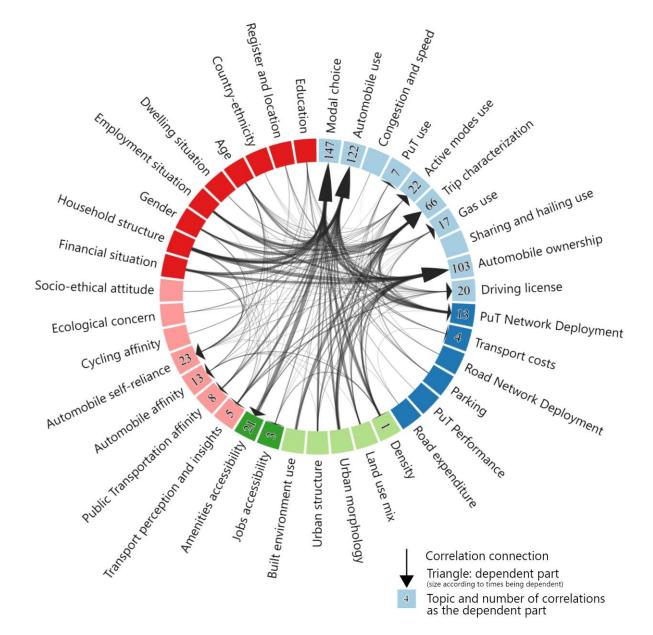


Generating car dependence Exploration of factors from a multidimensional perspective in Lombardy, Italy

> Jaime SIERRA MUÑOZ, Louison DUBOZ, Paola PUCCI, Biagio CIUFFO



The present work has been carried out in the framework of the Collaborative Doctoral Partnership Agreement No. 35455 between the European Commission Joint Research Centre and Politecnico di Milano.






combination of personal and contextual factors that prioritise carbased mobility over alternative transport and access options.

Generated with AI (Bing Copilot)

### Literature review **>>** CD dimensions



#### **Car dependence sources**

**Transport Supply** 

Accessibility

Land use and form

Sociodemographic factors



### **Car dependence effects**

#### **Transport demand**

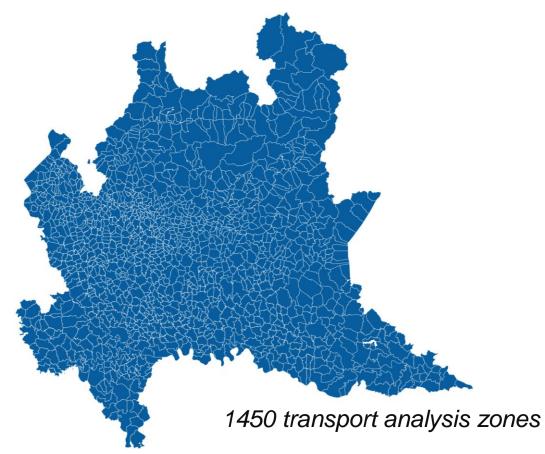
**Opinions and experiences** 

# Lombardy Case Study

0

- Main Italian region by size and population
- Different contexts and spatial settings: hetereogenity
- 64,5% car modal share, 624 cars / 1000 inhabs

50


Source: ESRI World Imaginery

ITALY

100 km

# car dependence regional dataset

- Based on the regional OD survey structure
- ► Covering dimensions from different sources
- ► Method: SQL (PostgreSQL), QGIS.



Quantifying every feasible and potential element relatet to our context's car dependence...

### **CD** sources

173 variables

313 variables

**CD effects** 

Complexity Applicability Synthesis?

1. Which sources of car dependence are more crucial to explain their effects?

2. Which are the more car-dependent contexts within the regional setting?

### Methodology

### PEARSON CORRELATION MATRIX

Least correlated source variables combinations

### SENSITIVITY ANALYSIS (SA)

- Dimensionality reduction
- Identification of main inputs governing the model outcome
  many sources → Effect

