signal 0.2686 

tram 0.1152 

busstop -0.0984 

railstop 0.1255 

crossing 0.0620 

education 0.1559 

biergarten 0.0770 

supermarkt 0.1841 

primary 0.0532 

secondary 0.1214 

resident 0.1248 

Weighted Average Speed -0.0404 

Table 4.3 Standardized coefficients for Linear model 

Here only two attributes show a negative correlation, they are “busstop”, and “Weighted 

Average Speed”. This negative correlation suggests that every time the value for these 

two attributes is increased, the number of crashes should decrease. The attribute with 

the strongest effect on the number of crashes is the attribute “signal”, which suggests 

that the greater the number of signals in a grid cell can result a greater number of 

crashes. At the same time, the attribute representing speed also shows a negative sign 

suggesting, an inverse relationship for the number of crashes although with a marginal 

effect. This suggests that when motot vehicles are driving faster, the likelihood of a bicy-

cle crash is reduced. Another attribute with inverse relation is “busstop”, but with a sig-

nificantly small effect.  

Using the final linear regression model, we plot the observed and predicted values with 

the regression line.  
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Figure 4.6 Predicted and Observed values for the linear regression model 

As seen in the image above, some negative values are predicted by the model. This is 

because the data not being normally distributed and the linear regression model is not 

bound at the value 0. This results in the model predicting some negative values. Because 

of the presence of negative values and poor fit, this model cannot be used to make any 

inferences or predictions for the year 2020.  the maximum predicted value for the linear 

regression is 18.745, which is significantly lower than the observed value of 29. The 

statistical fit, the presence of negative values and the under-representation of crashes 

make the linear regression model a poor choice to analyze crashes in this case. 

4.3 Poisson Model  

One of the most popular regression models for count data is a Poisson regression model. 

And the Poisson model for regression assumes that the Variance (Yi) is equal to the 

mean E(Yi).  But more often than not, the crash data shows over-dispersion or under-

dispersion due to the presence of zeroes. In (Miaou, 1994), the equation for Poisson 

regression is stated as: 

log(𝜇𝑖) =  𝛽0 + 𝛽1𝑋𝑖 

where, μi = conditional expectation of yi, β0 = is the intercept and β1 = coefficient marked 

x. In the case of Poisson regression, there is no error term like in linear regression, as 

the μ determines both the mean and variance of the Poisson random variable. A variable 

is said to have Poisson distribution if y has positive integer values with the probability: 

Pr{𝑌 = 𝑦} =  
𝑒−𝜇𝜇𝑦

𝑦!
 

where, μ = parameter, and the mean E(Y) and the variance var(Y) are the same as µ 

when it is greater than 0. For our data, the unconditional mean of the outcome variable 

was found to be 1.16 and the variance was 7.31. Since the variance was significantly 

bigger than the mean, this suggested that there might be some overdispersion in the 
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model (Zhu, 2012). The Poisson regression was run using the “glm” package. This pack-

age provides an option to perform regression to be performed with eight family choices, 

here we use the family “Poisson”. The first iteration again uses all the variables. The 

summary of the first iteration is shown in the table below. 

Deviance Residuals:      

 Min 1Q Median 3Q Max  

 -5.4699 -0.8978 
-

0.5456 
-0.1952 9.8114  

       

Coefficients:       

 Estimate Std. Error z value Pr(>|z|)   

(Intercept) -2.45E+00 6.56E-02 -37.26 <2.00E-16 ***  

signal 4.13E-02 3.29E-03 12.538 <2.00E-16 ***  

tram 1.02E-01 1.25E-02 8.148 3.70E-16 ***  

railstop 1.21E-01 2.07E-02 5.846 5.04E-09 ***  

education 2.41E-01 1.08E-02 22.288 <2.00E-16 ***  

biergarten 2.80E-01 3.07E-02 9.107 <2.00E-16 ***  

supermarkt 1.27E-01 8.86E-03 14.383 <2.00E-16 ***  

bicycle 3.50E-04 1.85E-05 18.943 <2.00E-16 ***  

primary 4.70E-04 3.62E-05 12.975 <2.00E-16 ***  

secondary 4.27E-04 2.73E-05 15.656 <2.00E-16 ***  

tertiary 1.92E-04 4.29E-05 4.471 7.77E-06 ***  

resident 4.71E-04 1.16E-05 40.52 <2.00E-16 ***  

footway 1.30E-04 6.74E-06 19.294 <2.00E-16 ***  

path -7.96E-05 2.23E-05 -3.577 0.000348 ***  

Weighted Average Speed 1.47E-02 1.67E-03 8.821 <2.00E-16 ***  

---       

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 1 
       

(Dispersion parameter for Poisson family taken to be 1)  

       

Null deviance: 25318 on 7251 degrees of freedom 

Residual deviance: 10228 on 7237 degrees of freedom 

AIC: 16992      

       

Number of Fisher Scoring iterations: 5     

Table 4.4 Output Summary for Poisson model 

The first thing to notice in the summary for the Poisson model is the Deviance residual, 

which shows the minimum, 1stQ, mean, 3rd Q and the maximum value. While looking at 

this data, there seems to be a lack of symmetry when all the values are compared to-

gether. Here the minimum value is -5.47, the median is -0.5456 and the maximum is 

9.81 which indicates some sort of skew in the model. Next, there is the estimate, stand-

ard error, the z value and the p-value that is associated with it. While the standard error 

represents the average distance of the observed value from the regression line, the z 
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value is obtained by dividing the estimate by the standard error. The z value shows the 

difference between the mean for the specific attribute in the dataset.  

In the case of Poisson regression, since the dependent variables take the log, their co-

efficients need to be exponentiated to obtain the true coefficients of the regression. Here 

Poisson model coefficient for Signal showed 4.13E-02, this means that the expected log 

count for one unit increase in signal is 0.04267 when all other attributes remain constant. 

A similar interpretation can be made for all the other variables. While only the attribute 

“path” shows a negative coefficient, inferring that for every log count increase in the 

length of an unspecified path in a grid cell, results in a reduction by -7.96E-05.  

A plot of the predicted and actual values is shown below.  

 

Figure 4.7 Predicted and Observed values for the Poisson regression model 

The values predicted using the Poisson model need to be exponentiated to obtain the 

true values. These predicted values are plotted against the observed values. As seen, 

there is no presence of any negative values. While the highest observed value is 29, the 

highest predicted value is 50.  

