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As demand for mobility continues to rise, public transport networks must be robust enough to ensure that 

their services can meet the demand. Public transport networks, especially rail-bound transit systems, are 

ultimately bounded by infrastructural constraints which limit the extent the network could increase its sup-

ply. Therefore, a certain extent of resilience must be added to the network to minimize the risk that areas 

may be cut off from the network during disruptions such as unpredictable incidents or planned construction 

work. A direct consequence of lacking resilience in the transit network is deteriorating accessibility both 

with respect to users and points of interest. In turn, the reduced service supply could not meet the already 

excessive demand, while other points of interest could only be reached with extended travel times. Incor-

porating resilience such as providing viable alternative transport options is vital to reduce the effect on 

passengers during disruptions, especially captive riders who rely on public transport. Hence, lacking resil-

ience and transit accessibility in general affect captive riders more than private cars’ users. 

As public transit forms a city’s mobility backbone, it is vital to identify who is part of the more disadvantaged 

demographic that potentially cannot access the public transport network. Most of the population cannot 

afford private cars and thus, an accessible and reliable public transportation system is vital to satisfy their 

mobility needs. Moreover, disadvantage population, usually, tend to have less access to private cars and 

to be segregated in the edges of the cities.  While there are already location and demographic-specific 

factors that account for their low accessibility during service without disruption, a low-resiliency network 

that provides very few to no usable alternatives could drastically drop the already low accessibility, leaving 

such users stranded in nowhere. 

In the case of Munich, Germany, the inner city is covered thoroughly by a multi-modal transit network and 

a strong hierarchy still exists in the wider Munich Metropolitan Area. Buses in outskirts are mainly feeders 

to rapid transit, and parallel services are a rarity. This demonstrates a low network resiliency in the suburbs 

of MMA when compared to other cities. 
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network.  
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where passengers are more likely to be affected by the lack of network resilience. Future transit projects 

such as the second trunk line and the new metro lines will also be considered. 

Methodology: 

To achieve these objectives, the following methods are applied in this thesis: 

• Literature review on equitable/fair transit accessibility, transit network resilience, and their meas-
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Abstract

As the mobility backbone of cities, public transport networks must be robust and resilient enough to mini-
mize the risk that area may be cut off from the network during disruptions. Most of the population, espe-
cially disadvantaged population groups, rely on public transit, which means equity is one of the important
indicators to measure transit system performance. Therefore, this thesis addresses the existing research
gap in the intersectionality between accessibility, resilience, and disadvantaged population by developing
a methodology to evaluate the decay in accessibility by public transit, and its impact on underprivileged,
transit-dependent population segments. To address the lack of objective indicators which could measure
the correlation between transit equity and network resilience, and to answer the research question on
which population segments are more likely to be affected by the lack of network resilience, measurement
indicators were developed to assess distributional impacts of accessibility decay, and the extent of such
impacts on transit-dependent population. An accessibility ratio was used to measure the extent acces-
sibility was affected during disruptions to a municipality, and this ratio could be weighted by population
compositions to compare the extent of impacts to the population segments considered. A linear regres-
sion model was then generated as an extension to determine population groups who are more vulnerable
to disruptions. Through a case study in the suburban area of Munich, Germany, using General Transit
Feed Specification (GTFS) data from line closures caused by construction, it was found that unemployed
and disabled residents were more vulnerable to disruptions in the region. The method could be used with
readily available data using common planning methods such as geographical information system (GIS)
and the R5 algorithm, making it a versatile tool to support strategic decision-making to achieve equitable
public transit systems.
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1 Introduction

1.1 Background

As demand for mobility continues to rise, public transport networks must be robust enough to ensure their
services can meet the demand. Public transport networks, especially rail-bound transit systems, are ulti-
mately bounded by infrastructural constraints which limit the extent the network could increase its supply.
Therefore, a certain extent of resilience must be added to the network to minimize the risk that areas may
be cut off from the network during disruptions such as unpredictable incidents or planned construction
work. A direct consequence of lacking resilience in the transit network is the loss of connectivity within
the network (Derrible & Kennedy, 2009) and thus causes accessibility to deteriorate both with respect to
users and opportunities. Research like Geurs and van Wee (2004), Hansen (1959), and Ingram (1971)
has established that with lengthened travel times, users could access less destinations during disruptions,
while destinations would see smaller catchment areas within the same travel time budget. In turn, the
reduced service supply could not meet the already excessive demand, while opportunities could only be
reached with extended travel times or extra travel costs. Incorporating resilience such as providing viable
alternative options (Xu et al., 2015) is vital to reduce the effect on passengers during disruptions, especially
captive riders who rely on public transport. Hence, lacking resilience and transit accessibility in general
affect captive riders more than users with access to private cars.

As public transit forms a city’s mobility backbone, it is vital to identify who is part of the more disadvantaged
demographic that potentially cannot access the public transport network, especially during disruptions
which could result in the network being fragmented. Most of the population cannot afford private cars
and thus, an accessible and reliable public transportation system is vital to satisfy their mobility needs.
The transport planning paradigm however, has been criticized by literature such as Keeling (2008) for the
failure to consider social equity aspects, while conflicting goals of maximizing efficiency and prioritizing
transit-reliant population have to be met (Delbosc & Currie, 2011; Litman, 2002). Moreover, poor transit
service could impair citizens from partaking in social functions, which cause them to be socially excluded
(Burchardt et al., 1999; Kenyon et al., 2002). While there are already location, network, and demographic-
specific factors that account for the low accessibility during normal service, in case of disruptions, a low-
resilience network that provides very few to no usable alternatives could drastically drop the already low
accessibility, thus leaving such users spatially and socially excluded.

Radial networks, like the one in Munich, Germany, are especially criticized by the literature such as Laporte
et al. (1997) and Saidi et al. (2016) for their low resilience through poor connectivity. These networks
mostly have a monocentric layout with lines radiating out from the city center. Whereas the city center
might have dense transfer opportunities, regardless of modes, it is very common to have limited to no
reliable connections between radial corridors outside the city center, which cause these networks to be
poorly connected. This results in circuitous trips and inefficient networks, both contributing to low resilience
(Derrible & Kennedy, 2009).

This thesis will study the suburban area of Munich to examine how the lack of resilience in its transit
network would impact disadvantaged population. Whereas within the inner city of Munich is covered
thoroughly by a multi-modal transit network, a strong hierarchy still exists in the wider Munich Metropolitan
Region, where buses in outskirts are mainly feeders to rapid transit, and parallel services are a rarity. This
demonstrates a low network resiliency in the region when compared to other cities.
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1.2 Objectives of this thesis

Whereas the above topics are extensively studied on their own contexts, little attention was given to the
intersectionality between them, namely how resilience could contribute to an equitable public transport net-
work. Studies on equity due to circuity such as Dixit et al. (2021) and Karaaslan and Mert Cubukcu (2023)
do not take disruptions or resilience into account, while existing redundancy or resilience studies mostly
employ a network-centric approach to create evaluation frameworks rather than assessing demographics
or areas that are more vulnerable to disruptions. Moreover, despite studies on impacts of population dis-
placement and gentrification due to transit service improvements, which see less affluent residents losing
accessibility either due to increasing costs or residential displacement, and that network fringes are more
vulnerable to disruptions, the interactions between such topics remain a niche topic. As less accessible
areas often rely on a handful of services as their lifelines to the inner city, it is important to consider the im-
pact caused to these areas should disruption occurs, and by extension, which part of the population would
be more severely affected. This thesis therefore aims to address the deficiency in research regarding how
transit network resilience could affect users of diverse demographics.

As a result, this thesis will answer the following research questions as an attempt to fill the above research
gap:

1. What are the objective indicators that measure the correlations between transit equity and network
resilience?

2. Who are more likely to be affected by the lack of network resilience?

By answering the above research questions, this thesis will develop a methodology to measure the corre-
lations between transit equity and network resilience, and thus identify population segments who are more
vulnerable to transit service disruptions.