– but... – SA assumes independent inputs



Background source: Al-generated image with Copilot

## dataset management

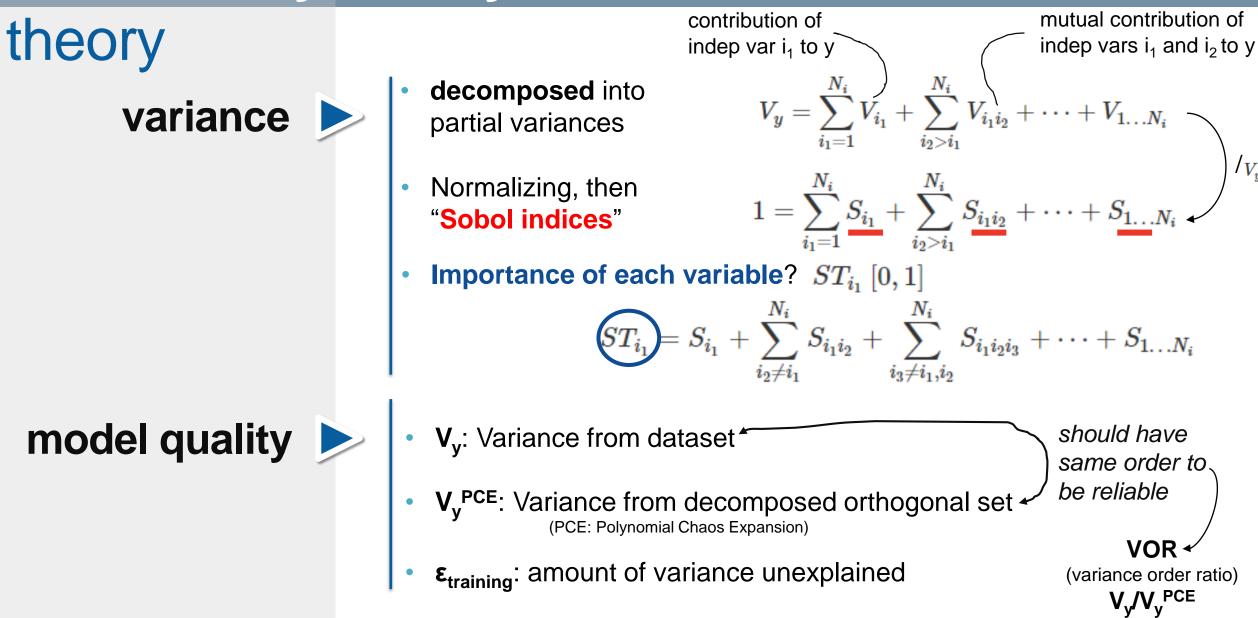
2.

#### **CD effects**

dataset filtering 9 main variables selected, representative of diverse indicators related to CD in literature

dataset sorting 173 main variables grouped into 23 topics

#### each topic has multiple variable subsets, resulting in different **variables combinations** to be modelled (*up to 3 millions*)


- 1. Commuting average distance
- 2. Private motorized trips average distance
- 3. Non-commuting average distance
- 4. Motorisation rate
- 5. Commuting, private motorized modal share
- 6. Non commuting, private motorized modal share
- 7. Self-containment index (workers at home TAZ)
- 8. Drivers rate
- 9. First-license average age
- 1. Public transport service 12.
  - Railway accessibility
- 3. Road density
- 4. Highway distance
- 5. Cycling infra density
- 6. Cycling quality
- Urban compactness (m2 constructed/m2 urbanized)
- 8. Urban density
- 9. Population at 1.5km radius
- 10. Urbnz. surf. at 1.5km r
- 11. Built surface at 1.5km r

- Land use mix
- 13. Residential type mix
- 14. Dense residential share
- 15. Sprawl Index measures
- 16. Services accessibility
- 17. Children rate
- 18. Elderly rate
- 19. Foreigners rate
- 20. Employment rate
- 21. Average age
- 22. Household size
- 23. Income