The model was checked for dispersion which can be calculated using the Pearson re-

siduals of the model fit and the number of independent parameters. In R, this was done 

using the “dispersiontest” from the package “AER” (Kleiber & Zeileis, 2008), and the 

value is found to be 2.151. Since this value is bigger than 1, this suggests that there is 

some overdispersion in the Poisson model, which means that any predictions made with 

this model are bound to have an inclination, which makes it unsuitable to make any reli-

able interpretations. One of the most common causes of overdispersion in a model is the 

existence of excess zeroes, which can be addressed by a zero-inflated model (Lambert, 

1992). 
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4.4 Negative Binomial and Zero Inflated Negative Binomial model 

While the Poisson regression model is suitable for count models, oftentimes such data 

contains an excess number of zeroes. The Negative Binomial model, also known as the 

Poisson-Gamma model, can overcome the limitation of the Poisson model regarding the 

condition of mean and variance. The selection criteria of the model are dependent on 

the existence of overdispersion (Lord & Mannering, 2010). Since our data does exhibit 

overdispersion, variance is significantly greater than the mean, and the use of a Negative 

Binomial model is ideal in this situation (Park & Lord, 2009). A Negative binomial (NB) 

regression can be executed using the “glm.nb” package from R (Venables & Ripley, 

2002). Although the literature suggests that a Zero-inflated Negative Binomial (ZINB) 

regression model will be better suited to the data that shows excess zeroes, skipping 

over the NB model is not ideal. While ZINB may be better suited theoretically, it must be 

verified against the regular NB model. So, a negative binomial model helped establish a 

comparison for a zero-inflated negative binomial model, which can be done using differ-

ent statistical tests. The NB model was run with the same parameters that were used for 

the zero-inflated model. Below is the summary of the first iteration of the output.  

Deviance Residuals:      

 Min 1Q Median 3Q Max  

 -2.5036 -0.7351 -0.4189 -0.2265 4.7901  

Coefficients: Estimate 
Std.  
Error 

z value Pr(>|z|)   

(Intercept) -3.35E+00 9.81E-02 -34.154 <2.00E-16 ***  

signal 5.58E-02 7.00E-03 7.973 1.54E-15 ***  

tram 2.17E-01 2.92E-02 7.432 1.07E-13 ***  

railstop 3.62E-01 4.71E-02 7.686 1.52E-14 ***  

education 2.43E-01 2.67E-02 9.112 <2.00E-16 ***  

biergarten 3.33E-01 7.14E-02 4.668 3.04E-06 ***  

supermarkt 1.80E-01 1.98E-02 9.08 <2.00E-16 ***  

bicycle 4.14E-04 3.21E-05 12.913 <2.00E-16 ***  

primary 5.39E-04 6.67E-05 8.086 6.19E-16 ***  

secondary 4.94E-04 5.21E-05 9.48 <2.00E-16 ***  

tertiary 3.44E-04 7.28E-05 4.727 2.28E-06 ***  

resident 5.27E-04 1.88E-05 27.983 <2.00E-16 ***  

footway 1.39E-04 1.14E-05 12.215 <2.00E-16 ***  

Weighted Average 
Speed 

2.63E-02 2.50E-03 10.508 <2.00E-16 ***  

---       

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 1 
       

(Dispersion parameter for Negative Binomial (1.276) family taken to be 1)  

       

Null Deviance: 12751.6 on 7251 degrees of freedom  

Residual Deviance: 4923.4 on 7238 degrees of freedom  

AIC: 14578      

Number of Fisher Scoring iterations: 1    
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 Theta: 1.276     

 Std. Err: 0.0586     

2x log likelihood: -14548.2     

Table 4.5 Output Summary for Negative Binomial Model 

Here, all attributes were observed to have a positive coefficient except for the intercept 

itself. Looking at the coefficients, the three attributes with the strongest effect on the 

dependent variable were the attributes “education”, “railstop” and “biergarten”. The co-

efficient of railstop is 3.62E-01 or 0.362, which indicates that for every one-unit increase 

in signal, the expected log count of the attribute “crashpoint” increases by 0.362. The 

coefficient for the attribute “biergarten” is 3.33E-01 or 0.333, which suggests that with 

one unit increase in biergartens, the expected log count of “crashpoint’ increases by 

0.333. And the coefficient for the attribute “railstops” is 2.43E-01 or 0.2431, which sug-

gests that one unit increase in rail stops, the expected log count of “crashpoint” increases 

by 0.2431. This model will be used to compared the Zero-inflated negative binomial 

model to compare which gives a better statistical fit. 

At the same time, an excess number of zeroes were observed in the crash data count, 

as seen in Figure 4.3. For this purpose, a zero-inflated model can be used. A zero-in-

flated model makes use of two distinct modelling procedures which can model crashes 

in two states, the zero-crash state also known as the count model and the non-zero crash 

state which is the binary logit model (Shankar et al., 1997). Since the data consists of 

both over dispersion and excess zeroes, the literature suggests that a zero-inflated neg-

ative binomial (ZINB) model should yield the best results. For a ZINB regression mode 

for which a response variable Yi, where i is a positive integer greater than 0, has a prob-

ability mass function as:  

Pr(𝑌𝑖 = 𝑦𝑖) =  

{
 
 

 
 𝑝𝑖 + (1 − 𝑝𝑖)(

∅

𝜇𝑖 + ∅
)∅, 𝑦𝑖 = 0,

(1 − 𝑝𝑖)
𝛤(∅ + 𝑦𝑖)

𝛤(𝑦𝑖 + 1)𝛤(∅)
(
𝜇𝑖

𝜇𝑖 + ∅
)𝑦𝑖 (

∅

𝜇𝑖 + ∅
)
∅

, 𝑦𝑖 = 1,2,3,…

 

where 0 ≤ pi ≤ 1, μi ≥ 0, ∅ is the dispersion parameter with ∅ > 0 and Γ (.) is the gamma 

function  (Garay et al., 2011).  

The ZINB model is best suited for the data that has two kinds of zeroes, structural zeroes 

and sampling zeros (Washington et al., 2020). Structural zeros are the zeroes that are 

obtained for attributes that can only have a value of 0, for example, a grid cell that over-

looks a lake in the city, cannot have a bicycle crash inside, so it will always remain 0. A 

sampling zero occurs when a grid cell with a possibility of a crash, has no crash occurring 

in it. This is modelled easily by the zero-inflated model. The count model and the zero 

models, both model the 0 values but the zero-inflation component adds additional zeros 

to data, hence the name zero inflation. 

The Zero-inflated Negative Binomial model was executed using the “zeroinfl” of “pscl” 

package (Zeileis et al., 2008). This model can be analyzed as a Poisson model or as a 

negative binomial model. To compare the models, the metric of dispersion statistic was 
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used, which was calculated using the Pearson residuals and the independent attributes. 

Dispersion statistics can help find out the existence of under-dispersion or over-disper-

sion in a model. 