The remainder of this paper is structured as follows: Section 2 gives a review on existing literature re-
garding accessibility analysis and equity issues in transport planning. Section 3 presents the methodology
proposed in this thesis, while Section 4 gives an overview of the study area. Section 5 outlines the re-
sults from this research. Section 6 discusses the methodology and results, and Section 7 gives a brief
conclusion to this study.
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2 Literature review

2.1 Interactions of transit accessibility and equity

2.1.1 Definitions of accessibility

Accessibility illustrates the relationship between activities and transportation systems. As Cascetta et al.
(2013) mentioned, accessibility measures have been widely used in various land-use and transportation
planning scenarios, such as integrated land-use and transport modeling, travel demand assessment, and
efficiency assessments for transport projects. The concept of accessibility itself, however, remains ab-
stract, and there have been various definitions for accessibility across the literature. As a widely accepted
definition, Hansen (1959) defined accessibility as the potential of interaction opportunities, which measures
the spatial distribution of activities, while considering the ability for users to overcome spatial separation.
Under this definition, accessibility is calculated using the following equation:

Ai =
∑

j

Djc−β
ij (2.1)

where Ai is the accessibility for zone i, Dj denotes the amount of opportunities in zone j, cij is the time
or cost to travel between nodes i and j, ans β is a cost sensitivity parameter to account for the impedance
to travel, which, as summarized by Hansen (1959), depends on the purpose and importance of the trip,
which explains different levels of willingness to travel depending on purpose.

Note that while a negative power function was used for the travel cost in the original Hansen Equation, In-
gram (1971) and Geurs and van Wee (2004) also noted other functions used for the cost component during
accessibility calculation, such as the normal function and the negative exponential function. Equation 2.2
shows the Hansen Equation using a negative exponential function, which, as Geurs and van Wee (2004)
summarized, is more commonly used than other types of cost functions for reflecting travel behavior more
closely.

Ai =
∑

j

Dje−βcij (2.2)

Another widely applied definition of accessibility is the density of activity opportunities within a certain
generalized travel cost (such as time, distance, or monetary cost). As Wachs and Kumagai (1973) and
Wickstrom (1971) explained, this definition can produce different accessibility values based on user char-
acteristics such as modal choice, and thus reflect more towards specific demographics instead of providing
a general synopsis. This definition could, for example, distinguish the reach of job opportunities between
automobile and transit users, or between income levels, which indirectly affect the users’ monetary travel
budget. This is also one of the methods used by Breheny (1978) to measure accessibility, alongside the
target opportunities method, which measures the cost required to reach the target number of opportuni-
ties. Using the contour measure mentioned above, Wachs and Kumagai (1973) proposed the following
equation to compute accessibility:

A(T )i = 1
100

∑
j

∑
k

Pijk
1

100E(T )ijk (2.3)

where A(T )i is the accessibility index for zone i within a travel time budget of T minutes, Pijk is the propor-
tion of population belonging to income category j and occupation category k, and E(T )ijk is the number of
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employment opportunities for residents in income category j and occupation category k accessible within
T minutes of travel from zone i.

It should be noted that while Equation 2.3 was originally designed for computing an overall accessibility
to employment opportunities, its nature as a weighted sum allows versatile usage, such as comparisons
between automobile and transit accessibility, or between different population groups (Wachs & Kumagai,
1973). Also, while not mentioned in the study, this equation could theoretically be extended to apply to any
type of opportunities that is not limited to employment by manipulating the variables within the equation.

Geurs and Ritsema van Eck (2001) decomposed accessibility into network, spatial, temporal, and individ-
ual components, in that while these components directly influence accessibility, the reverse also holds, i.e.
demand and supply could be increased due to greater accessibility, and the components each influence
one another. Whereas Geurs and Ritsema van Eck (2001) attributed the personal dimension of acces-
sibility to the individual’s needs, abilities, and opportunities, such component is often overlooked during
planning and modeling processes, often only through sociodemographic data, despite having a heavy
influence on the overall accessibility (Geurs & van Wee, 2004).

In a further study, Geurs and van Wee (2004) acknowledged the reality of accessibility measures focusing
on particular aspects and could not be used to obtain a comprehensive view. The study thus classified
accessibility measures into infrastructure-based, location-based, person-based, and utility-based perspec-
tives. In the context of urban planning, location-based measures are commonly used to evaluate accessi-
bility in a macroscopic or mesoscopic scale, taking supply of opportunities and travel costs into account.
The equation by Wachs and Kumagai (1973), while being relatively easy to compute and interpret, fail to
take personal perceptions into account, and is extremely sensitive to travel cost. Potential measures such
as the Hansen Equation (Hansen, 1959; Ingram, 1971), on the other hand, while being harder to interpret,
are well used in the literature for accounting the interactions between land use and transport. However,
even with the cost sensitivity parameter that attempts to capture travelers’ perception to trip purposes, it is
still an objective value that could not explain a user’s subjective perception overall to the transport system.

Therefore, an important indicator that has caught attention is the perceived accessibility, which is de-
fined by Lättman et al. (2016) as the ease to live satisfactorily using the transportation system, which
encompasses not only the accessibility to opportunities by the transport network, but also the access and
egress process. It was proved that both objective and subjective indicators regarding service qualities like
headways, access distances, passenger information and comfort, all contribute to the user’s perceived
accessibility alongside user demographics. Lättman et al. (2018) found significant deviations between ob-
jective and perceived accessibility, mainly because users tend to choose modes that satisfy their mobility
needs, and thus both objective and subjective measures must be concurrently considered when evaluating
accessibility. Thus, the paper acknowledged the need to consider the interactions between objectively and
subjectively assessed accessibility in order to grasp a more complete understanding.

2.1.2 The first and last mile problem: accessibility to public transit

An important difference between public and private transport trips is the trip nature. Whereas private cars
or taxis run on a point-to-point basis and thus offer a near door-to-door experience, this is rarely true for
public transit where stops are fixed. Thus, access and egress distances, also known as the first and last
mile problem, which are vital to overall accessibility by transit and in turn ridership, cannot be neglected
during accessibility analysis. One of the performance indicators for transit services is the proportion of
population served (Fielding et al., 1978), which depends on the service area around stops. As El-Geneidy
et al. (2014) and Zhao et al. (2003) explained, access and egress distances directly affect the catchment
area and thus the proportion of population accessible to transit networks. In accessibility analyses, it is
common to assume access and egress distances to be 400 meters for bus stops (Zhao et al., 2003), and
800 meters for rapid transit (Alshalalfah & Shalaby, 2007). Yet, it should be noted that these are only gen-
eralized benchmarks and do vary depending on characteristics of the transit system and built environment
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(Alshalalfah & Shalaby, 2007; El-Geneidy et al., 2014; Sarker et al., 2020), as the heterogeneous nature
of transit stops and networks, and their locations with respect to the built environment, mean that bench-
marks must be adapted accordingly for each case, such as in the case of Munich (Sarker et al., 2020),
where walking distances between 1.0 and 1.5 kilometers were observed at suburban stations.

Studies have proved the negative impact to public transport demand caused by longer access and egress
distances to transit stops. Mode choice models often weigh access and egress times heavier than in-
vehicle time (Qin et al., 2023), which highlights the perceived inconvenience of walking during access and
egress than the time spent in-vehicle. The emphasis on direct, quick walking routes by pedestrians also
implies the users’ top priority to minimize access and egress times (Alshalalfah & Shalaby, 2007).

Ewing and Cervero (2010) used various studies to test the impact of stop accessibility on mode split
by analyzing the elasticity values regarding transit and private car trips. Positive elasticity values were
found for private cars while negative ones were recorded for public transit. This implied users are more
likely to use private over public transportation as access and egress distances lengthen. It was also
found that despite inelastic correlations in general between trips and built environment, the paper did
acknowledge the potentially large effect on travel when built environment factors are combined. However,
the authors agreed that stop accessibility contributes to walking and transit usage, which are seen as
complementary modes. The relatively high elasticity of intersection densities with respect to both walking
and public transport is also noteworthy, primarily because this enhances walkability through shortening
walking distances, and also provides more routing options, which eventually enhances the street network’s
resilience in that diversions can be made more easily.