#### **CD** sources

|                                                                                                                                                                                 |                                   | nod_deg fro     | c_deader                                                                                                                                                                             | log_cir_0_ log_ | cir_500_ log_    | cir_1000_ 1c               | og_cir_1500_ lo | g_cir_2000_ log_                  | _cir_2500_ fr | c_bridge: fro    |                  |                           |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------------------|-----------------|-----------------------------------|---------------|------------------|------------------|---------------------------|--------------------------|
| all_0<br>all_1                                                                                                                                                                  | 0.226                             | 0.210           | -0.171                                                                                                                                                                               | 0.012           | -0.022           | -0.031                     | -0.009          | 0.075                             | 0,101         | -0.073           | -0.120<br>-0.142 | -0.171<br>-0.174          | -0.115<br>-0.087         |
| all_2                                                                                                                                                                           | 0.585                             | Pe              | ar                                                                                                                                                                                   | son             | $\mathbf{CO}$    |                            | atio            | )n m                              | atr           | 089              | -0.216           | -0.272                    | -0.138                   |
| all_3                                                                                                                                                                           | 0.057                             | 0.105           |                                                                                                                                                                                      |                 |                  |                            |                 |                                   |               | A 040            | -0.070           | -0.088                    | -0.054                   |
| all_6<br>trips_all                                                                                                                                                              | 0.637                             | 0.443           | -0.226                                                                                                                                                                               | -0.026          | -0.048           | -0.062                     | -0.055          | 0.014                             | 0.057         | -0.079           | -0.160<br>-0.233 | -0.203                    | -0.126                   |
|                                                                                                                                                                                 | er the 3                          | millio          | -0.360                                                                                                                                                                               |                 | coloo            | tion /                     | of loac         |                                   |               | -0.107           |                  | ation                     | -0.167                   |
| state UV                                                                                                                                                                        | er the o                          |                 |                                                                                                                                                                                      | JU0115,         | Selec            |                            |                 |                                   | Flate         |                  | -0.286           | aliu                      | -0.227                   |
| taz_cyclede<br>tazroad_cyc<br>numcyclerou<br>cycldetour_<br>elev_perc_a CO<br>perc_cyclel<br>perc_cyclel<br>perc_roads_<br>perc_street<br>perc_o4pc_<br>cyclquality<br>ucsr_all | ower ave<br>variable<br>rrelation | es              | -0.4<br>-0.4<br>-0.1<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.3<br>-0.3<br>-0.3<br>-0.3<br>-0.3<br>-0.3<br>-0.3<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4 | 99%) c          | nificant         | -0.062<br>-0.110<br>-0.117 | avera           | er sum o<br>ge subse<br>ation ind | et 128        | ave              | rage s           | duct o<br>subse<br>n inde | t -0 202                 |
| ucsr_urb<br>dPOPTAZ<br>dPOPBuiltS<br>dPOPLocUrb                                                                                                                                 | 0.240                             |                 | bhc                                                                                                                                                                                  | itional i       | nforme           | d con                      | nhinatio        | on (for ca                        | alibrati      | on)              | -0.403           | -0.362                    | -0.000<br>- 0.112<br>208 |
| dpop_around                                                                                                                                                                     | 0.745                             | 0.580           | auu                                                                                                                                                                                  |                 |                  |                            | Innatio         |                                   | instati       | -0.132           | -0.317           | -0.443                    | -0.285                   |
| dpop_around_areu<br>dpop_around_built:                                                                                                                                          |                                   | -0.011<br>0.460 | -0.372                                                                                                                                                                               | 0.001           | 0.005            | 0.008                      | 0.003           | 0.014                             | 0.037         | -0.007<br>-0.108 | -0.012<br>-0.209 | -0.319                    | -0.004                   |
| pop_around                                                                                                                                                                      | 0.745                             |                 | -0.489                                                                                                                                                                               | -0.0            | -0.125           | -0.118                     | 0.057           | 0.124                             | 0.180         | -0.192           | -0.317           | -0.443                    | -0.285                   |
| tlurb_around                                                                                                                                                                    |                                   | 0.478           | -0.399                                                                                                                                                                               | 0.007           | -0.043<br>-0.152 | -0.033<br>-0.120           | 0.040           | 0.214                             | 0.247         | -0.202<br>-0.258 | -0.249<br>-0.327 | -0.405                    | -0.300                   |
| builtsurfs_around<br>LUM_ALAII                                                                                                                                                  | 0.645                             | + 0.318         |                                                                                                                                                                                      |                 |                  |                            |                 |                                   |               |                  |                  | -0.482                    | -0.363                   |
| LUM_ALUrb                                                                                                                                                                       | 0.337                             |                 | e as                                                                                                                                                                                 | sesse           |                  | SOOL                       | II Jens         | sitivity                          | Ana           | IYSIS            | -0.555           |                           | -0.513                   |
| LUM_ULAII<br>LUM_ULUrb                                                                                                                                                          | 0.362                             |                 | -0.357                                                                                                                                                                               | 0.023           | -0.012           | -0.001                     | 0.011           | 0.107                             | 0.100         | -0.200           | -0.238           | -0.362                    | -0.257                   |
| ReTy_Main                                                                                                                                                                       | 5 SO                              | urce va         | anap                                                                                                                                                                                 | ies com         | Dinatio          | INS X S                    | 9 enect         | variable                          | S. 43         | <b>JA M</b>      | odels            | -0.013                    | -0.480                   |
| ReTy_MainP                                                                                                                                                                      | 0.221                             | 0.225           | -0.186                                                                                                                                                                               | 0.016           | 0.030            | 0.049                      | 0.089           | 0.147                             | 0.119         | -0.024           | -0.072           | -0.168                    | -0.096                   |

