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Abstract: City planners have the challenge of steering people away from the usage of private 1

passenger cars to reduce its environment drawbacks. In this context, mobility hubs may constitute 2

a physical and digital space to group different mobility options and services. However, there is a 3

lack of research about common spatial variables that affect the ridership of multiple shared mobility 4

options. Therefore, this study examines the relationship between the built environment, specifically 5

points of interest (POIs), in the city of Chicago and the ridership of three shared mobility options: 6

bike sharing, e-scooter sharing and taxis. Negative binomial regression was used to identify the 7

statistically relevant built environment that is associated with the usage of each mode. The categories 8

restaurant and residential buildings were identified as the common categories associated with the 9

usage of bike sharing and e-scooter sharing. Only arrival trips for each mode were used as a target 10

variable, further improvement can be done by adding the departure trips, hence understanding the 11

departure-arrival flow. Economical and social variables can also be added to better explain the overall 12

usage of these modes. 13

Keywords: bike-sharing; e-scooter sharing; taxis; mobility hubs; sustainable mobility; built environ- 14

ment 15

1. Introduction 16

The transport sector is facing the challenge of major reduction in CO2 emissions to 17

reach the ambitious goal of climate neutrality by 2050 [1]. In fact, around one fifth of the 18

global CO2 emissions are accounted for the transport sector in 2018 [2]. In particular, pas- 19

senger road vehicles account for the highest proportion of the overall transport emissions, 20

which makes the main challenge of city planners and policy makers is to decrease the 21

attractiveness of the private passenger car and elevate the one its counter part shared mo- 22

bility modes [3]. Improving public and shared transportation systems and transit options 23

is maybe a way to incite its usage [4]. 24

Mobility hubs are relatively a new concept that can be defined as a physical space 25

where different shared mobility options and services that benefit the traveler are offered [5]. 26

The goal of mobility hubs would be to increase the usage shared and sustainable modes of 27

transport, hence reduce the private car usage [5]. Nevertheless, due to the infancy of the 28

concept of mobility hubs, researchers and urban planners are still developing definitions 29

and guidelines to enable their sustainability and inclusively [6]. Yet cities are moving 30

quickly in the direction of planning and implementing these hubs. For instance, the city of 31

Munich, Germany is planning 200 "mobility points" for 2026, where bike sharing, e-scooter 32

and car sharing are made available [7]. Therefore, choosing the location for mobility hubs 33

is a crucial step to ensure their successful integration and usability. To do so, there are 34

different characteristics which are considered important when choosing potential locations, 35

one of which is the built environment surrounding the mobility hub [6]. 36
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The relationship between the built environment and multiple shared mobility options 37

is yet to be comprehensively examined. Although separately, there have been research on 38

the relationship between the built environment and bike sharing (e.g [8,9]), e-scooters (e.g 39

[10,11]) and taxis (e.g [12,13]), there is thus far no research that combines them all. 40

To fill in this gap, I examine the common built environment factors, specifically points 41

of interest (POIs), that are associated with the usage of bike sharing, e-scooter sharing and 42

taxis using open source data of the city of Chicago. Negative binomial regression is used to 43

better understand this relationship. The paper comprises seven sections. Following the 44

introduction, the literature review section presents some previous studies that explored 45

the relationship between the built environment and bike sharing, e-scooter sharing, taxis 46

and the built environment, separately. Then, the third section contains the methodology, its 47

application is found in section 4. Section 5 outlines the results from the regression analysis. 48

Section 6 is dedicated for the discussion of the results and its limitations. Finally, the last 49

section concludes with the study’s contribution and suggestions for future research. 50

2. Literature review 51

Research about the effect of the built environment on multiple shared mobility options 52

is limited. Nevertheless, bike sharing systems and taxis have been more studied than 53

e-scooters, which have only been around since 2017 in the US and 2018 in Europe [14]. 54