Accessibility to the transit system, which refers to the opportunity of using the system, is often used as
a target indicator in transit service provision, and this is associated with ridership (Murray et al., 1998).
Daniels and Mulley (2013) demonstrated modal differences in walking as access and egress modes to
transit, and showed an inverse relationship between access and egress distances and the resulting public
transit trips traveled. Passengers are more likely to walk longer to access transit when the transit trips are
longer, or when stops are spaced further apart, as reflected in the longer mean access distance to rapid
transit than to buses. This also reflects the typical travel behavior in that passengers primarily traverse
short distances by buses, and longer distances by rail. Even so, the general hypothesis of decreasing
transit usage as access distances lengthen still holds true. Other studies regarding access distances to
public transit also agree on this hypothesis, such as Zhao et al. (2003) where the vast majority of access
distances recorded were under 500 meters, and transit use displays a diminishing trend with longer access
distances.

Meanwhile, research has also shown dependence between transit accessibility and service characteristics
such as headways or service areas. Alshalalfah and Shalaby (2007) have showed wider catchment areas
for more frequent services, as shorter headways reduce waiting times and are thus more attractive to
passengers, resulting in users willing to walk longer to reach these services. Modal differences in access
distances are common due to distinctive characteristics between each mode. O’Sullivan and Morrall (1996)
concluded longer access distances to light rail transit than buses and thus a LRT stop could potentially
capture twice the passengers compared to bus stops. This could be attributed to the LRT’s higher running
speeds and its resulting further reach within the same time budget. Also noteworthy is the elasticity
between waiting time and accessibility, in which a study had shown longer access distances as services
operate more frequently and passengers experience shorter waiting times at stops (El-Geneidy et al.,
2014). The same study also pointed out the influence of trip characteristics on access distances, in
which transfers reduce the likelihood for users to walk longer distances due to the additional walking
penalty involved during transfers. Additionally, walking distance during access and egress seems to be
less relevant for longer in-vehicle trips, possibly as an effort to minimize the overall travel time.

A study by Sarker et al. (2020) in the metropolitan region of Munich, Germany also proved these hypothe-
ses true, in that users generally walk longer to rapid transit than to buses or trams, which is consistent
with the findings of O’Sullivan and Morrall (1996) regarding modal differences on access distances, where



6

faster modes tend to have wider catchment areas than slower ones. It also found that stations in less
dense areas (mainly in the suburbs) tend to have wider catchment areas, and thus showing a tendency of
longer access and egress distances as density decreases. Another takeaway from the study is the em-
phasis on shortest walking paths by users, in line with other studies like Alshalalfah and Shalaby (2007),
Ewing and Cervero (2010), and Qin et al. (2023), which found disutilities in access and egress times when
compared to in-vehicle time.

2.1.3 Transit accessibility issues for underprivileged population

Whereas public transport should ideally benefit across all population segments, research has otherwise
proved the reality of inequalities where underprivileged population such as those under poverty are more
likely to endure the impacts than benefits. Keeling (2008) criticized the lack of focus on social equity
aspects in transport planning, as planners emphasized on spatial analysis.

As Litman (2002) defined, transportation equity could be differentiated by how resources are distributed
among the population segments. While horizontal equity (or fairness) is to distribute resources equally
among all users, this does not take individual disadvantages into account. In a horizontally equitable
system, policies do not favor particular user groups over one another as they aim to split resources or
benefits equally regardless of social status. On the other hand, vertical equity (also known as social
justice or social inclusion) concerns the impact distribution, and hence policies are designed to favor
underprivileged users to compensate societal inequalities overall. As Delbosc and Currie (2011) noted,
there is a conflict of perspectives in public transport planning, namely the "mass transit" paradigm versus
the "social transit" paradigm, which stems from whether the quantity of users transported or the user
groups should be prioritized.

Martens et al. (2019) considered three major aspects when developing equity measurement indicators: the
benefits and burdens themselves, the population segments over which the impacts are distributed, and a
clear conception of an equitable distribution. Studies on transport equity have so far included transport
infrastructure and service supply (Ahmed et al., 2008; Delbosc & Currie, 2011), travel costs and subsidies
(El-Geneidy et al., 2016; Pucher, 1981), or access to social or economic opportunities such as employment
(Guzman et al., 2017; Neutens et al., 2010). Policy changes or interventions very often result in changes
in accessibility, which explains why it is commonly used as an indicator during equity analysis. Land and
property values in many European cities, including Munich, are higher in the city center and decrease as
properties are located further away, as a result of high accessibility (especially by transit or walking) to
amenities in the central areas (Brueckner et al., 1999; Kinigadner et al., 2016; Langer et al., 2023).

Socioeconomic characteristics provide valuable insight to the population composition and travel behavior,
and thus the impact of socioeconomic statuses on transport planning cannot be neglected. Stead (2001)
argued that socioeconomic factors such as income, employment status or car ownership often play as
much role as land-use in explaining users’ travel behaviors. Meanwhile, Rosenblatt and DeLuca (2012)
found heavy reliance on public transit among the low-income population, and accessibility by transit was
found to be a decisive factor during relocation. Similarly, Dong (2017) agreed on the transit reliance issue
among underprivileged population, which could become an issue if transit-oriented development (TOD)
results in higher housing costs.

The high land values associated with highly accessible amenities in the city center mean that, in general,
the low-income population is more likely to reside further away from the city center (Brueckner et al., 1999).
This results in longer trips and in turn higher costs (both temporal and monetary) for underprivileged
residents to access opportunities that are centralized in the city. Dixit et al. (2021) also added that the
problem could further be exacerbated by the modal differences in accessibility, which is accounted for by
the cost function input in the Hansen Equation, where accessibility inevitably decreases as the travel cost
rises.
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The importance of equity in public transport, particularly for disadvantaged population groups, has been
frequently discussed in scientific context. An important aspect in this relationship is the notion of social
exclusion, which encompasses a set of social problems associated with societal structure fragmentation,
declining societal participation, and increasing deprivation among particular population segments (Bo-
carejo S. & Oviedo H., 2012). By the definition of Burchardt et al. (1999), residents in a particular society
who cannot or do not participate in the society’s normal activities are defined to be socially excluded.
Madanipour (2015) meanwhile, emphasized on the spatial dimension and defined social exclusion as a
multidimensional process that combines different forms of exclusion in terms of political, social, economic,
and cultural processes, which ultimately result in acute forms of exclusion with spatial manifestation in
particular neighborhoods. Kenyon et al. (2002) included a mobility dimension into social exclusion, which
is defined as the process by which inhabitants are inhibited from executing the above functions in society
as a result of reduced accessibility to opportunities and insufficient mobility.

As Kenyon et al. (2002) noted, mobility-related social exclusion does not necessarily relate to public transit
service coverage, as service or infrastructure might not take disadvantaged population into mind, thus ex-
cluding such potential users out of the system. This relates back to the concept of perceived accessibility
(Lättman et al., 2016; Lättman et al., 2018), since whereas the objective accessibility for the neighborhood
might be adequate on a coverage level, the lack of consideration of underprivileged users means that,
even if the system could theoretically meet the users’ mobility needs, it is unlikely that such users could
use the system to satisfy their daily lives, and by this they could be seen as socially excluded. Moreover,
mobility-related exclusion affect inhabitants both in the neighborhood and individual scales, and was found
to reinforce social exclusion in other dimensions, especially in poor areas where inhabitants already expe-
rience multifaceted social exclusion repercussions, and are often poorly served by public transport, while
barriers to transit use can affect perceived accessibility (Kenyon et al., 2002).

