Suburban dream vs. climate-friendly transport?

Transport and environmental implications of urban sprawl in Poland [LUTEm]

Arkadiusz **Drabicki** Konrad **Chwastek** Urszula **Kierpiec** Kamila **Toboła** Susana **Lopez-Aparicio** Henrik **Grythe**

co-operation with:

Cracow University of Technology

THE FUTURE OF MOBILITY AND URBAN SPACE

Munich, April 10th 2024

Introduction

- Dynamic urban development in Poland since 2004 (EU accession)
- Unfortunately, this coincided with relaxation of urban planning laws:
 - ca. 1/3 of country area covered by **legally binding** local plans
 - provisions in spatial masterplans for **3 5**x population growth
- → Resultant (sub)urban sprawl contributes to major challenges:

socio-economic coststraffic congestionair pollution~ 20 bn EUR per annum3 of top 10 most congested2-3x WHO guidelines(Śleszyński, 2021)(TomTom, 2023)(IQAir, 2023)

Problem background

 Rising public awareness, yet strategic planning lags behind

➔ Is it really something new / unknown...?

Need for proper analytical toolset and underpinning

Objectives and methodology

LUTEm research objective \rightarrow understand relationships between:

[urban sprawl development] vs. [transport performance] vs. [air pollution emissions]

and

Case study - Warsaw

- capital city of Poland
- population (2006 vs. 2023):
 - Warsaw: 1.7m → 1.9m
 - outer area: 640k → 810k
- built-up (floor) area: (2006 vs. 2023):
 - Warsaw: + 27%
 - outer area: +82%
- analysis scope:
 - impacts of land-use changes 2023 vs. 2006?
 - what if current trends are *amplified / reversed*?

Land-use changes, 2023 vs. 2006

Land-use changes, 2023 vs. 2006

Land-use impacts, 2023 vs. 2006

simulation results, AM peak – land-use (and road network) changes

Warsaw - what-if... scenarios

Results – land use and traffic flows

Δ traffic flows – **[W3] compact city** LEGENDA Link flows [veh/hr] affic DECREASE affic INCREASE

Results - land use vs. traffic emissions (1)

road traffic emissions (spatial changes)

Results – land use vs. traffic emissions (2)

road traffic emissions (spatial changes)

Results – network parameters

what-if scenarios – projected (city-wide) effects:

Warsaw, AM peak hour		modal share	network loads		emissions	trip parameters		
		[%] car trips	[veh-km]	[veh-hrs]	CO2 eq. [tonnes]	speed [km/h]	distance [km]	time [mins]
[W0]	baseline	47.5%	2095.7k	61.1k	828.4	47.6	12.8	16.3
suburban sprawl scenarios:		changes vs. [W0]:				absolute values:		
[S0]		+ 0.2 %p	+ 6%	+ 37%	+ 12%	37.0	13.4	22.0
[S1]	+ workplaces (CBD)	- 0.9 %p	+ 6%	+ 44%	+ 11%	35.0	13.4	23.4
[S2]	+ workplaces (suburbs)	+ 0.6 %p	+ 7%	+ 33%	+ 11%	38.1	13.3	21.3
[S3]	+ faster PT	- 2.4 %p	+ 2%	+ 16%	+ 4%	41.7	13.3	19.4
compact city scenarios:		changes vs. [W0]:				absolute values:		
[C0]		- 0.4 %p	- 3%	- 6%	- 4%	48.9	12.6	15.6
[C1]	+ workplaces (CBD)	- 1.1 %p	- 4%	- 4%	- 5%	47.7	12.6	16.0
[C2]	+ workplaces (suburbs)	+ 0.2 %p	- 1%	- 4%	- 2%	48.7	12.7	15.7
[C3]	+ faster PT	- 2.8 %p	- 7%	- 13%	- 9%	50.8	12.7	15.1

Conclusions

- land-use changes since 2006 → major contribution to traffic loads & emissions
 - mitigated by road expansion (but with rising car dependence)
- further urban sprawl → unsustainable, traffic externalities rising non-linearly
 - cannot compensate for population outflux with workplace shifts nor PT attractiveness
- **compact city** → potential of *LUTEm synergies*
 - land-use proximity & shorter, efficient trips & minimised traffic externalities
 - complement with (targeted) network measures (traffic emission impacts!)

Summary and outlook

- integrated land-use, transport and environmental assessment
 - → key to resolve interdisciplinary dilemmas, e.g.:
 - can land-use changes be *undone* by network interventions?
 - does compact city always imply lower traffic emissions?
- future aspects extending the LUTEm analyses:
 - travel demand effects (e.g. induced traffic)
 - push vs. pull measures \rightarrow e.g. how far can the road narrowing go?
 - long-term feedback → might network costs induce reurbanisation...?

• need to influence policy changes 😳

• regain the management of urban planning over the next 20 years

Thank you very much!

arkadiusz.drabicki@tum.de

The *LUTEm* project is financed within the framework of the EEA Financial Mechanism 2014 – 2021 and Norwegian Financial Mechanism 2014-2021, granted by the Polish Ministry of Development Funds and Regional Policy.

Ministerstwo Funduszy i Polityki Regionalnej