2.1. Bike sharing and the built environment 55

Tran et al.[9] examined the effect of built environment on bike sharing system in Lyon. 56

They used a robust linear regression model to predict flow rates of each bike station. A 57

buffer of 300 meters around each station was used, that contained the the built environment 58

factors. Public transportation variables were the most significant variables in all their 59

models. In addition, leisure variables, such as restaurants and cinemas, were found to be 60

significant for short term users but not for long term ones. 61

In New York City, a spatio-temporal case study for the CitiBike system was conducted 62

to better understand the factors that contribute to the bike sharing demand [15]. Built 63

environment attributes, such as population density, presence of subway station in buffer 64

and number of restaurants in buffer, were used to estimate the arrivals and departures. The 65

buffer used in this case is equal to 250 meters. It was found that subway stations have a 66

positive impact both on arrivals and departures for both members and daily customers. 67

The same positive impact on both types of flows is seen when the number of restaurants is 68

higher within the buffer. As for job density, it showed a clear relationship with population 69

density and demonstrated a commute pattern to work and back to home. The same 70

result about employment density was found in El-Assi et al.’station [16] based analysis of 71

commercial bike sharing in Toronto, using a distributed lag model. 72

2.2. Taxis and the built environment 73

Ordinary least squares (OLS) and Geographically Weighted Regression (GWR) have 74

been used to determine the influence of the built environment on taxi ridership. The 75

ridership was found to positively correlate with residential areas, employment density, 76

hotels and bus stops [13]. The same authors examined the effects of built environment on 77

taxi in New York City using a geographically and temporally weighted regression (GTWR) 78

model [17]. They found that higher numbers of different transport POIs, such as bicycles, 79

buses, and subways correlate with higher numbers of taxi ridership. However, the main 80

outcome was that the relationship between the built environment and taxi ridership vary 81

over space and time in New York City. 82

Furthermore, Wu and Zhuo’s [12] study about the impact of built environment on 83

urban short distance taxi travel in Shanghai, using multi factor linear regression model, 84

identified a competition relationship between metro systems and taxis. In fact, the metro 85

had a significant negative impact on the taxi travel density [12]. 86
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2.3. E-scooter sharing and the built environment 87

The impact of the built environment has been scarcely studied for e-scooters, since 88

it is a relatively new system. Espinoza et al. [10] examined the e-scooter system "Bird" in 89

Atlanta in the attempt of determining the purpose of the trips, from business to pleasure to 90

transit. They clustered POIs, resulting in categories such as business, food, parking and 91

residential, and investigated the trips done between these categories. Business to business 92

had the highest count. Recreation and food were also found to be dominant categories, 93

especially evenings and at night. 94

Jiao and Bai [11] used a negative binomial regression model to investigate the rela- 95

tionship between the built environment and e-scooter usage using the data of city Austin 96

in Texas. The results of the model showed that mixed land use, educational, commercial 97

and transit facility are all positively correlated with e-scooter trips. In fact, mixed land use 98

was found to be the most relevant variable amongst the surrounding urban environment 99

variables, as a 1% increase could generate 50% or more increase in e-scooter usage. Similar 100

findings were established when studying the e-scooter ridership in Chicago, mixed land 101

use appeared to be an important variables as it was associated with 23% cent of increased 102

demand. Bus stops, on the other hand, were found to be negatively correlated with the 103

departure model [18]. 104

2.4. Identified built environment from the literature 105

Table 1 presents the identified built environment from the literature review. Residen- 106

tial or population density is a variable that was identified across every research. Some of 107

the variables that are commonly used are public transport options such as bus, metro and 108

subway stations. Educational, entertainment and food facilities are also present throughout 109

the examined papers. 110

Table 1. Identified built environment from the literature review.

