Insights for Enhancing Urban Freight Accessibility

Julia Amaral, Joris Beckers, Carlos Rivera-Gonzalez Postdoctoral Researcher University of Antwerp

Goal and Content

- Goal: contribute to logistics discussions within the framework of the 15-minute city concept
- Content:
 - Mobility-Logistics (MoLo) hubs
 - Freight accessibility framework

MoLo Hubs

People-Centric Mobility & Logistics Hubs

 EU-funded transnational project, tackling challenges related to urban mobility and logistics

Objectives

- MoLo Hubs aims to integrate and explore synergies between mobility and logistics services
- Make logistics services more attractive and user-friendly by offering them where users are
- Make mobility hubs more attractive by increasing their range of functions

Impact

- Better services for local communities
- Contribution to the mobility transition and reduction of car use and emissions

MoLo Hubs

LinkedIn

- Reduction of urban freight transport and emissions
- <u>Create solutions that support low-</u> car/car-free urban development

MoLo Hubs Pilots

Pilots will be conducted in five cities:

- Aalborg (Denmark)
- Amsterdam (Nederlands)
- Borås (Sweden)
- Hamburg (Germany)
- Mechelen (Belgium)

The pilots aim to improve:

- Waste collection
- Package delivery/pickup
- Service trips

Image © CoMoUK

- Challenge: hazardous waste collection is currently handled by household collection (causing waste truck traffic in residential areas) or centralized recycling yards in industrial areas (causing car traffic)
- Possible solution: neighborhood collection points at mobility hubs as an intermediate solution between collection at source and recycling yards

Example of a collection point:

(up to 14 different waste types, up to 120l capacity per compartment, specially protected compartments for specific waste types)

Interreg

North Sea

Co-funded by the European Union

MoLo Hubs

Benefits of the Waste Collection Pilot

Status QUO

With MoLo Hub

▲ MoLo Hub → Vehicle movement ····• Walking/bike

Potential benefits:

- Reduce VKT (Better traffic, less emissions)
- Less illegal waste disposal by making the collection site more accessible to citizens

MoLo Hubs

Package Delivery/Pickup Pilot

- Challenge: the growth of ecommerce increased the demand for packages. Although pickup points are already in place, they might require a dedicated trip from the user to the pickup location.
- Possible solution: add delivery lockers to mobility hubs that users already use in their daily lives

Benefits of the Package Delivery/Pickup Pilot

Status QUO

With MoLo Hub

Household collection

Potential benefits:

- Make delivery lockers more accessible by putting them next to public transport and shared mobility
- Reduce VKT (better traffic, less emissions)
- Reduce the share of failed deliveries
- Reduce logistic costs

Service Trip Pilot

- Challenge: service technicians struggle with congestion, lack of parking and high parking costs
- Possible solution: Technicians can park their vans in the hubs, utilizing light electric vehicles (e-cargo bikes or e-scooters) to reach their destinations. The hubs also provide secure spaces for storing materials and tools.

Benefits of the Service Trips Pilot

- Traffic congestion
- Difficult to find parking spot
- Expensive parking
- Service providers started to decline jobs due to lack of access

Potential benefits:

culty of Busine

- Reduce van traffic in the city center (better traffic, less emissions)
- Reduce the competition for parking space
- Increase access to service providers
- Reduce service provider's cost

Freight Accessibility Framework

Freight Accessibility Framework

- Goal: achieve greener, more <u>compact supply chains</u>
- Objectives:
 - Quantify freight accessibility based on generalized cost of travel between shipper and receivers
 - Provide insights on land use policies and demand management strategies that can reduce externalities of urban freight transportation
- Publication:
 - Rivera-Gonzalez, C., & Amaral, J. C. (2024). Assessment of freight accessibility in New York City: A spatial-temporal approach. *Journal* of Transport Geography, 114, 103777.

Compact Supply Chain

 In the pursuit of sustainability, the concept of compact supply chains arises as a way of <u>reducing the distance, time, and resources required to</u> <u>move goods</u> between supply chain agents

The objective is to improve accessibility to receivers, making travel between shipper and receivers more resource efficient.

Accessibility Models in Freight Transportation

Isochrone Accessibility NYC Example

Gravity-based Accessibility

- Adapted from passenger accessibility (Hansen, 1959)
- Potential accessibility of zone *i* is:

Where:

- a_j = number of deliveries in zone *j* (destination)
- d_{ij} = travel distance between zones *i* and *j*
- $C = \cos t$ of distance
- t_{ij} = travel time between zones *i* and *j*
- V = value of time
- β = parameter of the impedance function
- The impedance parameter β captures the impact of the generalized cost (GC) function on trip distribution
- Large $\beta \rightarrow$ larger weight for the GC function
- Small $\beta \rightarrow$ lower weight for the GC function

Calibration of β is a challenge and would require observed trip distribution data

Gravity-based Accessibility NYC Example

Concluding Remarks

- Logistics considerations cannot be overlooked in the 15-min city
 - Land use considerations (e.g., space for logistic activities within the city)
 - Demand management strategies (e.g., freight transport in the off-hours)
- Integrated mobility-logistics hubs could help reduce the impact of freight and service vehicles traffic
 - Enhance synergies between mobility and logistics activities
- Accessibility measures provide insights to locate these hubs and promote more compact supply chains

Thank you!

julia.amaral@uantwerpen.be

LinkedIn