

Understanding local disruptive policies in urban mobility: A comparison of Amsterdam, London and Munich WORK IN PROGRESS Authors: Alina Weiss*, Lea Buchholz and Stefan Ćetković

*presenting

Chair of Environmental and Climate Policy, Technical University of Munich

mobil.TUM 2024, Parallel Session G2 , Governance for sustainable mobility April 11, 2024

Share of vehicle types in total number of new registrations in Munich

Source: Munich Statistical Office

Car-ownership in Munich's households

People living in low-income households are less likely to have a car, yet are disproportionately affected by the negative effects of car traffic.

Source: Mobilität in Deutschland (MiD)

Literature gap

The flipside of innovation policy

Policy mixes for sustainability transitions ideally include not only policies aiming for the creation of new but also for destabilizing the old (Kivimaa & Kern, 2016; Pel, 2022)

Literature gap

The flipside of innovation policy

Policy mixes for sustainability transitions ideally include not only policies aiming for the creation of new but also for destabilizing the old (Kivimaa & Kern, 2016; Pel, 2022)

2 Lack of systematic understanding of car-restrictive policies

Emerging scholarly efforts directed towards a better understanding of car-restrictive policies and their effectiveness focus on single measures at city level (Bjerkan et al., 2021; Graaf et al., 2021; Kuss & Nicholas, 2022)

Literature gap

The flipside of innovation policy

Policy mixes for sustainability transitions ideally include not only policies aiming for the creation of new but also for destabilizing the old (Kivimaa & Kern, 2016; Pel, 2022).

2 Lack of systematic understanding of car-restrictive policies

Emerging scholarly efforts directed towards a better understanding of car-restrictive policies and their effectiveness focus on single measures at city level (Bjerkan et al., 2021; Graaf et al., 2021; Kuss & Nicholas, 2022).

3 Missing focus on the local level

Existing literature has mostly been concerned with disruptive policies aimed at socio-technical changes at national level (Ehnert et al., 2018)

Conceptualising disruptive mobility policies

Push and pull measures / Carrots and sticks *e.g. Hekler et al. 2022*

Disruptive policies e.g. Kivimaa et al. 2020

Discontinuation policies *e.g. Kungl & Geels 2018*

Creative destruction as an element of policy mixes for transitions e.g. Kivimaa & Kern 2016

Transformative innovation policies *e.g. Haddad et al. 2020* Disruptive mobility policies are defined as **rules and incentives** contributing **to reduce the relative advantage** of cars

Analytical approach: Design features of disruptive urban mobility policies

rategy	Policy objective	Long-term objectives and quantified targets of overarching policy strategy	Rogge & Reichhardt, 2016
Policy sti	Principal plans	Integration of policy instrument in policy package or reference to other policy instruments	Rogge & Reichhardt, 2016; Schaffrin et al., 2015
instrument	Target group(s)	Target groups that receive benefits and burdens through the elements of policy design	Ingram et al., 2007; del Río, 2012; Rogge & Reichardt, 2016
	Space	Area covered/affected by policy instrument	Aumann et al., 2023
y ins	Time	Time scope of policy instrument's validity	del Río, 2012
Policy	Exemptions	Selected groups exempted from policy	Pereira et al., 2016
	Compensation	Compensation of affected target group(s)	Pereira et al., 2016
	Penalties & Compliance	Sanctioning mechanism of non-compliance	Schaffrin et al., 2015

Key policy areas (Buehler et al., 2017; Thaller et al., 2019)

ТЛП

Case study selection

Munich, Germany

Amsterdam, The Netherlands

London, UK

Results (1): Cross-city comparison for all policy areas

• Policy strategy:

- All three local governments want to achieve range of sustainability goals that with their transport strategies and policies (*policy objective*)
- Objectives for reducing cars are not communicated (*policy objective*)
- Most comprehensive plans in AMS and disruptive policies embedded in long-term strategies in both AMS and LDN compared to MUC (*principal plans*)

• Policy instruments:

- LDN targets most varied groups / types of cars
- Most exemptions in MUC
- AMS and LDN have the relatively largest spatial scope of their disruptive policies

Results (2): Disruptive?