Built environment Sources
[9] [15] [16] [13] [17] [12] [10] [11] [18]

Bus stops ✓ ✓ ✓ ✓ ✓ ✓
Bicycle infrastructure ✓ ✓ ✓ ✓ ✓
Metro stations ✓ ✓ ✓
Subway stations ✓ ✓ ✓
Road length/density ✓ ✓
Student residence ✓
University ✓ ✓
Cinema ✓
Restaurant ✓ ✓
Residential ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Employment ✓ ✓ ✓ ✓
Tourist attraction ✓
Hotel ✓ ✓
Park ✓ ✓ ✓ ✓ ✓
Mixed land use ✓ ✓ ✓
Entertainment facilities ✓ ✓
Business ✓
Shopping ✓
Parking rate ✓
Parking for cars ✓
Public service ✓
Commercial ✓ ✓ ✓
Health and fitness ✓
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3. Methodology 111

Figure 1 shows the proposed methodology. First the docked bike station location is 112

collected. Second, the ridership data of the docked bike sharing system, e-scooters sharing 113

system and taxis is collected. These are the dependent variables. Then the built environment 114

data, which is the independent variable, is collected. A buffer zone surrounding each bike 115

station is set. After the data analysis and processing, the number of arrival trips and POIs 116

is counted for the buffer zone of each station. Pearson correlation test is performed to 117

eliminate collinear variables, then regression analysis is used to identify the common built 118

environment factors. 119

Figure 1. Methodology.

3.1. Data collection and processing 120

The ridership data is downloaded from an open source database. First the docked bike 121

station’s locations are identified. A buffer zone equal to 300 meter is set around each station. 122

The buffer zone was chosen based on previous research, where this value is between 250 123

and 400 meters [8,9,15], as it is an acceptable distance to be walked from or to a station. The 124

arrival trips that fall into the buffer zone are then counted and assigned to each docked 125

bike station. For e-scooter and taxis, only stations that get assigned a total of ridership 126

bigger than 0 are considered. 127
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The built environment data is download from an open source database. The nature 128

of the built environment to be explored is points of interest (POIs) such as restaurants, 129

schools and bus stops. The collected POIs are then counted and assigned to each station. 130

Thereafter, the POIs are categorized based on the findings of subsection 2.4. Finally, Pearson 131

correlation test is performed and collinear variables are removed. 132

3.2. Regression and factor selection 133

Regression methods is one of the most used ways to study correlations between 134

dependent and independent variables. Linear and logistic regression are some of the 135

commonly used regression models [19]. 136

3.2.1. Ordinary Least Square regression 137

Ordinary Least Square regression (OLS) is a regression technique that was used in
previous research to explore the relationship between ridership and the built environment
[8,16,20]. It is one of the most used techniques in multivariate analysis [21]. OLS is a useful
tool when the relationship between the dependent and the independent variable is the
hypothesis to be tested but the parameters are unknown. The relationship is modeled as
follows [21]:

Y = β0 + β1X + ϵ (1)

where Y is the dependent variable, β0 is the intercept, β1 is the slope, X the independent 138

variable and ϵ is the random error [21]. 139

3.2.2. Negative binomial regression 140

Negative binomial regression is a modelling technique also used in previous research
and primarily for count data [11,18,20,22]. In negative binomial regression, the probability
that the dependent variable y is equal to m, a non-negative integer, conditioning on the
linear combination of x1,x2,.. and a parameterλ is calculated as follows [23]:

P(y = m|x1, x2, ...) =
λme−λ

m!
(2)

where we assume that λ is the mean of y and the variance is equal to λ(1 +αλ2). To estimate
α and βs, the Maximum likelihood estimation (MLE) is used as follows [23]:

ln λ = β0 + β1x1 + β2x2 + .. (3)

3.2.3. Factor selection 141

After the regression analysis of each shared transportation mode, only the statistically 142

relevant factors are considered. Finally, the common factors for the three modes can be 143

identified. 144

4. Application 145

4.1. Data collection and processing 146

The ridership data for the bike-sharing system, the e-scooters pilot program and taxis 147

were obtained from the data portal of the city of Chicago (https://data.cityofchicago.org/). 148

