

Institute of Transportation and **Urban Engineering** Braunschweig Prof. Dr.-Ing. Bernhard Friedrich



## **Determination of a Representative Travel Speed for Road Facility Performance Evaluation Using Floating Car Data**

Torben Lelke, M.Sc.

Technische

Universität

Technische Universität Braunschweig, Institute of Transportation and Urban Engineering

mobil.TUM 2024 | International Scientific Conference on Mobility | 10. April 2024

### **Level of Service Determination for Urban Street Facilities**



### **Level of Service Determination for Urban Street Facilities**



Criteria for Level of Service (LOS) calculation → Through-Vehicle Travel Speed



### **Analysis Hour Traffic Volume**

"The selection of an appropriate hour for planning, design, and operational purposes is a compromise between <u>providing adequate operations</u> for every (or almost every) hour of the year and <u>providing</u> <u>economic efficiency</u>." – Highway Capacity Manual 7<sup>th</sup> Edition



### **Level of Service Determination for Urban Street Facilities**



Criteria for Level of Service (LOS) calculation → Through-vehicle Travel Speed



Approaches to represent traffic state in the analysis hour using FCD:

## Median Individual Travel Speed

# **50th Hourly Travel Speed in a Year**

## **Average Peak-Hour Travel Speed**

## Median Individual Travel Speed

- Utilize value from the distribution of travel speeds along the road facility
- For short-term analysis of traffic state, average travel speed is often used (Axer & Friedrich, 2014; He et al., 2016)
- For long-term evaluations, median travel speeds give a stronger indication on the midpoint of the distribution



## **50<sup>th</sup> Hourly Travel Speed**

- Adapts the established methodology for determining the analysis hour traffic volume from hourly traffic volumes
- Space-mean speed of all vehicles *n* traveling through the respective road facility at every hour of the year is calculated

$$v_s = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n t_i}$$

 50<sup>th</sup> lowest space-mean travel speed within the year is then chosen as the representative value



## **Average Peak Hour Travel Speed**

- Identification of an average peak hour on typical working days
- Aggregation of the trajectories within these hours and calculation of the spacemean speed for each 15-minute interval
- Determination of the four consecutive 15-minute intervals with the lowest average travel speed as the representative value
  - = Typical working days (Tue, Wed & Thu)
  - = Peak hour periods (06:00 10:00 & 15:00-19:00)



## **Average Peak Hour Travel Speed**

- Identification of an average peak hour on typical working days
- Aggregation of the trajectories within these hours and calculation of the spacemean speed for each 15-minute interval
- Determination of the four consecutive 15-minute intervals with the lowest average travel speed as the representative value



#### **Case Study**



|                                         | <b>Travel Speed</b> [km/h]<br>Direction West → East | <b>Travel Speed</b> [km/h]<br>Direction East → West |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Reference Travel Speed -<br>Simulation  | 33,7                                                | 35,0                                                |
| 1. Median Individual Travel Speed       | 43,8                                                | 43,1                                                |
| 2. 50 <sup>th</sup> Hourly Travel Speed | 18,7                                                | 19,0                                                |
| 3. Average Peak Hour Travel Speed       | 37,0                                                | 32,9                                                |





#### Level of Service Analysis – German HCM (HBS):

| Direction   | Travel Speed [km/h] |      |  |
|-------------|---------------------|------|--|
|             | FCD                 | HBS  |  |
| West → East | 37.0                | 25.3 |  |
| Difference  | 4.7 km/h   31.6 %   |      |  |
| East → West | 32.9                | 19.5 |  |
| Difference  | 13.4 km/h   40.7 %  |      |  |

| Direction   | Level of Service (LOS) |     |  |
|-------------|------------------------|-----|--|
|             | FCD                    | HBS |  |
| West → East | В                      | D   |  |
| East → West | В                      | E   |  |

#### <u>Results:</u>

- Travel speeds from FCD generally higher than according to analytical HBS procedure
- Leads to significantly better LOS evaluation

### Possible explanation:

 Existing coordination of intersection signalling (not included in HBS procedure)

## **Key Takeaways**

- FCD offers an easy and universally applicable way to determine average travel speeds → possible simplification of operational and design analysis
- 2. The analysis hour travel speed is best represented by using FCD from an average peak hour an typical working days
- 3. There exist significant differences between regulatory analytical procedures and direct data analysis due to limitations in the regulatory procedures  $\rightarrow$  Consolidation?



**Torben Lelke, M.Sc.** Technische Universität Braunschweig Institute of Transportation and Urban Engineering

t.lelke@tu-braunschweig.de