The summary of the model is shown below: 

Call:  

zinflm <- zeroinfl(crashpoint ~ signal+tram+railstop+education+bier-

garten+supermarkt+bicycle+primary+secondary+resident+Weighted 

Average Speed |  

signal+tram+railstop+education+biergarten+supermarkt+pri-

mary+secondary, data = data2, dist = "negbin") 

       

Pearson residuals: 
      

 
Min 1Q Median 3Q Max 

 

 
-1.1816 -0.4199 -0.2727 -0.1954 16.6837 

 
Count model coefficients (negbin with log link): 

    

 
Estimate Std. Error z value Pr(>|z|) 

  
(Intercept) -2.25E+00 1.56E-01 -14.471 <2.00E-16 *** 

 
signal 5.25E-02 7.04E-03 7.452 9.17E-14 *** 

 
tram 2.40E-01 2.91E-02 8.251 <2.00E-16 *** 

 
railstop 3.83E-01 4.36E-02 8.768 <2.00E-16 *** 

 
education 2.69E-01 2.51E-02 10.73 <2.00E-16 *** 

 
biergarten 3.11E-01 7.21E-02 4.31 1.64E-05 *** 

 
supermarkt 1.75E-01 2.01E-02 8.712 <2.00E-16 *** 

 
bicycle 3.72E-04 4.58E-05 8.114 4.91E-16 *** 

 
primary 3.40E-04 6.58E-05 5.169 2.35E-07 *** 

 
secondary 3.22E-04 5.07E-05 6.341 2.28E-10 *** 

 
resident 4.44E-04 5.06E-05 8.777 <2.00E-16 *** 

 
Weighted Average Speed 2.04E-02 2.79E-03 7.33 2.30E-13 *** 

 
Log(theta) 4.57E-01 8.23E-02 5.558 2.73E-08 *** 

 
Zero-inflation model coefficients (binomial with logit link): 

   

 
Estimate Std. Error z value Pr(>|z|) 

  
(Intercept) 3.69E-01 1.35E-01 2.736 0.00622 ** 

 
signal -1.86E+00 6.55E-01 -2.832 0.00462 ** 

 
tram -1.18E-01 1.05E+00 -0.112 0.91044 

  
railstop -5.82E-01 5.67E-01 -1.025 0.30526 

  
education -7.95E-01 7.55E-01 -1.052 0.29284 

  
biergarten  -6.90E-01 6.01E-01 -1.149 0.25074 

  
supermarkt -4.29E+00 4.48E+00 -0.959 0.33748 

  
primary -6.82E-05 5.38E-04 -0.127 0.89917 

  
secondary -2.03E-03 4.94E-04 -4.117 3.84E-05 *** 

 
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 1 

Theta = 1.5796 
    

Number of iterations in BFGS optimization: 58 
   

Log-likelihood: -7242 on 22 Df 
  

Table 4.6 Output summary for the Zero Inflated Negative Binomial model 
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As seen in the table above, the call for the zero-inflated model in R consists of two parts. 

The first part is used for the count model and the second part is used for the zero-inflated 

logit component of the model. They are separated into two parts, which are separated 

by a “|” symbol in the call of the model. It can be observed that the model with count data 

has no attributes with a negative coefficient. All the attributes have a positive coefficient. 

While, if all the values become absolute zeros, indicating no movement, logically there 

are bound to be no crashes. From the correlations, the attribute “crashpoint” corresponds 

strongly with the attribute “signal”. In the count model part, the coefficient for the attribute 

“signal” is 5.25E-02, which means that for each one-unit increase for signal, the expected 

log count for the number of crashes increases by 5.25E-02 when all the other variables 

remain constant. The attributes, “signal” and “secondary” are statistically significant for 

the zero-inflation component. At the same time, the log odds of being an excessive zero 

would decrease by 1.86 for every additional signal in a grid cell. In other words, the more 

signal in the grid cell the less likely that a zero would be due to a crash not happening. 

Or, the more the number of signals, the more likely that a crash happened in a grid cell. 

For the attribute “secondary”, the log odds of being an excessive zero would decrease 

by 0.00203 for every additional meter of secondary street in a grid cell. Or in other words, 

the more secondary streets in a grid cell, the more likely that a crash will happen in that 

grid cell. 

The exponentiated coefficients for the ZINB model are: 

Model type Attribute Value 

Count Model 

Intercept 0.1054 

signal 1.0538 

tram 1.2716 

railstop 1.4661 

education 1.3087 

biergarten 1.3644 

supermarkt 1.1912 

bicycle 1.0004 

primary 1.0003 

secondary 1.0003 

resident 1.0004 

Weighted_Average.Speed 1.0206 

Zero-inflation model 

(Intercept) 1.4465 

signal 0.1563 

tram 0.8891 

railstop 0.5590 

education 0.4518 

biergarten 0.5014 

supermarkt 0.0136 

primary 0.9999 

secondary 0.9980 

Table 4.7 Exponentiated coefficients for the Zero Inflated Negative Binomial model 
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The baseline odds for crashes happening in a grid cell are 1.4465. These odds are in-

creased by one unit increase in the attribute signal by 0.15. The odds of a crash hap-

pening are decreased the most when the values for primary and secondary attributes 

are increased. One of the strongest influencers for crash probability is the attribute “rail-

stop”. This suggests that grid cells with a high number of rail stops have a strong influ-

ence on crashes occurring. The next three attributes with a high effect on count data are 

“tram” “biergarten” and “education”, which represent tram stops, beer gardens and edu-

cation institutes. The important thing to remember while interpreting these values is that 

they are not influenced by the zero-inflation model, which results in these changes in 

values as compared to previous models. 

While the count model coefficients seem to show that the model is affected the most by 

the attribute “railstops”, the Zero-inflated negative binomial model is a two-part model. 

This means that the coefficients from both the count model and zero inflation model are 

responsible for the overall predictions being made by the model. So, the coefficients by 

themselves only explain the effect on one part of the model, because the second part of 

the model strongly affects the significance of other attributes. 

Since the z-values measure the distance between the data point and the mean using the 

standard deviation, z scores can have a positive or negative sign. This depends if the z-

value is higher or lower than the mean. This can be used to compare the value to the 

average. Below is the comparison of the z-values of the Poisson model and the Negative 

Binomial models. 

Z-value comparison 

Attribute 
Negative 
Binomial 

model 

Zero Inflated 
Negative 

Binomial model 
Difference 

signal 7.973 7.452 0.521 

tram 7.432 8.251 -0.819 

railstop 7.686 8.768 -1.082 

educatio 9.112 10.73 -1.618 

biergarten 4.668 4.31 0.358 

supermarkt 9.08 8.712 0.368 

bicycle 12.913 8.114 4.799 

primary 8.086 5.169 2.917 

secondary 9.48 6.341 3.139 

resident 27.983 8.777 19.206 

Weighted Average Speed 10.508 7.33 3.178 

Table 4.8 Z-values for Negative Binomial and Zero Inflated Negative Binomial model 

As seen in the table above, the z-value for attributes is significantly higher for the Nega-

tive binomial model, as compared to the Zero-inflated negative binomial model. The third 

column shows the difference between the z-values for both models. As seen, the z-value 
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for the zero-inflated model is higher for only three variables “tram”, “railstop” and “edu-

cation”. This also confirms that the Zero-inflated negative binomial model has lower 

standard errors as compared to the negative binomial model.  