Grengs (2001) identified some common household characteristics which are more likely to depend on
transit, such as low-income, disabled, or migration backgrounds. Likewise, an analysis on travel surveys
in Germany and the USA by Buehler and Pucher (2012) discovered that unemployed and low-income
households are more likely to rely on public transport. Whereas the older population are more likely to
use transit than adults, the study also acknowledged a significantly higher share of transit trips among the
German younger population than other age groups, a phenomenon which is less obvious for their USA
counterparts. These users are less likely to have access to automobiles and therefore rely on public transit
to satisfy their needs and are therefore known as captive riders. Whereas these users show the greatest
demand for transit services, there exist areas with low transit service and yet a high proportion of captive
riders exist. Such areas are defined by Jiao and Dillivan (2013) as transit deserts, given the inadequate
transit supply with respect to the demand from captive riders.

Competition in housing markets due to scarcity is a common phenomenon in metropolitan regions. As
Sterzer (2017) explained, rising real estate prices are commonly observed in the housing markets in
metropolitan regions, and properties with higher accessibility to and by public transport, mostly in the
city center, tend to have higher prices, while those further out in fringes or suburbs tend to be more afford-
able. Moreover, as improvements to public transit network enhance accessibility to the service areas, land
use changes are commonly seen as a consequence. One common phenomenon is the displacement of
underprivileged population through gentrification processes, where increasing land values due to improved
accessibility result in a shift in the affordable demographics.

Bajic (1983) explained that the higher housing costs for new housing developments is due to the reduced
generalized commuting cost through rapid transit in walkable distances, which theoretically would result
in constant budget for housing and commuting. While "new build gentrification" as defined by Davidson
and Lees (2010) is mostly due to land use changes themselves such as during redevelopment, the defi-
nition could be extended to transit services, which induce land use changes and redevelopments in their
service areas due to improved accessibility. Should gentrification occurs, low-income residents in these
new service areas are most likely displaced from the district. While there exists a proportion of such un-
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derprivileged residents that struggle to stay, a tendency of population replacement and displacement still
exhibits (Newman & Wyly, 2006). Meanwhile, a study on the impact towards underprivileged population
along a rapid transit corridor as a result of revised transit-oriented development (TOD) zoning guidelines
has warned of population displacements due to gentrification, when such accessible areas are being re-
developed (Jones & Ley, 2016).

Likewise, Chava and Renne (2022) also compared gentrification cases due to TOD in some North Amer-
ican metropolitan regions. Whereas gentrification was observed in general throughout the network, TOD
neighborhoods are gentrified to a higher extent due to their high walkability and mixed land use. Popula-
tion mix in these areas also altered significantly, suggesting that the gentrification disproportionally affects
communities near transit stops than those that are less accessible to public transit, and as the under-
privileged population is displaced to less accessible areas, they lose reliable access to job and service
opportunities through transit services. By depriving the disadvantaged population their access to transit
services through displacement to less accessible locations, public transportation fails to meet the mobility
needs of the intended population in its service areas. The failure to consider population displacement due
to transit-induced gentrification also means that public transit cannot address the demand of passengers
across different demographics, especially when underprivileged residents are more likely to rely on transit.

Referring back to Sterzer (2017), who conducted a study on mobility behavior with respect to housing
market in the metropolitan region of Munich, it was found that some respondents were displaced from
Munich proper to its suburbs, especially due to high rents in the city, which made properties in the city no
longer affordable for them. This illustrates the effect of population displacement as a result of excessive
demand in the housing market. While residents value adequate accessibility, the objectives of maximizing
accessibility and minimizing rent are often conflicting in a way that accessibility is sacrificed for money.

2.1.4 The issue of circuity in public transit

Circuity within a public transportation system also contributes to transit accessibility and the reach of transit
when compared with automobiles. The established method to compute circuity (detour index) in network
theory is by the following equation (Barthélemy, 2011):

Q(i, j) = dR(i, j)
dE(i, j) (2.4)

where Q(i, j) is the circuity index from node i to node j, dR(i, j) the distance traversed along the network
edges (network mileage), and dE(i, j) denotes the displacement (euclidean distance or as the crow flies).
Smaller circuity values indicate lower detours for a given origin-destination (O-D) pair between the nodes,
and thus imply more time-efficient trips. The node accessibility for node i in an N -node network, ⟨Q(i)⟩,
can then be derived as an average of all the circuity values from the concerned node using the following
equation:

⟨Q(i)⟩ = 1
N − 1

∑
j

Q(i, j) (2.5)

This can be used as a benchmark to assess the ease or efficiency to travel from the specific node (Crucitti
et al., 2006). It is worth noting that Barthélemy (2011) refers to this mean value as the node accessibility.
While this does provide insights on the ease to reach the node, it only considers the network without taking
socioeconomic aspects such as employment opportunities into consideration. Therefore, this is merely an
infrastructure or network-based indicator and plays a minor role on equity itself.

Studies have explained the effects of circuity indices towards transit network efficiency and mode choice,
including mode share differences across O-D pairs due to different circuity values across modes and thus
resulting in varying accessibility levels for locations or users. Transit accessibility depends on both circuity
indices for both road and transit networks due to different extents of right of way exclusivity among modes.
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It was also noted that higher automobile circuity would result in a modal shift to transit due to relatively
better transit accessibility and driving becoming less efficient (Huang & Levinson, 2015).

The circuity and accessibility correlation can be especially obvious with meandering public transport routes
or services, as transit services are often faced with the conflicting objectives to maximize both coverage
and ridership (Walker, 2012b), and the easiest way to maximize coverage is to operate circuitous routes
to serve as many locations as possible in one go. This is most commonly seen in basic lifeline services
in low-demand rural areas where even a medium density service cannot be justified. As Walker (2012a)
explains, circuitous routes and deviations from direct routings contribute to deviations from directness, and
thus higher circuity values, because the route deviates more from the displacement or the shortest pos-
sible path. Such circuitous routes, while providing direct services between intermediate points, eventually
defeat the purpose of providing quick end-to-end service, especially when more direct services operate in
parallel. Even when no parallel direct services run, circuitous transit services would result in considerably
high circuity values compared to automobiles, thus fail to attract passengers. Referring back to Huang and
Levinson (2015), such routes with high circuity values are inefficient and thus weakens accessibility, espe-
cially when travel times lengthen and thus points of interests can no longer be reached within a specified
time budget with a more circuitous route.

Radial transit networks, in which lines radiate outwards from a central location, could pose additional
challenges to accessibility when using transit. The lack of tangential crosstown connections mean that
passengers taking such trips are forced to travel into and out of the city center, often with transfers and
long trip durations (Saidi et al., 2016). Studies like Laporte et al. (1997) have been aware of deficiencies
caused by radial networks and therefore suggested a ring-radial structure with loop lines encircling the
city in addition to radial lines to ensure better connectivity between areas, and such layouts have proven to
enhance network efficiency, which accounts for lower overall circuity. This can be important in metropolitan
regions like Munich where a trend of metropolization and decentralization could be observed, and more
employment opportunities are being relocated out of the city center (Wenner et al., 2020), which would
generate more tangential commuting demand.

Another problem with transit is the necessity to transfer between services. As public transport networks are
designed to balance directness, ridership and coverage, direct one-seat rides for many O-D pairs are often
not possible. Transfers are often perceived negatively by passengers, in some cases even more severe
than access and egress times. Researchers have developed methods to incorporate transfer penalties into
mode choice models as a result of such disutility. Horowitz and Zlosel (1981) decomposed the transfer
disutility into two components: a constant transfer penalty independent of the time taken due to the transfer
itself, and the time taken during the process, which is often multiplied by a conversion factor into in-vehicle
time equivalents when computing generalized travel costs.