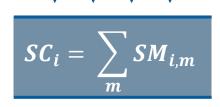
# **Sensitivity Analysis**



# Sensitivity Analysis



results


**Condition:** Variances must have same order  $\rightarrow \text{VOR}_m \in (0.5, 5)$ 

| \CD Effect Var                 | 1    | 2    | 2               | Λ               | 5               | 6               | 7               | Q    | 0    |
|--------------------------------|------|------|-----------------|-----------------|-----------------|-----------------|-----------------|------|------|
| Var Subset \ [ɛ <sub>m</sub> ] | •    | L    | 3               | 4               | 3               | 0               | -               | 0    | 3    |
| Low avg. var CorrInd           | 0.51 | 0.66 | 0.76            | 0.67            | 0.39            | 0.56            | 0.58            | 0.32 | 0.36 |
| Sign. non corr vars            | 0.52 | 0.58 | 0.54            | <del>0.68</del> | <del>0.38</del> | 0.55            | 0.55            | 0.36 | 0.39 |
| Lower sum avg                  | 0.48 | 0.48 | 0.44            | <del>0.69</del> | 0.37            | <del>0.57</del> | <del>0.57</del> | 0.32 | 0.37 |
| Lower product avg              | 0.52 | 0.51 | 0.54            | 0.71            | 0.40            | <del>0.58</del> | 0.53            | 0.32 | 0.37 |
| Informed comb                  | 0.62 | 0.50 | <del>0.56</del> | <del>0.68</del> | 0.40            | <del>0.60</del> | 0.51            | 0.35 | 0.41 |

### 31/45 models accepted for consideration

weighted variables comparison Each source variable (i) obtains an overall score (SC<sub>i</sub>) acording to its ST<sub>i</sub> values and the model  $SM_{i,m} = ST_{i,m} \cdot \frac{1}{2}$ (m) unexplained variance ( $\epsilon_m$ )

Variables with highest complessive score (SC<sub>i</sub>) are selected as **main source variables**:



# SA & Principal Component Analysis

results

selecting vars with SC<sub>i</sub> > 1

| Variable          | Description                                                                                              | SCi  |
|-------------------|----------------------------------------------------------------------------------------------------------|------|
| pop_around        | Population sum on grid 500 m cell and the eight adjacent cells *                                         | 5.50 |
| forgn_rate        | Rate of foreigners per inhabitants                                                                       | 4.76 |
| elder_rate        | Rate of over 65 y.o. people per inhabitants                                                              | 3.61 |
| ucsr_all          | Constructed to urbanized surface ratio, measured at whole transport zone                                 | 3.21 |
| altri_all         | Number of weekly available non-metropolitan bus trips at 550m distance *                                 | 3.08 |
| builtsurfs_around | Built surface sum on grid 500 m cell and the eight adjacent cells *                                      | 2.73 |
| tlurb_around      | Urbanized surface sum on grid 500 m cell and the eight adjacent cells *                                  | 2.52 |
| atm_all           | Number of weekly available metropolitan bus, tram and metro trips at 550m distance *                     | 2.35 |
| perc_o4pc_av      | Length percentage of cycling routes (connecting to other towns at a 6km radius) with more than 4% slopes | 2.21 |
| avg_hh_size       | Average quantity of people per household                                                                 | 1.47 |
| hwdist_avgpop     | Distance to closest motorway access                                                                      | 1.40 |
| emplo_rate        | Rate of employed people per inhabitants                                                                  | 1.26 |
| log_cir_1500_2000 | Log Circuicity of points at 1.5-2km: ratio between straight line and network distance                    | 1.13 |
| trips_all         | Number of every weekly available public transport trip (including also railway) at 550m distance *       | 1.12 |