To test whether the ZINB model works better than the NB model, a chi-squared test 

statistic was calculated. This test was performed using the function “pchisq” in R (R Core 

Team, 2021), which is also known as the non-central Chi-Squared Distribution. By de-

fault, it calculates the left tailed probabilities, but by inserting the parameter “lower.tail” 

to be false, it can be adjusted. The difference of log-likelihoods and “df” or degrees of 

freedom is the difference between the independent parameters for the two models. An-

other way to obtain this p-value instead of adding the lower tail command is to subtract 

the value obtained from 1 as, “1- pchisq(“difference of log”, df)”. Between the ZINB and 

NB models, the p-value comes out to be 2.08E-10, which concludes that the ZINB model 

is a significant improvement over the NB model.  

While the chi-squared test can be used to compare two models, the model selection 

should not be based solely on this test. For this reason, another test statistic that can be 

used to find a better model between the Negative binomial model and the zero-inflated 

negative binomial model was employed, which is the AIC test. Akaike's information 

criterion also known more commonly as AIC, is used to classify and test models amongst 

each other. While it does not suggest if the model is best overall, it does however rank 

the input models and can help identify the better model. AIC is suggested to be used for 

statistical regression models as it performs best with large datasets (Vrieze, 2012). The 

AIC can be derived from a model's likelihood function, the number of independent 

variables and the maximum likelihood estimate. (Akaike, 1974) gives the general 

equation for AIC as: 

AIC = (-2)log(maximum likelihood) + 2 (number if independent model parameters) 

The complexity of the model is indicated by the number of parameters used to estimate 

the model. While the true model, also known as the model used to generate the data is 

not part of the analysis, the AIC is efficient and will always choose the model that 

minimizes the mean squared error of the prediction (Vrieze, 2012). 

The AIC can be calculated in R by simply running the command “AIC(model1, model2)“. 

The AIC value for the Negative binomial model was 14578.19, and for the Zero-inflated 

negative binomial model was 14528.55. As suggested by the literature, the Zero-inflated 

model is the ideal model when compared to the simple Negative binomial model since it 

has a lower AIC value. 

4.5 Spatial Regression model  

The first step in spatial regression is making the spatial weights, which influence the 

outcomes of spatial regression. Spatial weights are typically a positive matrix that spec-

ifies the relationship between two neighbours for each observation. In a spatial matrix a 

non-zero element “mij”, defines “j” as being a neighbour of “i”. And since an observation 
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cannot be a neighbour to itself, the weights for this diagonal element remain 0. Spatial 

weights are generally based on different types of contiguity, which may result in different 

weights for the same layout. can be formed with two methodologies, rook, and queen. 

For this analysis, the queen contiguity was used, which takes into account the neigh-

bours connected via the vertices and the edges (Anselin, 2002). Queen contiguity was 

used for the analysis since it considers all the neighbours for assigning spatial weights. 

Since the grid used in the analysis shares no specific correlation or restrictions with each 

of their neighbours, using Queen contiguity is the logical step. A sample for the two types 

of contiguity is shown below: 

 

Figure 4.8 Example of Queen contiguity 

 

Figure 4.9 Example of Rook Contiguity 

Figure 4.8 and Figure 4.9 show the pattern of Queen contiguity. Here the grid cell col-

oured in red is considered a neighbour with all the cells coloured in green, while for the 

rook contiguity, the cell central cell coloured in red is considered a neighbour with only 

the cells connected to it by the edge. This is the main difference between the different 

contiguity concepts used in the analysis of spatial regression models. 

In r, this was done using two different commands, “poly2nb” and “nb2listw”, both are part 

of the “spdep” package in R. The “poly2nb” command is used to build a list of neighbours 

with contiguous boundaries from polygons and the “nb2list2” command is used to apply 

the weights to the neighbours based on its attributes and the chosen scheme (R. S. 

Bivand & Wong, 2018).  

For this analysis two spatial models were considered, namely Spatial Autoregressive 

Model (SAR) also known as the Spatial lag model and the spatial error model. The Spa-
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tial lag model is typically used when the dependent variable “y” is influenced by the val-

ues in its neighbouring units, while the spatial error model relies on the presence of spa-

tial dependence in the error term of the neighbouring units (Saputro et al., 2019).  

The equation for the spatial lag model and the Spatial error model can be referred in the 

book “Spatial econometrics: methods and models” and the notations are as mentioned 

below (Anselin, 1988). 

Spatial lag model: 

Y=ρWY+Xβ+ϵ 

Where Y is the response variable, ρ(Rho) is the autoregression parameter which esti-

mates the influence of the neighbouring units, W represents the spatial weights matrix, 

β is the vector representing the slopes for the predictors, and X is the predictor and ϵ is 

the error term.  

Spatial Error model: 

Y=Xβ+λWμ+ϵ 

Where Y is the response variable, λ is the autoregression coefficient, W represents the 

spatial weights matrix, and μ is the spatial error term. 

The key terms for both the models to interpret are the ρ(Rho) and the λ(Lambda), these 

terms should be statistically significant for the models to determine the better model. 

Both the models were run with all attributes for the first iteration, but after discarding the 

insignificant attributes, the final model is as discussed below. 

The Spatial lag model was run using the “lagsarlm” of the “spatialreg” package in R (R. 

Bivand & Piras, 2015). The summary for the spatial lag model is as shown below: 
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Call: lagsarlm(formula = reg3eq, data = spdata, listw = listw1) 
      

Residuals:      

 Min 1Q Median 3Q Max 

 -4.51507 -0.286058 -0.031792 0.254658 11.29403 
      

Type: lag     

Coefficients: (Asymptotic standard error)   

 Estimate  Std. Error z value Pr(>|z|)  

(Intercept) 3.72E-02 5.90E-02 0.63 0.5287  

Weighted Aver-
age Speed 

-8.21E-03 1.92E-03 -4.2688 1.97E-05  

Signal 1.13E-01 1.42E-02 7.9581 1.78E-15  

Railstop 5.90E-01 9.42E-02 6.2614 3.82E-10  

Crossings 3.15E-02 6.95E-03 4.541 5.60E-06  

Education 2.80E-01 5.54E-02 5.051 4.40E-07  

Biergarten 6.43E-01 1.34E-01 4.807 1.53E-06  

Supermarkt 3.64E-01 3.98E-02 9.1569 <2.22E-16  

Primary 7.67E-04 1.13E-04 6.8192 9.16E-12  

Secondary 4.89E-04 8.48E-05 5.7709 7.88E-09  

Footway -8.88E-05 1.76E-05 -5.035 4.78E-07  

      

Rho: 0.68035, LR test value 1205.5, p-value: <2.22E-16  
Asymptotic standard error: 0.016139  

  

 z-value: 42.155, p-value: <2.22E-16  

Wald statistic 1777, p-value: <2.22E-16   

      

Log likelihood: -2814.031 for lag model    

ML residual variance (sigma squared): 1.2028, (sigma: 1.0967)  
Number of observations: 1813  

  

Number of parameters estimated: 13  
 

AIC: 5654.1, (AIC for lm: 6857.6)  
 

