Questioning the spatial association between the spread of COVID-19 and transit usage in Italy

Mattia Borsati ¹ Silvio Nocera ² Marco Percoco ¹

¹Bocconi University

²IUAV University of Venice

Joint Online Workshop of WCTR SIG F1 and AUM

February 25, 2021

Borsati, Nocera, Percoco

Transit and COVID-19

February 25, 2021 1 / 16

Overview

2 Empirical analysis

Borsati, Nocera, Percoco

Transit and COVID-19

▶ < ∃ >

• • • • • • • • • • •

æ

Research question

- To curb the spread of COVID-19, several governments imposed (among many other policies) restrictions on public transport.
- How dangerous is it to move around a certain territory? Does the danger depend on the mode of transport?
- We test whether places in which commuters were more prone to use public transport were more severely affected by the first wave of the pandemic in Italy.

Measuring the spread of COVID-19 and transit usage¹

$$mortality_growth_{it} = \frac{fatalities_{it}^{total(20)} - fatalities_{it}^{mean(15-19)}}{fatalities_{it}^{mean(15-19)}}$$
(1)

• *i* denotes the LLM and *t* denotes the day. • Trend

• *transit_i* = share of the population who commute by collective means of transport for work or study reasons.

▶ Maps

¹Source: ISTAT and 2011 national census.

Measuring commuting and other factors²

internal_commuting_i =
$$\frac{p_{ii}}{population_i}$$

• *p_{ii}* measures the self-flows.

$$external_commuting_i = rac{\sum_{j=1}^{n} (p_{ij} + p_{ji})}{population_i}$$

- p_{ij} measures the out-flows.
- p_{ji} measures the in-flows.

Control variables = altitude, coastal, In_density, house_m²_pc, share_over75, hospital_beds, pm10, district.

Transit and COVID-19

(2)

(3)

²Source: ISTAT and 2011 national census.

Econometric model

 $mortality_growth_{it} = \beta_0 + \beta_m transit_i \times \delta_m$ $+ \gamma_m internal_commuting_i \times \delta_m$ $+ \eta_m external_commuting_i \times \delta_m$ $+ \omega_m Z_i \times \delta_m + \alpha_i + \delta_t + \epsilon_{it}$ (4)

- All explanatory variables are interacted with month dummies δ_m .
- α_i and δ_t are LMM and day fixed effects.
- ϵ_{it} are standard errors clustered at the LLM level.

Table 1: 7	Transit usage,	commuting,	and mortality	growth	▸ Coefplot	▶ Quantiles
------------	----------------	------------	---------------	--------	------------	-------------

		mortality_growth					
	(1)	(2)	(3)	(4)			
transit $ imes$ March	-0.945 (0.907)	-1.070 (0.830)	-1.273 (0.970)	-0.976 (0.930)			
transit $ imes$ April	-0.336 (0.699)	-0.537 (0.637)	-0.158 (0.663)	-0.079 (0.681)			
internal_commuting \times March		3.600*** (0.662)	2.183*** (0.618)	1.126* (0.611)			
internal_commuting $ imes$ April		2.871*** (0.433)	2.236*** (0.527)	1.815*** (0.496)			
external_commuting \times March		4.468*** (0.824)	3.821*** (0.845)	2.261*** (0.607)			
external_commuting $ imes$ April		2.652*** (0.433)	2.280*** (0.481)	1.627*** (0.443)			
LLM FE	\checkmark	\checkmark	\checkmark	\checkmark			
Day FE	\checkmark	\checkmark	\checkmark	\checkmark			
Geographic controls $\times \delta_m$	×	×	\checkmark	\checkmark			
Demographic controls $ imes$ δ_m	×	×	\checkmark	\checkmark			
Vulnerability controls $\times \delta_m$	×	×	×	\checkmark			
Economic controls $\times \delta_m$	×	×	×	\checkmark			
Observations R^2	105 948 0.06	105 948 0.07	105 948 0.07	105 948 0.08			

OLS estimates. ***p < 0.01, **p < 0.05, *p < 0.1.

Borsati, Nocera, Percoco

February 25, 2021 7 / 16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Concluding remarks

- The statistically weak association between COVID-19-related fatalities and transit usage suggests that:
 - \bullet Locations where transit was most used were not severely affected by higher excess mortality $^3.$
 - What matters most is whether people move⁴, not how they move.
- Clearly, we cannot rule out the possibility of virus transmission on public transport.

Borsati, Nocera, Percoco

Transit and COVID-19

³Askitas et al. (2021), Wielechowski et al. (2020).

Thank you for your attention!

mattia.borsati@unibocconi.it

nocera@iuav.it

marco.percoco@unibocconi.it

Back to Top

The COVID-19 crisis • Back

Figure 1: Timeline of the main events

• Italy was the first Western country to be deeply affected by the disease.

Figure 3: Descriptive evidence, by LLM Back

(a) Average *mortality_growth* in March

(b) transit

イロト イヨト イヨト イヨト

Figure 5: Estimated coefficients⁵ of transit and commuting indices **Back**

⁵With 99% and 90% confidence intervals.

Borsati, Nocera, Percoco

Transit and COVID-19

Figure 6: Quantile regression coefficients (transit in March) Back

Borsati, Nocera, Percoco

February 25, 2021 14 / 16

Figure 7: Quantile regression coefficients (*internal_commuting* in March) Back

15 / 16

Figure 8: Quantile regression coefficients (*external_commuting* in March)
Back

Borsati, Nocera, Percoco

February 25, 2021 16 / 16