14 main variables selected

### Main CD source variables

#### Dimension

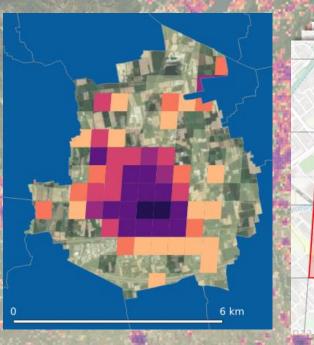
Land use and form

**Transport Supply** 

- Population sum around (grid 500m cell plus eight adjacent cells)
- Compactness: Constructed to urbanized surface ratio, measured at whole transport zone
- Built surface sum around (grid 500m cell plus eight adjacent cells)
- Urbanized surface around (grid 500m cell plus eight adjacent cells)
- 1.5-2km Circuicity (Ratio between straight line and network distance)
- Number of weekly available non-metropolitan bus trips at 550m distance
- Number of weekly available metropolitan bus, tram and metro trips at 550m distance
- Length ratio of cycling routes (to other towns at a 6km radius) with more than 4% slopes
- Distance to closest motorway access
- Foreigners rate
- Over-65 rate

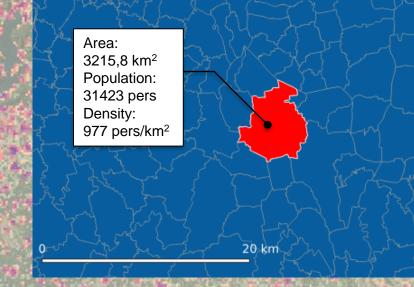
•

- Average household members quantity
- Employed population rate


Accessibility, residential typology outperformed? Multicolinear?

Socio-demographic factors

Background source: Al-generated image with Copilot

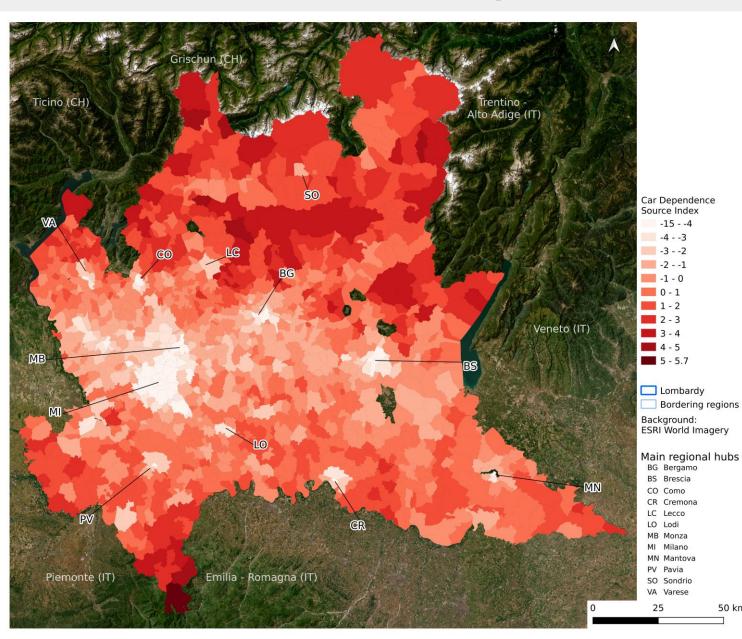



# Weighted proximity scale...





### ...over full-aggregation?




$$PopAround_{k} = \sum_{c} \left( PopAround_{c,k} * \frac{Pop_{c,k}}{\sum_{c} Pop_{c,k}} \right)$$

Background source: Al-generated image with Copilot

### car dependence composite index

50 km



| Variable     | pop<br>_around | builtsurfs<br>_around |          | trips_all                 | atm_all        | forgn<br>_rate   | altri_all         |
|--------------|----------------|-----------------------|----------|---------------------------|----------------|------------------|-------------------|
| PCA<br>coef. | -0.43          | -0.42                 | -0.40    | -0.35                     | -0.27          | -0.23            | -0.22             |
| Variable     | Emplo<br>_rate | avg_hh_<br>size       | ucsr_all | log_cir_1<br>500_200<br>0 | Elder<br>_rate | perc_o4p<br>c_av | hwdist<br>_avgpop |
| PCA<br>coef. | -0.16          | 0.00                  | 0.04     | 0.10                      | 0.14           | 0.24             | 0.26              |

- Main cities, as expected, have less car-dependent sources, contrary to more remote places
  - Still, some extent of variability appears within suburban areas
    - The index can be a source for more place-based research and action, highlighting relevant CD hotspots.