LM test for residual autocorrelation  

test value: 11.89, p-value: 0.0005643  
 

Table 4.9 Output Summary for the Spatial Lag Model 

The value of Rho which is the spatial lag parameter which shows how the neighbouring 

values of Y affect the primary value of Y, it has a positive effect and it is also statistically 

significant. Since in a spatial lag model, the value of Y depends also on the neighbors’ 

value of Y and vice versa, the slope estimates of the model and their significance cannot 

be taken into consideration. Instead, there’s a need to look at the impact of coefficients, 

both direct and indirect for each attribute which can be ran using the “impacts” command 

in R from the “spatialreg” package (R. Bivand & Piras, 2015). This is shown in table 

below: 
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 Attributes Direct Indirect Total 

Weighted Average Speed -9.05E-03 -0.016618507 -0.02566942 

Signal 1.25E-01 0.229317937 0.354211021 

Railstop 6.51E-01 1.194981636 1.845802694 

Crossings 3.48E-02 0.063878636 0.098668762 

Education 3.09E-01 0.566594665 0.875178268 

Biergarten 7.09E-01 1.302610538 2.012049365 

Supermarkt 4.02E-01 0.737814767 1.139649718 

Primary 8.46E-04 0.001554217 0.002400688 

Secondary 5.40E-04 0.000990774 0.001530378 

Footway -9.80E-05 -0.000179903 -0.000277884 

Table 4.10 Direct, Indirect and Total impact of coefficients 

Here, the “Direct” values show the effect on the variable Y for a grid cell “x”, if there is an 

increase of attributes by 1 for each individual attribute. The “Indirect” values, show the 

effect on Y for a grid cell number “x” if the neighbours increase their value by 1 for each 

individual attribute, which can also be considered as the effect on neighbours if there is 

a change in the value of Y for the grid cell “x”. The total values are the combined effect, 

which is used for analysis. Printing the summary of these effects, we obtain. 

 

Simulated p-values: 

  Direct Indirect Total 

Weighted Average Speed 3.09E-05 7.39E-05 4.83E-05 

Signal 6.66E-16 6.75E-14 2.44E-15 

Railstop 5.88E-10 5.96E-09 1.46E-09 

Crossings 9.58E-06 1.76E-05 1.17E-05 

Education 9.81E-08 8.00E-08 5.52E-08 

Biergarten 1.37E-06 4.42E-06 2.30E-06 

Supermarkt <2.22E-16 <2.22E-16 <2.22E-16 

Primary 2.35E-11 2.10E-09 2.43E-10 

Secondary 1.03E-08 1.24E-07 3.50E-08 

Footway 7.22E-08 1.76E-06 4.78E-07 

Table 4.11 Simulated P values for the Spatial lag model 

As seen above, the simulated p values as significant for all the selected attributes. The 

model summary also compares the spatial regression model to a linear regression 

model, which is run for the same parameters as the spatial lag model. It can be observed 

that the AIC value for the spatial lag model was 5654.1, and for the linear regression 

model was 6857.6, which suggests that statistically, the spatial lag model performs better 

than the linear regression model. 

Next was the Spatial error model. This model was executed using the “errorsarlm” of the 

“spatialreg” package in R (R. Bivand & Piras, 2015). Below is the summary for the same: 
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Call: errorsarlm(formula = reg4eq, data= spdata, listw = listw1) 
      

Residuals:      

 Min 1Q Median 3Q Max 
 -4.2605 -0.32556 -0.02176 0.21937 11.61444 
      

Type: error     

Coefficients: (asymptotic standard errors)   

 Estimate Std. Error z value Pr(>|z|)  

(Intercept) 1.92E-01 1.71E-01 1.1212 0.2621875  

Signal 1.08E-01 1.44E-02 7.5284 5.13E-14  

Railstop 4.45E-01 8.74E-02 5.0913 3.56E-07  

Crossings 3.90E-02 7.25E-03 5.385 7.25E-08  

Education 2.19E-01 5.32E-02 4.1231 3.74E-05  

Biergarten 4.40E-01 1.26E-01 3.5687 0.0003588  

Supermarkt 3.20E-01 3.81E-02 8.398 <2.22E-16  

Primary 9.35E-04 1.20E-04 7.7734 7.55E-15  

Secondary 6.11E-04 8.87E-05 6.8833 5.85E-12  

Resident 1.97E-04 3.64E-05 5.4141 6.16E-08  

      

Lambda: 0.84438, 
LR test 
value: 

1083.3, p-value: <2.22E-16 

Asymptotic standard error: 0.016241   

 z-value: 51.99, p-value: <2.22E-16  

Wald statistic 2702.9,  p-value: <2.22E-16  

      

Log likelihood -2864.297 for error model   

ML residual variance (sigma 
squared):  

1.1905, (sigma: 1.0911)  

Number of observations: 1813     

Number of parameters estimated:  12    

AIC: 5752.6, (AIC for lm: 6833.9)   

Table 4.12 Output Summary for the Spatial Error model 

Unlike the spatial lag model, the estimates for the Spatial error model (SEM) can be 

interpreted directly as marginal effects. First, the Lambda value is a positive 0.84438, 

which is statistically significant. Here the coefficient “railstop” shows a very strong effect 

on the number of crashes, which suggests that the more rail stops in a grid cell, increases 

the number of crashes by 0.445. This could be explained by the movement of people 

which results due to use of public transport and the movement towards the stops. Since 

there are no demand parameters in the model, there is just an assumption and cannot 

be verified. The spatial error model also generates the AIC values, as compared to the 

linear regression model. Here the SEM model shows AIC value of 5752.6 as compared 

to the AIC value of 6833.9 for the linear regression model. This suggests that the SEM 

model performs better than the regression model. 
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While the literature suggests that the SEM performs better than the SAR model in most 

cases (Rhee et al., 2016) (Jia et al., 2018), the comparison of both models suggests that 

the spatial lag model performed better as compared to the spatial error model. This was 

concluded based on the AIC values, which were 5748.962 for the spatial error model 

and 5654.1 for the spatial lag model, and the model with lower AIC values is considered 

to be a better fit. The next step was to check how well the models predict the values. 

This was done using the predict function, both the models were used to predict values 

and there were several inconsistencies detected. For the spatial lag model, many nega-

tive values were observed. And for both spatial error and spatial lag models, the maxi-

mum values were 16.2 and 9.1, which are considerably low as compared to the highest 

observed value. This suggests that both the spatial models do not function properly for 

the given dataset, although the spatial lag model gives a better output as compared to 

the Spatial error model which is due to a better statistical fit.  

When looking at the grid cell numbers for the highest predicted crashes, they show sim-

ilar results that the highest predicted crash value was the same as the observed crashes. 

This along with the presence of negative values suggests that the model requires more 

spatial information before making any interpretations. 

4.6 Model Validation for the year 2020  

For predictions, a different dataset was used which belonged to the year 2020. Since the 

zero-inflated negative binomial model gives the best statistical fit for the tested data, the 

same model was used to predict the number of crashes for the year 2020. The dataset 

used for predicting the values consists of all the same attributes that were used to train 

the data. 