(Ultra-)-Low-Emission-Zons

ULEZs are disruptive for certain diesel vehicles, yet, exceptions limit policy effectiveness.

Parking management

Focus of parking management on the efficient use of space. Unintentionally disruptive effect, for example, when parking spaces are reduced annually or different prices apply for combustion and electric cars.

Inner-city speed limits

In all three cities, the strategic focus when introducing a 30 km/h speed limit is on maintaining traffic flow, meaning not intended to be disruptive.

Conclusion

- Conceptualisation helps to better understand the policy design of the emerging number and nature of disruptive policies
- Analytical framework is valuable for identifying the strengths and weaknesses of each city's policy approach to disruptive mobility policies
- For the selected policy areas (ULEZs, parking, speed limits): Munich appears as laggard compared to Amsterdam and London

Discussion

- Extend types of selected policies, e.g. the removal of cycle paths often also leads to the conversion of car lanes
- Common focus on policy (what it is and should be) → instead, understand politics (e.g. influence of actors and institutions) that make the adoption of such policies likely essential for understanding sustainability transitions (Meadowcroft, 2011)
- Importance of communicating disruptive plans in advance
- Differences in cities' agency in multi-level governance contexts to be included (e.g. parking policy in Munich hampered by Bavarian level; parking policy in London each borough's responsibility)

References

Aumann, S., Kinigadner, J., Duran-Rodas, D., & Büttner, B. (2023). Driving Towards Car-Independent Neighborhoods in Europe: A Typology and Systematic Literature Review. *Urban Planning*, & 3). https://doi.org/10.17645/up.v8i3.6552

Bjerkan, Kristin Ystmark; Bjørge, Nina Møllerstuen; Babri, Sahar (2021): Transforming socio-technical configurations through creative destruction: Local policy, electric vehicle diffusion, and city governance in Norway. In: *Energy Research & Social Science* 82, S. 102294. DOI: 10.1016/j.erss.2021.102294.

Ehnert, F., Kern, F., Borgström, S., Gorissen, L., Maschmeyer, S., & Egermann, M. (2018). Urban sustainability transitions in a context of multi-level governance: A comparison of four European states. *Environmental Innovation and Societal Transitions*, *26*, 101–116. https://doi.org/10.1016/j.eist.2017.05.002

Callorda Fossati, E., Pel, B., Sureau, S., Bauler, T., & Achten, W. (2022). Implementing exnovation? In Z. Koretsky, P. Stegmaier, B. Turnheim, & H. van Lente (Eds.), *Technologies in Decline*(pp. 202–224). Routledge. https://doi.org/10.4324/9781003213642-9

Frantzeskaki, N., Castán Broto, V., Coenen, L., & Loorbach, D. (2017). Urban Sustainability Transitions. Routledge. https://doi.org/10.4324/9781315228389

Geels, F. W. (2012). A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies. *Journal of Transport Geography*, *24*, 471–482. https://doi.org/10.1016/j.jtrangeo.2012.01.021

Graaf, L., Werland, S., Lah, O., Martin, E., Mejia, A., Muñoz Barriga, M. R., Nguyen, H. T. T., Teko, E., & Shrestha, S. (2021). The Other Side of the (Policy) Coin: Analyzing Exnovation Policies for the Urban Mobility Transition in Eight Cities around the Globe. *Sustainability*, *13*(16), 9045. https://doi.org/10.3390/su13169045

Griffiths, S., Furszyfer Del Rio, D., & Sovacool, B. (2021). Policy mixes to achieve sustainable mobility after the COVID-19 crisis. *Renewable & Sustainable Energy Reviews*, *143*, 110919. https://doi.org/10.1016/j.rser.2021.110919

Haddad, C. R., Nakić, V., Bergek, A., & Hellsmark, H. (2022). Transformative innovation policy: A systematic review. *Environmental Innovation and Societal Transitions*, *43*, 14–40. https://doi.org/10.1016/j.eist.2022.03.002

Ingram, Helen; Schneider, Anne L.; deLeon, Peter (2007): Social construction and policy design. In: Paul A. Sabatier (Hg.): Theories of the policy process. 2nd ed. Boulder Colo.: Westview Press, S. 93–128.