The built environment data is obtained both from the server Geofabrik (http://download. 149

geofabrik.de/north-america/us/illinois.html) and the above mentioned data portal of the 150

city of Chicago. 151

4.1.1. Divvy bike-sharing system 152

Divvy is a public dock-based bike sharing system owned by the city of Chicago. The 153

system started operating since 2013 and stations can be found all over the city of Chicago 154

[18]. Recently, the Chicago Department of Transportation announced that in 2021 the 155

system recorded 4 million trips, making it its all time high record. The city is planning 156

https://data.cityofchicago.org/
http://download.geofabrik.de/north-america/us/illinois.html
http://download.geofabrik.de/north-america/us/illinois.html
http://download.geofabrik.de/north-america/us/illinois.html
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more biking infrastructure and stations and making Divvy the largest bike-sharing system 157

in North America by service area [24]. 158

The data set used consists of 3,815,815 unique trips for the year 2019. Start, end time, 159

bike ID, the specific location of the trips (latitude and longitude of the start and destination 160

station), trip duration, user type and gender. Empty entries and trips lasting less than 161

90 seconds were eliminated, making the total number of trips for the year 2019 equal to 162

2,484,619. 163

Although the Divvy stations are spread out across the city, a concentration of trips is 164

observed in what is considered downtown Chicago, compared to lower ridership in the 165

city outskirts. For example the five best performing stations have an average of 36,918 trips 166

in 2019, in contrast with the five least performing with an average of 4 trips. 167

Figure 2. Bike arrivals per station in 2019.

4.1.2. E-scooter Pilot Program data 168

The 2020 e-scooter pilot is the second version program launched by the Chicago 169

Department of Business Affairs and Consumer Protection (BACP) and the Chicago Depart- 170

ment of Transportation (CDOT) to better understand the role of e-scooters in Chicago and 171

whether it could yield to a better mobility and access for the people of Chicago [25]. What 172

is unique about this program is the distribution of the e-scooters. An Equity Priority Area 173
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was determined, in which each e-scooter vendor had the requirement of deploying at least 174

50% of their fleet. This program operated from August 12 to December 12 of the year 2020. 175

The total number of e-scooters is 10,000 [25]. It is important to state that the city center was 176

not included in the 2020 e-scooter pilot program. 177

The dataset consisted of 630,816 unique trips. Start, end times, the specific location 178

of the trips (the latitude and longitude of the centroids of both pickup and drop-off), trip 179

duration, trip distance, as well as the vendor are provided. All empty trips or ones lasting 180

less than 90 seconds were eliminated. This resulted in a total number of trips equal to 181

594,131. 182

As this study focused on the arrivals within the 300 meters buffer of the corresponding 183

Divvy station, the total number of trips was equal to 481,550. 184

In figure 3, the spatial distribution of e-scooter arrival trips is plotted. 185

Figure 3. E-scooter arrivals per station in 2020.

4.1.3. Taxi data 186

The open-source data set consists of 16,477,365 unique trips. Due to downloading 187

and storage issues, I could retrieve 1,000,000 for the year 2014. Start, end time, taxi ID, 188
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the specific location of the trips (latitude and longitude of the pickup and drop-off), trip 189

duration, the cost of the trip and the payment method. After removing trips with missing 190

latitudes and longitudes, I could retrieve 848,766 trips. In figure 4, the spatial distribution 191

of taxi arrival is plotted. 192

Figure 4. Taxi arrivals per station in 2014.

4.1.4. Built environment variables 193

The dataset of Geofabrik consisted of 133 different POIs. Bus stations, metro stations 194

and residential buildings were separately collected from the open official data portal of the 195

city of Chicago. The different POIs were clustered based on the commonly identified POIs 196

found in the literature review 2.4. 197

The chosen categories are restaurant, education, grocery, entertainment, attraction, 198

park, office, bus stations, metro stations and shops. Table 2 shows the different categories 199

and their corresponding POIs. 200
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Table 2. Points of interest used for the categories.