The study on transfer penalties by Cascajo et al. (2017) highlighted poorer passenger perceptions as
more transfers are required. In their model, walking and waiting times during transfers are much more
negatively perceived for trips requiring two transfers than those with one transfer, and the penalty constant
also increases with an additional transfer, thus proving the disutility of transfers. The paper also noted
that passengers tend to avoid transfers, even in the ideal situation with zero walking and waiting time,
something that is reflected through the penalty constant, and so it can be deduced that passengers may
prefer a circuitous one-seat ride to a more direct trip requiring a transfer, even if the actual time taken on
both paths are similar.

2.1.5 Circuity issues and transit equity

Dixit et al. (2021) and Karaaslan and Mert Cubukcu (2023) pointed out as services are centered at ar-
eas with more affordable inhabitants, underprivileged users who are more likely to be displaced to the
outlying edges often need to take detours to reach their destinations, and such circuitous journeys often
mean greater trip costs. These case studies proved correlations between socioeconomic statuses and
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transit circuity, indicating low-income users are more likely to take circuitous trips, which implies transit
inefficiencies in low-income neighborhoods. As Galster and Killen (1995) explained that higher income
residents are more likely to access public services, income and thus sociodemographic status could de-
termine accessibility to public transit. Transit network inefficiencies in areas populated by underprivileged
residents are therefore clear signs of supply and planning failure from an equity aspect through depriving
them efficient transit services.

As explained by Pucher and Renne (2003), transit planners often take underprivileged captive riders such
as low income or ethnic minority residents for granted, and thus mostly focus on attracting more affluent
users in the middle class. The diversion of subsidies and resources towards the middle class thus often
resulted in poor, rudimentary services for underprivileged riders. Referring to a public transportation net-
work’s conflicting objectives to maximize both coverage and ridership, trade-offs are inevitable as higher
coverage comes with the expense of high circuity values and thus longer travel times, whereas direct
services that minimize travel time are more likely to attract passengers (Walker, 2007, 2012b).

The radial layout of Munich’s rapid transit network, in which lines radiate from the city center, and is a
result of the monocentric structure of the Munich Metropolitan Region, poses a challenge to accessibility
by transit, in that the lack of robust tangential crosstown connections could cause long trip durations and
distances, and these O-D pairs generally have high circuity values on transit (Saidi et al., 2016). With
commuters being displaced to outer suburbs which are more affordable but less accessible by transit
(Kinigadner et al., 2016; Sterzer, 2017), disadvantaged residents are being forced to take detours as a
result of poor accessibility by transit. Moreover, the problem could be exacerbated by the fact that bus
services in the suburbs are often meandering due to low demand (Walker, 2012b). Commuters residing in
neighborhoods away from radial corridors would need to use these bus services as feeders to rapid transit
in order to commute to the city. The combination of underprivileged population being displaced outwards,
and the circuitous nature of transit services in outer suburbs, could contribute to high circuity values for
trips undertaken by the disadvantaged population.

2.2 Resilience of public transportation networks

2.2.1 Overview of resilience analysis

As an essential component to maintain service during disruptions and provide alternatives to passengers,
network resilience is frequently studied in transportation engineering. Reasonable alternatives should be
considered during the planning process, especially on major routes, to ensure the network can be resilient
enough to cater passenger demand, while taking account into the limited infrastructural and operational
resources such as track capacities, rolling stock or personnel availability. While multiple definitions for
resilience exist, a commonly accepted definition is the "4R" principle developed by the Multidisciplinary
Center for Earthquake Engineering, which summarizes resiliency into four major components: robustness,
redundancy, resourcefulness, and rapidity. While this is mostly used in research on rapid response follow-
ing natural disasters in general, this can be extended to transport network in response to any foreseeable
or unforeseeable disruptions. Resilient systems should be able to reduce failure probabilities, and should
failures occur, systems should reduce consequences and be able to recover quickly (Bruneau et al., 2003).

Assessing redundancies and resilience in public transport networks require considering various elements
both in the sub-networks and the entire network at large. Xu et al. (2015) emphasized diversity of travel
alternatives and spare capacities as indicators, taking capacities of practical alternative routes into con-
sideration. As passengers aim to reach their destinations as soon as possible despite the disruptions, it
is important to consider whether alternative paths are feasible to the user by considering travel time or
costs, and how the detour would prolong the trip. To account for the supply and demand interactions, the
network spare capacity must also be considered to evaluate the effect of demand shifts to and absorption
by other links. Malandri et al. (2017) utilized mode choice models to analyze the impact of disruptions
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to passengers, and showed that merely replacing a disrupted rapid transit line section with emergency
buses, where no alternative services are available, could yield a worse outcome where passengers could
experience more extreme discomfort. This implies nearby, parallel alternative routes contribute to higher
resilience and better user experiences during disruptions.

An important concept related to resilience is the network connectivity, which is the ease to travel freely
within the network, and reflects the density of transfers (Derrible & Kennedy, 2009). Highly connected
networks are characterized by dense transfer opportunities, and thus a wider range of alternative trip
paths. The lack of circumferential links in purely radial networks, including the one in Munich, could
decrease the network connectivity as radial corridors are not connected with each other by rail outside the
city, and could therefore be more prone to disruptions (Saidi et al., 2016). As radial networks are poorly
connected outside the city, they demonstrate a lack of travel alternatives, which could become problematic
during disruptions (Xu et al., 2015). Moreover, capacity in radial networks are ultimately constrained by
the maximum capacity within the city center, such as in the Munich suburban network where the trunk
line is already operating at capacity (Wenner et al., 2020), and thus it would be unlikely for other nearby
corridors to have spare capacity to absorb demand from a disrupted line, even if passengers are willing to
make detours to other corridors. Thus, radial networks are especially vulnerable to disruptions due to the
lack of diversity in travel alternatives and spare capacity. Moreover, Mo et al. (2022) analyzed the impact
of network redundancy on travel behaviors, and showed higher probabilities for passengers to continue
using transit despite disruptions in a more resilient and redundant network. This is particularly true in
multimodal networks, where passengers may switch to other modes to complete their trips. The paper also
acknowledged the importance of user demographics, in that as low-income residents are more likely to use
transit, a highly resilient public transport network is necessary to keep such captive riders mobile during
disruptions. As Derrible and Kennedy (2009) analyzed, well connected networks are more accessible to
passengers, and thus attract more ridership. This is an important observation, in that passengers might
not travel at all during disruptions, and thus maintaining connectivity during disruptions is vital to keep
users mobile.

While modal hierarchies are commonplace in multimodal and intermodal transportation systems and thus
multi-modality is more of a complementary mechanism, these modes could substitute one another should
disruptions occur. Thus, recent studies have acknowledged this interdependent nature and developed
frameworks to assess multi-modal network resilience at large. B. Liu et al. (2023) assessed the network
efficiency and concluded disruptions on one mode could significantly affect other modes as passengers
use alternative modes and paths. Multi-modal networks complicate assessment due to passengers trans-
ferring between multiple modes, and the locations of such transfer nodes, as well as the network structure,
also affect performance and resilience during disruptions. Interdependent relationships between modes
are therefore vital when considering multi-modal systems. A study comparing network resiliencies in Ham-
burg (where the tram network was completely closed) and Munich (where the tram network was largely
closed but then re-expanded), had showed the importance of modal capacity when considering network
redundancy and resilience, and a huge gap between modal capacities could hinder resilience as capacities
cannot be absorbed easily by other modes (Scheurer, 2016). The large gap in capacities between rapid
transit and buses, as in the case of Hamburg, could be problematic when rapid transit lines are closed
as buses need to cope with additional passenger influx from rapid transit, which could be alleviated by
providing medium-capacity alternatives such as trams.