The prediction results, plotted against the actual number of crashes and a histogram for 

the predicted values are shown below: 
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Figure 4.10 Predicted and Observed values using the Zero Inflated Negative Binomial 
model for the year 2020 

 

Figure 4.11 Histogram for the predicted values 

As seen in both the plot and the histogram, no negative values are being predicted by 

the model, which should hold since the count model is a negative binomial model. The 

first observation made for the set of predicted values was that there is an outlier that was 

predicted by the model which suggests that 156.74 crashes may happen at a single 

location in a year. But this seems extremely high when compared to the observed data 

for which the highest value is 29. The histogram shows that most of the predicted crash 

values are saturated between 0 and 30, with almost no values from 50 to 160. So, we 

know that statistically, the model predicted a significantly high outlier in one instance. 
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So, the next step was to visualize the predicted data in QGIS, to conclude whether the 

location of this predicted crash point was also wrong or if this was a prediction error in 

the model. First, the actual crash data for 2020 was visualized to check the location of 

crash points. The grid visualized can be seen below: 

 

Figure 4.12 Munich city grid with observed crashes for the year 2020 

As seen above, most of the high number of crashes are concentrated towards the centre 

of the grid, which also corresponds to the city centre of Munich. Then the grid cell num-

bers were identified to check their respective corresponding locations in the city of Mu-

nich, and the data was checked in QGIS. The cells with more than 15 number of crashes 

are shown below: 

Cell ID Number of Crashes Cell ID Number of Crashes 

907 17 946 21 

1016 17 985 21 

1018 17 909 22 

1024 17 984 22 

870 18 795 24 

1017 18 1020 24 

908 20 911 25 

1053 20 1094 25 

1054 20 1057 29 

Table 4.13 Observed crashes(more than 15 crashes per grid cell) 

Next, the predicted number of crashes was visualized in QGIS. The data was imported 

to QGIS and joined to the existing grid dataset, using the common ID variable. The output 

is as shown below: 
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Figure 4.13 Munich city grid with predicted crashes for the year 2020 

The predicted crashes are well distributed around the city. The highest number of 

crashes is observed in the grid cell number 946 and which is located between the central 

station of Munich and Karlsplatz which is to the east of the central station. The grid cells 

corresponding to the crash with the number of crashes more than 15 are as shown in 

the table below: 

 

Cell ID Number of Crashes Cell ID Number of Crashes 

908 15.042 1015 25.632 

1433 17.343 1026 27.261 

906 18.484 1062 27.428 

941 20.658 945 36.454 

1170 23.721 1058 37.981 

795 24.603 1052 43.263 

1205 24.839 984 55.25 

1137 24.904 946 156.743 

Figure 4.14 Predicted crashes(more than 15 crashes per grid cell) 

Taking a look at predicted values, it was observed that one point shows a significantly 

high number of crashes. All the attributes for ZINB had a positive sign, indicating that 

they had a positive correlation with the dependent variable. This is further corroborated 

by looking at the observed and predicted crash data and zones with a high number of 

crashes. For example, when looking at grid cell number 946, it can be noticed that this 

cell has mixed traffic which includes tram line, car traffic and bicycle traffic all one the 
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same lane, although this traffic is uni-directional, the tram movement is in both directions. 

This was observed in other grid cells with a high number of crashes as well, although 

this was confirmed by visual inspection and satellite images, as there is no data available 

that classifies the streets according to their right of way. Grid cell number 946 is shown 

below: 

 

Figure 4.15 Grid cell number 946 with all the infrastructural parameters 

While there is an obvious difference between the observed and predicted values, it is 

crucial to determine where the model is over or under predicting the crashes. This can 

be done by visualizing the difference between the two. To visualize the difference be-

tween predicted crashes and actual crashes over each grid cell, both the data were 

merged using the “ID” variable and the sum was calculated in a new column. 

The difference is plotted on the grid is shown below: 
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Figure 4.16 Munich city grid with the difference between the observed and predicted 
number of crashes 

As seen in the image above, the colour scheme for the map shows the grid cells for 

which the crashes were underpredicted in shades of blue, and the grid cells for which 

the crashes were overpredicted in the shades of red. Although the predicted values show 

that many values were significantly underpredicted, the Zero-inflated Negative Binomial 

model predicted a total of 2467.954 crashes, as compared to 2350 observed crashes for 

the year 2020. This suggests that the model predicted a total of 117.9 additional crashes. 

This could be attributed to the outlier in the predicted values and the fact that the ZINB 

model does not predict any 0 values, but values slightly greater than 0.  

When the outlier of the highest number of crashes is considered an exception, it can be 

observed that the predicted values are considerably lower in most grid cells as compared 

to the observed values. One of the reasons for this is the lack of additional variables that 

were removed to improve the statistical fit of the model. Another reason could be at-

tributed to the year 2020 itself. It must be mentioned that the year 2020 had special 

circumstances due to the global Coronavirus pandemic. The implementation of lock-

downs and restricted movement of people, saw a significant change in the use of vehi-

cles, while there was a fall in the use of cars, there was an increase in the use of bicycles 

(Möllers et al., 2021) (Schweizer et al., 2021). This could be recognized as one of the 

reasons for the difference in the predicted and observed values.  

Most of these grid cells correspond to the city centre of the city of Munich, but for a better 

classification of these cells, the grid cells were matched with the district map for the city 

of Munich. Using the “join locations by attribute” command in QGIS, the grid map and 
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the district maps were joined together and the crash values were summed up together. 

The grid cells which belong to the number of crash groups 9-15 and 15-29 are located 

close to the city centre. The resultant map with the number of crashes for individual 

districts is shown below.  

 

Figure 4.17 Munich city district map for observed crashes in the year 2020 

Since the districts are much larger than the individual grid cells, the data group is in-

creased further and results are displayed on a bigger scale. The districts identified with 

high number of crashes are Altstadt-Lehel, Ludwigsvorstadt-Isarvorstadt, Maxvorstadt, 

Sendling, Schwabing-West and Schwabing-Freimann. All of these districts are closely 

associated with the city centre of the city of Munich which is located in Altstadt Lehel. 

These grid cell IDs were used to identify the locations in the city of Munich, and to con-

sider the possible applicable solutions. Again, the predicted crash grid was combined 

with the district map of Munich to obtain the predicted number of crashes per district in 

Munich. The number of predicted crashes was visualized as shown below: 
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Figure 4.18 Munich city district map for predicted crashes in the year 2020 

Upon looking closely at the predicted crash data for 2020, it was observed that most of 

the districts with high number of crashes are located close to the city centre. The districts 

were Altstadt-Lehel, Maxvorstadt, Ludwigsvorstadt-Isarvorstadt, Schwabing-Freimann, 

Schwabing West, and Au Haidhausen. While this corresponds to the actual crashes in 

the year 2020, there are many additional crash locations predicted. Some of these could 

be attributed to the fact that the model does not predict any 0 values but values more 

than 0, which could add up while looking at aggregated data. Another reason is that 

during the data analysis, the data for speed was worked upon and averaged to use in 

the model. As discussed before, one of the drawbacks of looking at district level aggre-

gated maps is the smoothening of data, as this could misrepresent the severity of indi-

vidual junctions. But a map like this helps understand the total number of crashes occur-

ring over different districts which could help classify them if needed. 