Category POIs

Restaurant Restaurants

School
Education University

College

Grocery Supermarket
Convenience

Attraction Museum
Attractions for tourists

Entertainment Cinema
Theatre

Park Parks

Metro stations Chicago Transit Authority L-stations

Bus stations Chicago Transit Authority bus stations

Residential buildings
Residential Houses

Apartments

Office Offices

Department stores/Shoe shops
Shops Book shops/Gift shops

Clothing shops/Beauty shops

Since the spatial distribution of the three types of ridership is not the same, multi- 201

collinerity is considered separately for each mode. 202

Built environment and bike sharing ridership 203

For bike sharing, 633 stations and their corresponding POIs are considered. Table 3 204

presents a descriptive statistics of the bike sharing ridership the POIs . 205

Table 3. Descriptive statistics of dependent and independent variables.

Variable Unit Mean Min Max Standard
Deviation

Bike arrivals per
station per year Count 3925.14 2.00 44334.00 5310.26

Restaurant Count 5.29 0.00 53.00 8.47
Education Count 0.42 0.00 4.00 0.76
Grocery Count 0.54 0.00 5.00 0.97
Shops Count 1.19 0.00 35.00 3.45

Entertainment Count 0.13 0.00 5.00 0.47
Attraction Count 0.13 0.00 5.00 0.52

Parks Count 0.01 0.00 3.00 0.18
Metro stations Count 0.71 0.00 12.00 1.55

Bus stations Count 8.94 0.00 27.00 4.93
Residential Count 9.90 0.00 522.00 29.42

Employment Count 2.29 0.00 54.00 7.07

To check for multicollinearity, Pearson correlation coefficient was calculated. Figure 5 206

shows the results of the pairwise correlation between the variables. 207
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Figure 5. Pearson correlation matrix of bike sharing and the POIs.

The pairwise correlation between restaurant and office (0.64) and metro stations and 208

office (0.57) is higher than 0.5, which implies the existence of collinearity. Since the variable 209

restaurant has a higher correlation coefficient with the arrival trips, the variable office is 210

excluded from the model. 211

Built environment and E-scooter sharing ridership 212

For e-scooter sharing, 34 stations and their corresponding POIs are considered. 213

Table 4 presents descriptive statistics of the e-scooter sharing ridership and the POIs . 214
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Table 4. Descriptive statistics of dependent and independent variables.

Variable Unit Mean Min Max Standard
Deviation

E-scooter arrivals
per station per year Count 760.91 261.00 93422.00 23195.94

Restaurant Count 5.29 0.00 26.00 6.44
Education Count 0.76 0.00 4.00 1.12
Grocery Count 0.94 0.00 4.00 1.34
Shops Count 1.58 0.00 14.00 2.73

Entertainment Count 0.23 0.00 2.00 0.60
Attraction Count 0.11 0.00 1.00 0.32

Parks Count 0.02 0.00 1.00 0.17
Metro stations Count 1.64 0.00 12.00 3.24

Bus stations Count 9.58 0.00 17.00 4.45
Residential Count 12.97 0.00 269.00 45.75

Employment Count 3.79 0.00 39.00 8.98

To check for multicollinearity between the POIs, Pearson correlation coefficient was 215

calculated. Figure 6 shows the results of the pairwise correlation between the variables. 216

Figure 6. Pearson correlation matrix of e-scooter sharing and the POIs.

The pairwise correlation between office and almost all variables is higher than 0.5. 217

The variable grocery correlates strongly with metro station (0.73) and education (0.67). 218

Restaurant and shops have a correlation coefficient of 0.78. As a result, the variables office, 219

grocery, attraction and bus station are removed from the model. 220
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Built environment and taxi ridership 221

For taxis, 260 stations and their corresponding POIs are considered. Table 5 presents 222

the descriptive statistics of the taxi ridership and the POIs . 223

Table 5. Descriptive statistics of dependent and independent variables.