Jin et al. (2014) suggested further integrating bus networks with rapid transit systems on a local scale
to provide higher resilience, including linking nearby stations on other services. While running buses
or trams parallel to rapid transit might not be cost-effective on its own, when combined with services
linking to nearby rail lines, network resilience could be enhanced by providing more travel alternatives
to passengers, especially during disruptions. As shared mobility gains traction, there has also been a
study on bike sharing to supplement public transit and showed the potential of such systems to enhance
resilience of the entire network by diverting the transit demand away from fixed-route transit towards shared
micromobility alternatives during disruptions (Cheng et al., 2022). While research on shared micromobility
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on transit resilience is still in its infancy, it has proved that bike or scooter sharing systems could function
as alternative bridging modes to walking or motorized transport.

2.2.2 Role of network resilience in accessibility analysis

There has been ongoing research regarding the role of network resilience on public transit accessibility.
During service disruptions, passengers need to take detours which result in longer trip durations and
additional transfers, and the diversion of travel demand to other available paths often result in severe
overcrowding. As a result from these effects, increased travel costs and decreased travel utility account
for the deterioration of accessibility during disruptions (Chen et al., 2007).

As Sohn (2006) explained, distance or cost-based accessibility measures, such as the formula by Hansen
(1959) do not necessarily account for the significance of individual links. In the context of network re-
silience, it is crucial to consider the link significance when analyzing the deterioration in accessibility dur-
ing disruptions, as heavily-demanded links are more vulnerable to such deteriorations. Chang (2003) and
Chang and Nojima (2001) developed indicators to measure the accessibility performance after an earth-
quake using accessibility ratios, a measurement which compares accessibility before and after the dis-
ruption caused by the earthquake. Meanwhile, Sohn (2006) approached the accessibility decay problem
differently, using a difference rather than ratio to account for this. While this method simplifies calculations,
it is used to analyze accessibility changes on a link scale, and cannot be easily adopted to the network
scale. Moreover, Kim and Song (2018) developed an integrated accessibility and reliability measurement
indicator to inquire the extent of network reliability and accessibility on local or global scales, and could
infer possible underserved or unreliable locations.
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3 Methodology

This thesis will utilize a straightforward methodology to develop objective indicators to measure accessi-
bility decay and its impact towards disadvantaged population segments. Figure 3.1 depicts the research
process during this thesis.

The methodology of this thesis first involves geospatial analysis where the reference point for each munic-
ipality is determined. Accessibility decay indices ARi for municipalities are then computed based on travel
time matrices, and are then weighted by the percentage of each population group considered to obtain
the weighted accessibility decay index Ii,k. After that, a linear regression model is generated to test the
significance of population compositions on ARi.

3.1 Accessibility decay analysis

3.1.1 Geospatial analysis

Geospatial data for the study area, including the administrative boundaries to the municipal level, and the
public transit lines within the study area, were obtained using OpenStreetMap data (OpenStreetMap con-
tributors, 2023) through the QuickOSM plugin in QGIS, an open-source geographical information system.

The population centroid for each municipality, which indicates the center of the municipality weighted
by population distribution, is computed using GIS and used as the reference point for the municipality.
Compared to the geometric centroid without weighting, a population-weighted centroid takes population
distribution and density into account, which in turn reflects the relative demand concentration within each
municipality. This is important as population is concentrated at settlements built along the transport infras-
tructure (roads or railways) rather than equally spread across the municipality.

Despite the use of population centroids over geometric centroids, there exist cases where settlements are
dispersed and thus results in a population centroid out of nowhere without road connection. Therefore, a
correction step is required to snap the centroids to the nearest road such that the point could be accessible
by pedestrians. This step facilitates accessibility analysis using R5R, which considers all trip aspects from
access to egress, and not only the in-vehicle time.

3.1.2 Accessibility decay index

To answer the first research question on developing objective indicators between disadvantaged users and
network resilience, an accessibility indicator first needs to be developed. The calculations for accessibility
follows the gravity model using the Hansen Equation (Geurs & van Wee, 2004; Hansen, 1959; Ingram,
1971). Moreover, as per the definition of Kim and Song (2018), accessibility in the context of transit
networks refers to the ease to complete a trip using the network. Therefore, O-D passenger flows using
transit services are needed to account for demand variations.

To obtain correct travel times, R5R requires a GTFS data set which contains the transit services and their
schedules. The General Transit Feed Specification (GTFS) is an established data exchange format for
scheduled transit operations through incorporating pre-planned schedules into the data set. This format
has been applied for transit routing and accessibility analysis (Wessel & Farber, 2019). The O-D travel
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Figure 3.1 Flowchart for the research process
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times are then calculated using R5R (Pereira et al., 2021) in the statistical programming language R and
based on the Rapid Realistic Routing on Real-world and Reimagined networks (R5) routing algorithm,
which is developed for and mainly used in public transit network analysis (Conway et al., 2018).

Due to the specification of a departure time in R5R, waiting time is included in the travel time matrix. This
component, however, should not be considered as the waiting time depends on departure time, while the
in-vehicle, access, transfer, and egress times are all independent of the departure time. Therefore, before
using the travel time as costs in Equation 3.1, waiting times must be subtracted from the total trip duration.

Accessibility deteriorates as services are disrupted and links or nodes become unusable. Thus, an im-
portant indicator in this study is the accessibility decay index which describes the extent accessibility is
deteriorated. The methodology for developing the accessibility decay index in this paper mainly follows
the one developed by Chang (2003), which was used to analyze accessibility performances on the railway
network in Kobe, Japan, following infrastructural damages caused by an earthquake in 1995.

The standardized indicator of decay index is derived from accessibility ratios, which are obtained using the
following formula:

ARi =
∑

j wijcij,disruption∑
j wijcij,normal

(3.1)

where cij is the travel time cost along the quickest path, and wij is the weight of destination j with respect
to origin i. Note that while ARi is a nodal measurement, these values can be averaged to obtain a global
value for a particular area or the entire network. For an area with N nodes, the areal average accessibility
ARglobal could then be calculated using the mean value of all accessibility values using the following
equation:

ARglobal = 1
N

∑
ARi (3.2)

The accessibility ratio ARi denotes the extent of reduction in accessibility during disruptions. ARi takes
a minimum value of 1 which denotes transit service remains intact, and increases as accessibility deterio-
rates.

3.1.3 Accounting for underprivileged population groups

As Martens et al. (2019) noted, population segments over which the impacts are distributed must be con-
sidered when developing indicators to measure transport equity. Hence, whereas variables from the supply
and demand aspects like travel costs and O-D demand shall be considered (El-Geneidy et al., 2014; Guz-
man et al., 2017; Neutens et al., 2010; Pucher, 1981), the effect of varying extents of impact distribution
towards different population segments also needs to be considered. To capture the impact of low net-
work resilience towards underprivileged population segments, a weighted decay index I is proposed as
a measurement indicator. This indicator could be used on both local and global scales depending on the
objective of measurement. The weighted accessibility decay index I for a particular population group k for
a zone i could then be computed using the following equation:

Ii,k = ARiPi,k × 100 (3.3)

where Pi,k is the proportion of underprivileged population group k in node i. As greater ARi values imply
poorer transit service, higher Ii,k values denote higher vulnerability and in turn a lower resilience towards
disruptions due to poorer services for the population group k, while 100 is a multiplication factor to account
for percentages in population composition, as the population proportions are multiplied as decimal values.
As this study aims to investigate which population segments are more vulnerable to accessibility decay
in case of transit service disruptions, the indices are aggregated on a spatial level and compared by the
corresponding population group at this step, which can be done using the following formula:
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Ik,global = 1
N

∑
i

Ii,k (3.4)

3.2 Correlation analysis

3.2.1 Linear regression analysis

To further examine the correlation between network resilience and equity, ARi is tested against the pro-
portions of the focus underprivileged population segments by constructing a multivariate linear regression
model using R. The regression equation is shown below in Equation 3.5, and the variables used in the
model are summarized in Table 3.1:

ARi = a0 + aradialxradial +
∑

k

akxk (3.5)

Variable Explanation
ARi Accessibility ratio for municipality i
am Coefficients of variable m
xk Proportion of underprivileged population group k, standardized

xradial 1 if served by radial lines, 0 if else
Table 3.1 Coefficients used in linear regression model for computing accessibility deterioration factor

The inclusion of xradial, the categorical variable that determines whether the municipality is served by a
radial line from the city, is needed, as these municipalities themselves have the advantage of being more
accessible due to the direct connection to the rapid transit network.