The highest crash value for the predicted values is 156.743, which occurs in the grid cell 

number 946 which overlaps with the districts of Altstadt-Lehel and Ludwigsvorstadt-Isar-

vorstadt. As seen in Table 4.7, the standardized coefficients for the ZINB model, “rail-

stop” had the strongest influence on the dependent variable and the highest number of 

rail stops also belong to the grid cell number 946 and which corresponds to the section 

of the city, between Karsplatz and Hauptbahnhof. While the highest number of crashes 

for the observed crash data and the predicted number of crashes overlap with the district 

of Altstadt-Lehel and Maxvorstadt. The districts of Altstadt-Lehel and Ludwigsvorstadt-

Isarvorstadt are neighbours to each other. While for the predicted crashes the value was 

significantly high, the value corresponds to the location for the observed high number of 
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crashes. This suggests that the district of Altstadt-Lehel and its surroundings have a set 

of characteristics which result in a high number of crashes. ZINB model also suggests a 

strong effect of educational institutes on crashes, while for the observed crashes it can 

be seen that the crash numbers were lower in the districts with universities, which could 

be due to the shift to online learning during the Coronavirus pandemic. The next coeffi-

cient with a strong effect is tram stops. Most tram stops are located on the street, and 

while there are some sections of the city with a separated space for trams, in the zones 

with a high number of crashes, this rarely seems to be the case. 
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5 Applications 

While to reduce the number of crashes in a city, multiple solutions can be implemented, 

which range from junction specific to area-wide solutions. (Deliali et al., 2021) conducted 

a study to analyze the effect of separated and merged bicycle lanes and how they affect 

the number of accidents between car drivers and bicycle users. They concluded that the 

bike lanes which are located between the footpath and parking lane reduce the driver’s 

ability to detect a cyclist. While, this could be a possible solution, to model this there is a 

need for data for parking lanes and the identifier for whether there is segregation or not. 

With this metric, the proposed model could analyze a solution like this practically, by 

calculating the length of each lane in individual grid cells, along with the total length of 

the road and adding it to the data for the regression model. At the same time, the ratio 

of bicycle streets as compared to all streets in a grid cell can help us look at the lack of 

bicycle lanes in grid cells with a high number of crashes. The data suggest that the grid 

cell with the highest number of crashes had 9% of the total length of streets in the grid 

cell as a bicycle lane. It was also observed that several grid cells with a high number of 

bicycle crashes share the road with motor vehicles and trams. A possible solution to 

address this is providing bicycle lanes in places with mixed rights of way. While this is 

difficult to execute in reality, as most streets require parking, a time-based parking sys-

tem on such streets can help address this issue. Since there is no data available on 

open-source platforms that can classify the streets based on their right of way, this can-

not be modelled.  

To address the issue of a high number of bicycle crashes in the inner districts of the city 

of Munich, one possible solution was modelled using the Zero-inflated model. This was 

done by changing the specific attributes for the grid cells in a prediction dataset that was 

used for model validation. An attempt was made to explore the idea of a car-free zone 

in the city centre, which corresponds to the district “Altstadt-Lehel”. To do this, all the 

attributes that correspond to the cars and their movement were removed from the model, 

this included the signals and length of streets which coincided with the secondary and 

residential streets. The attributes for the length of these streets and the data for speed 

were also set to 0. Based on the assumption of car users for the model as mentioned in 

section 3.4, the model should assume that there are no car users in these districts but 

only pedestrians and bicycle users. When the new number of crashes was predicted 

using the modified dataset, it resulted in the following number of crashes. 
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ID New Predicted Crashes Observed Crashes 

982 1.005106 8 

983 0.180527 15 

984 2.247176 22 

1020 0.572297 24 

1021 0.642743 12 

1057 0.741086 29 

1058 2.305879 15 

Table 5.1 Observed and Predicted number of crashes for car-free zones 

As seen above, the crashes reduce drastically in the corresponding grid cells. While the 

crashes do not go down to 0, there are still some crashes even after removing the infra-

structure attributes primarily associated with motor vehicles. This shows that if the inner 

district of the city of Munich is made a car-free zone, the bicycle crashes should reduce 

considerably. However, such a drastic proposal needs to be justified more and the con-

nectivity around this region can help support this proposal. There are multiple S-Bahn 

stops, U-Bahn stations, bus stops and a tram line passing through this district. So, con-

nectivity still exists even with the loss of the car as a mode of transport. 

While there may be some underlying cause for the crashes in these zones attributed to 

the driver behaviour, environmental factors or other reasons, the predicted values seem 

to suggest that removing the cars addresses this problem. But such an extreme measure 

cannot be implemented without a proper study of the existing demand and users of bi-

cycles and cars in the district of Altstadt-Lehel. So, this solution is proposed to be con-

sidered once the demand for this region has been included in the model along with more 

attributes that can incorporate area and drive behaviour characteristics. 
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6 Conclusion 

The work done through the thesis first involved gathering the data through open-source 

platforms. There was a significant lack of data that could be used to analyze driver be-

haviour. But using the available resources, all the data was compiled in QGIS, which is 

a very useful software when it comes to visualizing spatial data and shapefiles. 

The decision to use the grid for analysis proved to be useful and satisfactory in the sense 

that it helped quantify the infrastructure data at a macroscopic level. While the other 

option was to use the district boundaries for the city of Munich, an analysis of such a big 

area with the limited available data would have yielded poor results when analyzing it in 

any of the chosen models. A self-defined grid helped the models to make more focused 

predictions. While there is a possibility that a grid with larger defined zones can lead to 

more accurate results, this is due to data smoothening and not due to improved predic-

tion of the model. The district maps were used but only for visual analysis and for con-

cluding the districts with a high number of crashes in both observed and predicted da-

tasets. 

The literature review suggested that for analyzing large crash datasets, with a large num-

ber of zeros and count data, a Zero-inflated Negative Binomial model could be a good 

choice. The data was investigated for the excess zeroes, using the plots and statistical 

tests which confirmed the zero inflation and overdispersion and thus the direction of the 

modelling process. The comparison was done between the Linear regression model, 

Poisson model, Negative binomial (NB) model and a Zero-inflated Negative binomial 

(ZINB) model. 

Through the analysis of different models, it was concluded that the ZINB model is the 

best model to analyze crashes among the selected set of models. The ZINB model took 

into account the overdispersion of data and also accounted for the excess number of 

zeros observed in the data which made the Poisson model and the negative binomial 

models unsuitable for analysis. While there were outliers in the prediction of crashes for 

the dataset for the year 2020, it fared much better than the other models. The location 

of this outlier also corresponded to the highest number of observed crash values as well. 