Variable Unit Mean Min Max Standard
Deviation

Taxi arrivals per
station per year Count 6731.84 1.00 76090.00 12958.25

Restaurant Count 6.58 0.00 53.00 8.41
Education Count 0.46 0.00 4.00 0.79
Grocery Count 0.62 0.00 5.00 1.09
Shops Count 1.54 0.00 28.00 3.87

Entertainment Count 0.15 0.00 2.00 0.42
Attraction Count 0.17 0.00 4.00 0.56

Parks Count 0.007 0.00 1.00 0.08
Metro stations Count 0.60 0.00 8.00 1.28

Bus stations Count 8.66 0.00 27.00 5.44
Residential Count 13.43 0.00 522.00 40.98

Employment Count 2.54 0.00 54.00 2.54

Pearson correlation coefficient was calculated to check for multicollinearity. Figure 7 224

shows the results of the pairwise correlation between the variables. 225

Figure 7. Pearson correlation matrix of taxis and the POIs.
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The pairwise correlation between restaurant and office (0.63), restaurant and grocery 226

(0.54) and restaurant and shops (0.51) is higher than 0.5, which implies the existence of 227

collinearity. The variable restaurant has a weaker correlation coefficient with taxi arrivals 228

than office, which lead to its exclusion from the model. 229

4.1.5. Model choice 230

Both Ordinary Least Square regression (OLS) and negative binomial regression (NB) 231

were considered to identify the common built environment factors between the modes. 232

However, the three dependant variables examined in this study do not have a normal 233

distribution, as shown in figure 8. This lead to a non-normal distribution of the prediction 234

error. Consequently, OLS should not be applied without a prior transformation of these 235

variables. This resulted in the usage of negative binomial regression. 236

Figure 8. Histogram of the count trips of bikes, e-scooters and taxis per station.
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5. Results 237

The results of the three regression models are shown in table 6. Three variables were 238

found to be statistically significant for bike and e-scooter sharing and taxis. 239

Table 6. Negative binomial regression for each mode.

Dependent variables Independent
variables Coefficients Z value

Restaurant 0.0891 15.229
Bike trips per station

per year Residential 0.0030 2.156

Education 0.1158 2.019
Pseudo R2 0.3798

Restaurant 0.1332 3.505
E-scooter trips per

station per year Metro stations -0.3530 -5.957

Residential 0.0077 1.988
Pseudo R2 0.6562

Office 0.0968 8.798
Taxi trips per station

per year Bus stops 0.0210 1.446

Attraction 0.3070 2.398
Pseudo R2 0.6039

The categories restaurant, education and residential buildings were found to be posi- 240

tively correlated with bike ridership. The variable restaurant is significant with a signifi- 241

cance at the 0% level. Residential and education are significant at the 0.5%. Pseudo R2 is 242

equal to 0.3798. The regression model revealed that the variable education has a strong 243

impact on ridership as it has the highest coefficient of 0.11. 244

E-scooter trips were found to be negatively correlated with metro stations, with a 245

significance at the 0% level, and positively correlated with restaurants and residential 246

buildings, with a significance at the 0% and 5% level, respectively. Restaurants have the 247

highest coefficient, suggesting that a 1% increase in the number of the buildings will result 248

in a 13% increase of the ridership. 249

Taxi trips were found to be positively correlated with office and attraction, with a 250

significance at the 0% level. Bus stations also correlated positively with taxi ridership, 251

but with a significance at the 5% level . The attraction variable has particularly a high 252

coefficient, indicating that a 1% increase in the number of attractions might result in over 253

30% increase in taxi ridership. This makes attraction for tourists the most relevant variable 254

for taxis. 255

6. Discussion 256

Negative binomial regression was used to explore the relationship between POIs in a 257

buffer zone of 300 meters around docked bike stations and the ridership of three shared 258

mobility modes: bike sharing, e-scooter sharing and taxis. The goal is to find the common 259