Kern, Kristine. (2014). Climate governance in the European Union multilevel system: The role of cities. 10.4337/9780857939258.00016.

Kivimaa, Paula; Kern, Florian (2016): Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions. In: *Research Policy* 45(1), S. 205–217. DOI: 10.1016/j.respol.2015.09.008.

Kungl, G., & Geels, F. W. (2018). Sequence and alignment of external pressures in industry destabilisation: Understanding the downfall of incumbent utilities in the German energy transition (1998–2015). *Environmental Innovation and Societal Transitions, 26*, 78–100. https://doi.org/10.1016/j.eist.2017.05.003

Kuss, P., & Nicholas, K. A. (2022). A dozen effective interventions to reduce car use in European cities: Lessons learned from a meta-analysis and transition management. Case Studies on Transport Policy, 10(3), 1494–1513. https://doi.org/10.1016/j.cstp.2022.02.001

Loorbach, D. A. (2022). Designing radical transitions: a plea for a new governance culture to empower deep transformative change. *City, Territory and Architecture, g*(1). https://doi.org/10.1186/s40410-022-00176-z

Pel, B. (2022). A transitions theory perspective on transport innovation. In B. van Wee, J. Annema, & J. Köhler (Eds.), *Innovations in Transport: Success, Failure and Societal Impacts* (pp. 14–34). Edward Elgar Publishing.

Manderscheid, K. (2020). Antriebs-, Verkehrs- oder Mobilitätswende? In A. Brunnengräber & T. Haas (Eds.), *Edition Politik: Vol. 95. Baustelle Elektromobilität: Sozialwissenschaftliche Perspektiven auf die Transformation der (Auto-)Mobilität*(Vol. 95, pp. 37-68). transcript-Verlag. https://doi.org/10.14361/9783839451656-003 Pereira, R. H. M., Banister, D., & Schwanen, T. (2016). Distributive justice and equity in transportation. *Transport Reviews*.

Pfotenhauer, S. M., Wentland, A., & Ruge, L. (2023). Understanding regional innovation cultures: Narratives, directionality, and conservative innovation in Bavaria. *Research Policy*, *52*(3), 104704. https://doi.org/10.1016/j.respol.2022.104704

Rogge, Karoline S.; Reichardt, Kristin (2016): Policy mixes for sustainability transitions: An extended concept and framework for analysis. In: *Research Policy* 45 (8), S. 1620–1635. DOI: 10.1016/j.respol.2016.04.004.

Schaffrin, A., Sewerin, S., & Seubert, S. (2015). Toward a Comparative Measure of Climate Policy Output. *Policy Studies Journal*, *43*(2), 257–282. https://doi.org/10.1111/psj.12095

Results: Policy design of (Ultra-)Low-Emission-Zones

Policy objective	 Improving air quality (all) Long-term: AMS & LON strive to comply with emission standards four times higher than MUC. 		
Principal plans	2008 EU Directive on Clean Air stimulated introduction of local clean air plans (all) (U)LEZs part of broader clean air plans (all) with long-term vision and more measures (AMS, LON)		
Target group(s)	Diesel cars (all) and petrol cars (LON) Access restriction: 1) LON 2) MUC 3) AMS (from strongest to weakest) Extension of targeted groups: planned (MUC & AMS)		
Space	Spatial scope of (U)LEZs: inner city (all) Planned expansion to whole city (AMS, LON)		
Time	No time restrictions (all)		
Exemptions	 Certain vehicle (e.g. vintage cars) and social groups (vehicles of disabled people) Special permits per day (LON, AMS) or year (MUC) MUC: most exceptions and lowest costs for special permits 		
Compensation	 Purchase subsidy linked to LEZ and mobility options (AMS) or independent from LEZ and linked to other vehicle types(MUC) Demolition subsidy: Schemes to encourare scrapping diesel cars targeted by LEZ (AMS, LON) 		
Penalties & Compliance	 Similar prices for violations (all) Monitoring of compliance (all); camera surveillance (LON, AMS) 		