Since the data consists of a large number of zeroes, to assume that the Zero-inflated 

Negative Binomial Model inherently shows a better fit to the model is incorrect, but based 

on the statistical tests like the likelihood ratio test and the AIC values, the ZINB model 

proves to be the best choice here. The AIC test applied to all the four models gives the 

following values and their results are as shown below: 
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Attributes Value 

Linear Regression model 29185.79 

Poisson Model 16991.67 

Negative Binomial model 14578.19 

Zero-inflated Negative Binomial model 14528.55 

Table 6.1 AIC values for all models 

The AIC test for all four models also indicates that the Zero-inflated negative binomial 

model should be the best fit, compared to the other three models. This suggests that the 

zeroes in the data are generated from two processes. There are grid cells with unob-

served crashes as well as grid cells with underreported crashes. This generally results 

from the data collection process. Literature suggests that the underreporting of crashes 

could result from many reasons like improper report filing for the incident, and not report-

ing the crash due to no or small injuries etc., which accounts for unobserved crashes in 

the dataset. The model shows that based on the data, a major influencing factor for 

bicycle crashes are motor vehicles, locations with a huge number of visitors and the 

shared right of way between motor vehicles and bicycles. This occurs in quite a few 

locations with high number of crashes, especially in the grid cells which correspond to 

the central districts. Other influencing factors for crashes were supermarkets, education 

institutes and beer gardens. This is likely because all three types of facilities attract peo-

ple daily. Quite many students visit the universities regularly and supermarkets are fre-

quented by everyone on a need basis, so the increasing number of crashes due to these 

facilities is rational. 

While the difference in the predicted and observed values originates from two prime rea-

sons, the first is the lack of additional data which comprises the driver behaviour attrib-

utes and environmental attributes and the second is the occurrence of the global Coro-

navirus pandemic in 2020 which increased the use of bicycles. This was also confirmed 

when the dataset was modified to model the central district to be car-free, even after 

removing the attributes accounting for motor vehicles, the model still predicted crashes 

in this section. Although this process was done only for 7 grid cells, it suggests the ex-

istence of underreporting of crashes and hence the idea of there being structural and 

sampling zeroes. This further supports the use of ZINB model. 

The spatial models performed significantly poor as compared to the statistical models. A 

prime reason for this was the lack of variables that explained spatial relationships be-

tween the grid cells. While a comparative AIC value for both models prove them to be 

better than the regular linear regression model, their prediction values were significantly 

worse when compared to the ZINB model. The Spatial Lag model performed better than 

the spatial error model, as it displayed better prediction results as compared to the error 

model. While this was conducted as a provisional model, it showed potential to be ex-

plored more with the help of much more spatially rich data for better results. 

After combining the predicted and observed crash values, it was concluded that the dis-

trict of Altstadt-Lehel, Ludwigsvorstadt-Isarvorstadt and its surrounding neighbourhoods 
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are areas with the highest number of crashes. While this could be attributed to any num-

ber of reasons, based on the analysis of the data available, motor vehicles seem to be 

a big influential factor in these crashes.  

6.1 Limitations 

One of the major limitations of the thesis was the lack of demand data in the model. This 

means the lack of the key attributes like the movement of people from one region to the 

other, the number of cyclists and the number of motor vehicles, which would have helped 

quantify the crashes better. These attributes would also help get a better understanding 

of the number of crashes happening against the total number of users, which would help 

explain more details regarding the crashes. Like understanding whether the crashes are 

resulting due to driver behaviour, movement of people within different zones or due to 

poor infrastructure or lack thereof. Due to this, the model only takes into account the 

crashes happening due to infrastructural reasons. Although the model works under the 

assumption, that the existence of travel speed and bicycle infrastructure suggests the 

existence of car and bicycle users, it only addresses one aspect of the issue. The speed 

data was calculated in parts for assigning to the corresponding grid cell, which was not 

uniform. While the work done in QGIS included assigning the individual street segments 

to the corresponding grid cell, the process included some form of repetitions for the data. 

Since the length of road segments was not consistent, this resulted in some segments 

being repeated for adjacent grid cells. This was the cause of the speed average being 

higher in different cells on average. Although this was addressed to some extent by in-

cluding the weights for length, the speed data not being accurate results in some incon-

sistency in the results like over prediction of crashes. 

Another problem with the data gathering process was that the data was gathered from 

open-source platforms, so this data was only available for the year 2020 and not individ-

ually from 2016 through 2019. The data could not be back-dated with any reliable as-

sumptions, as most of the infrastructure remained consistent in the city and there were 

no records of any changes for the same. This created a dataset with recurring infrastruc-

ture data for the period from 2016 - 2019, with the infrastructure data from the year 2020. 

While this dataset could not be treated as a combination of data for four different years, 

it was treated as just one dataset of grid cells where all the rows are treated as individual 

grid cells. There is also an issue of underreporting of crashes, which results in missing 

crashes thus resulting in excess zeroes. For the year 2020, motor vehicle movement 

saw a considerable reduction, due to reasons like lockdowns, or most people working 

from home. Another key variable that could have been considered is the length of the 

tram line per grid cell. During model Validation, it was observed that almost all grid cells 

with a high number of crashes observed, had a mixed right of way, typically classified as 

ROW-C. While, in the data search, no data was found on open-source platforms that 

could classify the streets based on their right of way, which could have proved to be 

significant in understanding the role of shared right of way and the number of crashes. 
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The spatial regression model, although theoretically superior has a big reliance on the 

input parameters. The spatial models require a substantial amount of data that could 

help explain the crashes and their relationship with neighbouring grid cells. While the 

regression seems simple in the sense that it allows for the model to consider the neigh-

bour values and their attributes as weights, the relationship between neighbours must 

be explored more. The relationship may become further complicated by the use of even 

smaller grid structures for analysis since most spatial regression models studied dealt 

with larger areas.  

6.2 Further Research 

There is scope to improve the model further, this could be done by collecting more data 

from government agencies. Several other data that could explain more crash contributing 

factors like driver behaviour, environmental effects, vehicle condition etc., could help en-

hance this analysis further. One of the important things in scope would be to add the 

travel demand parameters in the model, which could help understand how people move 

in the city. This could result in a better understanding of how relatively safe or unsafe 

some parts of the city are and whether this is due to the movement of people or due to 

the presence of insufficient or unsafe infrastructure. A classification parameter can also 

be used to classify the whole city into different zones, like commercial or residential etc. 

Although such classification will require independent research as more often than not, 

modern cities are a mixture of different kinds of developments. Attributes like these could 

enhance the analysis of spatial models, which truly depend on spatially explorative data. 

Anything that can explain the landscape or geographical features better and help under-

stand the reasoning behind the movement patterns, will be an ideal fit for spatial regres-

sion models.  

The analysis should not be restricted to just statistical or mathematical models. There is 

a possibility to explore some newer analysis techniques which make use of self-learning 

algorithms based on machine learning. Although relatively new and the literature on such 

models are scarce, it could shine new light on the relationship between various spatial 

attributes of crash analysis.  
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