However, before generating a linear regression model, the population composition percentages xk, which
are used as the inputs to the model, must first be normalized to minimize the influence of different ranges
across the population groups. Normalization is done such that the range of the data set is between 0 and
1. This is done through the following formula:

Xi = x − min(x)
max(x) − min(x) (3.6)

By generating a linear regression model, the coefficients for each independent variable could be obtained,
and thus the extent of how each population segment affects network resilience could be known. Thus, the
second research question of who are more likely to be affected could be answered.

3.2.2 Hypothesis testing

Literature has found that transit accessibility for underprivileged population segments is lower than for
more affluent residents, such as due to property values. These users are more likely to reside towards the
outskirts of the metropolitan region, which are less accessible. By virtue of being less accessible, it is also
understandable that there are limited travel alternatives, and thus during disruptions, accessibility would
be further hindered by the low resilience and higher vulnerability towards disruptions.

Therefore, hypothesis testing will be performed by proposing the following null hypothesis H0:

H0: Composition of all population groups are not significant in affecting network resilience through the ARi

value.
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The corresponding alternative hypothesis H1 is then:

H1: Composition of at least one population group affects the transit network resilience through the ARi

value.

The purpose of this hypothesis test is to test whether population compositions would affect the network
resilience of a municipality. Statistically significant predictors of population compositions could indicate
the corresponding population groups are more vulnerable to transit service disruptions, and thus further
validate the second research question.
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4 Case study

4.1 The study area

The Munich Metropolitan Region is one of the largest metropolitan regions in Germany, spanning over
25,000 square kilometers and is home to about 6 million residents. While the metropolitan region itself and
thus Munich’s wider commuter belt reach as far as the regional centers of Augsburg and Ingolstadt, and
the scenic counties of Garmisch-Partenkirchen and Traunstein, this study will focus on the inner suburbs
as they tend to exhibit higher commuting demand to Munich (Guth et al., 2011), especially in the case to
the north and west where the outer suburbs double up as suburbs of Ingolstadt and Augsburg, respectively
alongside Munich.

The inner suburban area in this thesis is defined as the service area of the Munich S-Bahn (suburban
rail). This area, as shown in Figure 4.1, encompasses the city of Munich and the counties immediately
surrounding it, i.e. the counties of Munich, Dachau, Freising, Erding, Ebersberg, Bad Tölz-Wolfratshausen,
Starnberg, and Fürstenfeldbruck. Also included in the inner suburban area are the municipalities of Gel-
tendorf (Landsberg am Lech county), Holzkirchen, Otterfing, and Valley (Miesbach county), which are the
outer edges of the S-Bahn network.

4.1.1 Public transport network in the Munich inner suburban area

Whereas an extensive public transportation system with rapid transit, trams, and buses exist within the city
of Munich itself, the transit network in the Munich suburban area exhibits a monocentric radial structure
centered at the city of Munich with only a handful of tangential connections, which reflects the largely
monocentric structure of the Munich Metropolitan Region. With a daily ridership of up to 0.95 million, the
Munich S-Bahn, Munich’s suburban rail system, is considered to be the backbone of the inner suburban
traffic connecting the city with its suburbs. Despite the radial alignment of the rail network, there has
been improvements on providing tangential crosstown connections through express bus routes (colored
blue in Figure 4.1) in the immediate suburban areas encircling the city of Munich, thus offering attractive
alternatives to S-Bahn connections, which require passengers traveling all the way into the city center
in order to transfer to other branches. These express bus services often connect with the S-Bahn or
subway at transit nodes besides providing regular tangential connections, thus further enhancing regional
connections.

Within the suburbs, local and regional buses coordinated by the Munich Transport and Tariff Association
(MVV) act as feeders between local communities and S-Bahn and express bus services. These local
bus services, especially those operating in sparsely populated areas, often operate at lower frequencies
(often every one or two hours), or even only a handful of departures per day. While such low supply levels
might reflect the low demand in their service areas as a result of low population densities, the drawback
is that long headways negatively impact transit accessibility in the temporal aspect, as the buses are only
available during pre-determined times, and transit riders therefore must schedule their activities around the
bus departures. As Geurs and Ritsema van Eck (2001) explained, the temporal component of accessibility
involves both the availability of the opportunities during different times, as well as the times when users
can access the opportunities. In this case, the buses are not available all the time, and thus despite
other opportunities such as employment in the city could theoretically be accessed throughout the day,
passengers in the underserved areas are ultimately bounded by the bus schedules and such the times
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Figure 4.1 Map of the Munich inner suburban area and the major public transit lines (own work, using data from
OpenStreetMap contributors (2023))
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to access other opportunities are limited. While S-Bahn and tangential express buses operate regularly
throughout the day (normally every 20 minutes), which allow passengers to basically turn up and go without
excessive waiting, the sparse service on the local level eventually hinders the users’ temporal accessibility
when the extra transfer and limited number of trips must be considered in the trip chain.

4.1.2 Target population segments

Section 2.1.3 summarized some demographics that are more likely to rely on public transit, including
youth, elderly, low-income, disabled or migration backgrounds (Buehler & Pucher, 2012; Grengs, 2001).
The Mobilität in Deutschland (MiD), the German nationwide travel survey which was last conducted in
2017, also provided some valuable insights on transit-dependent population segments in Germany. The
young population such as school pupils and university students dominates transit usage in Munich and its
suburban area. However, as reported by the MVV (2020), whereas high-income residents use less transit,
there were no significant differences in transit usage between low-income and middle-class populations.

Considering the above transit-dependent user groups and data availability, this study would include the
following population segments into analysis: youth (age 18 to 30), elderly (age 65 or above), low-income,
severely disabled, and unemployed. The population and demographic data for the study area at the
municipality (Gemeinde) level was obtained from the Statistical Office of Bavaria (Bayerisches Landesamt
für Statistik, 2019). As the latest population data regarding income is in 2019, all relevant population
data are accurate as of 2019 to synchronize the reference timeframe during analysis. Table 4.2 gives a
summary of demographic composition in each county, while Figures 4.2 to 4.6 depicts the municipalities
where such population groups are more concentrated.

Regarding the low-income population, the net personal income is used to determine whether a person
falls into the low-income category, and this upper threshold is 60 percent the average personal net income
(Brenke, 2018). Based on the average income provided by Statista (2023), the average personal net
income in 2019 was about 23,700 euros, which means the upper threshold for low income would be 14,220
euros. Hence, the low-income population encompasses those whose net income were lower than 15,000
euros to account for stratification. Note that low-income residents are compared against the total number
of taxpayers, as non-working population essentially receive zero income and so if they are included, the
indicators might become biased.