POIs between these modes. 260

As expected residential buildings were found to have a positive impact on the bike and 261

e-scooter ridership. These results coincides with previous research [22,25]. The category 262

restaurant is a reoccurred variable with positive impact in research about both bike- and 263

e-scooter sharing [8,25]. This can be explained by the fact that restaurants in urban areas 264

are planned in dense and accessible areas [26], making their accessibility via bikes and 265

e-scooters easier. Furthermore, education has the highest coefficient for bike sharing, which 266

highlights the importance of students as a current user and possible one. This relationship 267

is in line with Tran et al.’work [9]. 268
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As for the negative correlation between e-scooters and metro stations, it can be ex- 269

plained in this case by COVID-19 and its impact on transit mode choice as according to 270

the E-scooter Pilot Evaluation "Approximately 22% of e-scooter riders surveyed said they 271

“often” used an e-scooter to avoid using transit because of COVID-19 concerns" [24]. This 272

result is also consistent with Espinoza et al.’s [10] work on e-scooters in Atlanta, where it 273

was found that e-scooters were not usually used to reach a transit station. 274

Bus stops were found to positively correlate with taxi trips. This result is consistent 275

with the findings from the literature review [13]. Although the correlation coefficient 276

between the metro stations and taxis is positive according to the correlation results, it 277

is worth mentioning that this relation tends to vary from study to study. For example 278

Yang et al. [27] found a complementary relationship between metro stations and taxis in 279

Washington DC but Wu and Zhuo [12] identified a competition relationship between them 280

when taking Shanghai as a case study. In this study, the positive relationship between 281

taxi ridership and public transportation modes can be explained by the usage of public 282

transportation as a mile option. 283

Offices correlated positively with taxi arrivals, suggesting that some employees tend to 284

use taxis as means of transport to get to their place of work. As for the attraction for tourists 285

variable, it was found to be the most significant variable for taxis, this can be explained 286

by the fact that tourist may tend to use taxis as they might not be familiar with the public 287

transportation systems of a new city. 288

The discussed results do not come without limitations. The considerate E-scooter pilot 289

program only ran for 4 months and during the warmer period of the year. In addition, the 290

program only covered a specific area of Chicago that did not include the city center. The 291

results for the e-scooter trips are very time and space specific and cannot be generalized. 292

Furthermore, the park variable was used as a point and not as area, that might of affected 293

its importance. Finally, any kind of ridership is affected by both space and time, therefore 294

an aggregation of the trips by time can only make the results more precise. 295

296

7. Conclusion 297

This study aims to identify the common built environment factors between bike 298

sharing, e-scooter sharing and taxis to get a idea where to allocate mobility hubs. The 299

results from this study show that restaurant and residential buildings are the common 300

factors between bike sharing and e-scooter sharing. For bike sharing, the category education 301

had the strongest factor suggesting that students are a main user group. Furthermore, 302

public transportation such as bus stops and metro stations do affect the usage of both 303

e-scooters and taxis. For e-scooter users, metro stations do not seem to be a their destination 304

or a transit point. On the other hand, the presence of bus stops means more arrival taxi 305

trips. 306

These results can help urban planners and policy makers when deciding where could 307

be the optimal location to place a mobility hub based on the built environment. For an 308

optimal usage of bike sharing, e-scooter sharing and taxis as means of shared transportation 309

present in a mobility hub, the presence of restaurants, educational institutions, public 310

transportation and attractions should be checked when planning the mobility hub. 311

For further research, an improvement would be to take the departure trips and model 312

the departure-arrival flow, as this model only considered the arrival trips as a target variable. 313

Economical and social variables can also be added to better understand the overall usage 314

of these modes. In addition, different cities need to be taken as case studies to better 315

understand the importance of the mentioned factors. 316
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