### Conclusions

The process not only highlights main variables, but also more efficient ways of assessing some topics

Land use and form and transport supply are main drivers of *measurable* car dependence.

Cautions: the unexplained variance is not negligible (SA: 32%-67%).

So what's not explained? More attention to *qualitative* CD: practises, attitudes. How to integrate it into this framework?



Thursday, April 11 2024 Session G1: Reducing Car Usage

### **Generating car dependence** Exploration of factors from a multidimensional perspective in Lombardy, Italy

Speaker: Jaime SIERRA MUÑOZ | jaime.sierra@polimi.it



POLITECNICO DIPARTIMENTO DI ARCHITETTURA **MILANO 1863** E STUDI URBANI



The present work has been carried out in the framework of the Collaborative Doctoral Partnership Agreement No. 35455 between the European Commission Joint Research Centre and Politecnico di Milano.

# SA & Principal Component Analysis

| result | S |
|--------|---|
|--------|---|

| Variable             | <b>SC</b> <sub>i</sub> | Variable             | <b>SC</b> <sub>i</sub> | Variable              | SCi  |
|----------------------|------------------------|----------------------|------------------------|-----------------------|------|
| pop_around           | 5.50                   | rmedhholds           | 0.37                   | perc_roads_av         | 0.03 |
| forgn_rate           | 4.76                   | all_2                | 0.30                   | cdist_at8             | 0.03 |
| elder_rate           | 3.61                   | net_all              | 0.28                   | frc_noncycle          | 0.03 |
| ucsr_all             | 3.21                   | sumtpu_altriatm      | 0.24                   | log_cir_2000_2500     | 0.02 |
| altri_all            | 3.08                   | frc_noncycle_l       | 0.23                   | cdist_at11            | 0.02 |
| builtsurfs_around    | 2.73                   | statdist             | 0.20                   | log_cir_500_1000      | 0.02 |
| tlurb_around         | 2.52                   | all_3                | 0.20                   | cyclquality           | 0.01 |
| atm_all              | 2.35                   | all_1                | 0.19                   | sumsc_acc             | 0.01 |
| perc_o4pc_av         | 2.21                   | ReTy_Mix             | 0.19                   | cdist_at6             | 0.01 |
| avg_hh_size          | 1.47                   | all_0                | 0.18                   | trenord_all           | 0.00 |
| hwdist_avgpop        | 1.40                   | ucsr_urb             | 0.14                   | all_4                 | 0.00 |
| emplo_rate           | 1.26                   | LUM_ULAII            | 0.14                   | all_6                 | 0.00 |
| log_cir_1500_2000    | 1.13                   | cdist_at3            | 0.12                   | rdens_tazall          | 0.00 |
| trips_all            | 1.12                   | log_cir_2500_3000    | 0.09                   | taz_cycledens         | 0.00 |
| hhover2px            | 0.69                   | sndi_rem             | 0.09                   | popavg_grid_cycledens | 0.00 |
| child_rate           | 0.62                   | cycldetour_f_av      | 0.09                   | popavg_road_cycledens | 0.00 |
| rdens_bturb          | 0.55                   | trainscore_tazavgpop | 0.08                   | taz_cycledens_urb     | 0.00 |
| perc_densresid_resid | 0.47                   | rdens_gridpopav      | 0.07                   | tazroad_cycledensurb  | 0.00 |
| log_cir_1000_1500    | 0.44                   | LUM_ULUrb            | 0.07                   | numcycleroutes        | 0.00 |
| dPOPBuiltS           | 0.44                   | cdist_at10           | 0.06                   | perc_cyclelane_av     | 0.00 |
| elev_perc_av         | 0.41                   | tazroad_cycledens    | 0.05                   | perc_street_av        | 0.00 |
| avg_age              | 0.39                   | rmedcont             | 0.05                   | dPOPTAZ               | 0.00 |