Population segment Mean St. Dev. Min Max

Unemployed (%) 1.0 0.2 0.3 2.1
Disabled (%) 6.7 1.3 4.5 14.8
Low-income (%) 20.3 2.8 15.9 25.7
Older (%) 18.6 3.2 10.9 27.8
Younger (%) 13.4 1.7 10.2 24.8

Table 4.1 Statistical indicators for percentages of population compositions (N=166)

There are some interesting observations from Figures 4.2 to 4.6. Municipalities with S-Bahn connections
in general have higher concentrations of low-income population than those without direct connections to
Munich. These municipalities also have higher concentrations of unemployed population. Disabled people
are more likely to reside closer to Munich than further out. The counties of Freising and Erding exhibit
a higher concentration of young population than others, while Fürstenfeldbruck, Starnberg and Bad Tölz-
Wolfratshausen counties towards the south and west have higher concentrations of older residents.
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Figure 4.2 Distribution of low-income population density (in percentages) of municipalities in the study area
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Figure 4.3 Distribution of unemployed population density (in percentages) of municipalities in the study area
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Figure 4.4 Distribution of disabled population density (in percentages) of municipalities in the study area
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Figure 4.5 Distribution of younger population density (in percentages) of municipalities in the study area
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Figure 4.6 Distribution of older population density (in percentages) of municipalities in the study area
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County Total Population Low-income Unemployed Disabled Younger Older
City of Munich 1,471,508 21.91% 2.08% 7.64% 17.16% 17.46%

Bad Tölz-Wolfratshausen 127,917 21.99% 1.15% 7.66% 13.07% 21.53%
Dachau 154,899 20.29% 1.06% 7.66% 13.64% 18.64%

Ebersberg 143,649 20.06% 1.01% 7.01% 13.3% 18.69%
Erding 138,182 19.89% 1.08% 7.09% 14.09% 17.15%

Freising 180,007 22.18% 1.24% 6.61% 16.16% 15.97%
Fürstenfeldbruck 219,311 20.51% 1.36% 7.93% 12.86% 21.67%

München (Landkreis) 350,473 20.25% 1.18% 7.17% 13.59% 20.49%
Starnberg 136,667 21.00% 1.17% 6.82% 12.08% 23.05%

Outlying municipalities1 30,442 20.21% 1.07% 6.33% 13.38% 18.32%
Total 2,953,055 21.34% 1.62% 7.44% 15.39% 18.58%

1 Outlying municipalities include Geltendorf, Holzkirchen, Otterfing, and Valley, which are served by the S-
Bahn but not in the above counties.

Table 4.2 Total population and percentages of underprivileged population segments in the inner suburban area by county

4.2 Application of the methodology

4.2.1 Categorization of municipalities

Due to the radial layout of Munich’s rapid transit network, accessibility of municipalities, especially towards
downtown Munich, could vary significantly depending on whether the location is directly served by rapid
transit. Passengers from municipalities which do not have access to these services are often forced to take
infrequent local buses to nearby areas as a feeder to the rapid transit network. Therefore, a distinction is
made between municipalities which are served by rapid transit and otherwise to capture the effect of high
accessibility as a result of direct service towards the city.

Figure 4.7 shows the distribution of rapid transit service areas, which generally follows the S-Bahn lines in a
radial form. Out of the 179 suburban municipalities, rapid transit reaches 74 (41.34%) of them. This means
over half of the municipalities are not served by rapid transit and thus less accessible. Note that while there
exist municipalities beyond the S-Bahn area that are served by regional rail services out of Munich main
station, with the exception of Moosburg a.d. Isar (Freising county) which has a near half-hourly service
throughout the day, these regional services often run once every hour or less during the day, and the
integration of such services into the MVV varies by route. Therefore, these outer municipalities are not
considered to be served by radial lines in this study.

County Municipalities served by rapid transit Municipalities total
Bad Tölz-Wolfratshausen 2 21

Dachau 10 17
Ebersberg 7 21

Erding 3 26
Freising 5 24

Fürstenfeldbruck 11 23
München 22 29
Starnberg 10 14

Total 70 175
Table 4.3 Number of suburban municipalities served by rapid transit in each county (The four outlying municipalities
in Miesbach and Landsberg counties, and the City of Munich are excluded in the table)
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Table 4.3 and Figure 4.7 both show the coverage of rapid transit in the Munich suburban area. The 2017
MiD survey (MVV, 2020) reported that residents in Fürstenfeldbruck, München, and Starnberg counties
generally perceive public transit services positively, while other counties have a more negative bias towards
transit. This could be reflected from the situation where out of the 74 suburban municipalities served by
rapid transit, over half of them (43) are located in the three well-received counties. Rapid transit provides
regular frequent service between the suburbs and downtown Munich, which is a determinant factor when
considering temporal accessibility, and thus the existence of such connections could also affect passenger
perceptions towards the transit system. This distinction is also reflected in Equation 3.5 for the regression
analysis, where a dummy variable regarding rapid transit service is included.

4.2.2 Geospatial analysis

The computation of population centroids for municipalities requires accurate population distribution. The
2011 German national census data (Statistische Ämter des Bundes und der Länder, 2013), which is
aggregated to 100m×100m grid cells, was used for this purpose.

4.2.3 Calculation of accessibility and decay index

To calculate accessibility ratios using Equation 3.1, destinations are weighted using O-D travel demand.
The travel demand matrix is obtained using the 2011 synthetic travel demand data set for the Munich
Metropolitan Region by Moeckel et al. (2020). This data set was calibrated against results from the MiD
survey and traffic counts, and thus, whereas errors might occur at the coordinate level, this data set could
more or less accurately reflect the actual demand on the municipality level in general.

Travel time costs are computed using the Germany-wide GTFS data set provided by DELFI. The advantage
of using GTFS data is that planned construction works and their resulting timetable changes are reflected
into the feed. This means R5R could extract the appropriate trips and calculate the shortest path for each
selected scenario without first editing the GTFS feed manually.

However, despite allowing a travel time budget of 4 hours (240 minutes), trip durations for some O-D
combinations could not be calculated, possibly due to long trip durations, a lack of adequate public transit
services in the concerned municipalities, or internal bugs within R5R. For the sake of this study, these O-D
pairs are assumed to have an infinite travel time cost to account for the low ease to complete such trips by
public transport.

To compare the accessibility indices during disruptions, the normal service scenario C0, which was on a
typical November weekend, was compared against a construction work scenario C1. This happened on
Saturday, 21 October 2023. The S-Bahn trunk line between Pasing and Ostbahnhof is completely closed
and replaced by buses throughout the weekend for construction work, which leads to trains rerouting or
short-turning. This means passengers cannot use the S-Bahn to access the city center directly, and due to
the concentration of transfer opportunities with other modes at the city center, accessibility is further hin-
dered. For both scenarios, accessibility ratios ARi are computed on the municipality and network extents
to assess the network performance under these disruption scenarios, and the corresponding population-
weighted decay index Ii,k could then be obtained using population composition data.

By this step in which values of Ii,k have been obtained, initial insights and conclusions regarding population
segments more vulnerable to transit service disruptions in each area could be drawn. Nonetheless, the
linear regression analysis is performed to infer the effect towards ARi by each population segment. Models
will be developed for each of the counties and the entire S-Bahn service area to analyze which population
segments are more vulnerable to transit disruptions and the lack of resilience in the network.
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Figure 4.7 Map of the Munich inner suburban area, highlighting the rapid transit service area (own work, using data
from OpenStreetMap contributors (2023))
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5 Results

5.1 Accessibility decay analysis

Out of the 180 municipalities within the Munich inner suburban area, accessibility ratios ARi were obtained
for 145 municipalities using Equation 3.1. It was unable to calculate the other 14 municipalities due to
them being excluded from the synthetic travel demand, and calculations for ARi for the remaining 21
municipalities failed as R5R was unable to compute O-D travel time costs for these municipalities.

Although ARi should be greater than 1 due to the longer trip duration and detour, the shortest path
algorithm used by R5R has resulted in some ARi values lower than 1. Table 5.1 shows the range of ARi

which clearly shows about a quarter of municipalities have ARi values lower than 1.

Statistical indicator ARi

Minimum 0.84
1st-quartile 1.00

Median 1.00
Mean 1.02

3rd-quartile 1.04
Maximum 1.30

Standard deviation 0.05
ARglobal 1.02

Table 5.1 Statistical indicators for ARi and global AR value

As shown in Table 5.1, despite having a monocentric radial public transport network and a clear modal
hierarchy, municipalities in the Munich inner suburban area experience accessibility decay to a low extent,
which suggests a high robustness in the transit network. Moreover, Figure 5.1 depicts the distribution of
ARi values over the study area, and has shown that the existence of S-Bahn services does not correlate
with the value of ARi. In fact, municipalities along S-Bahn corridors often perform worse in ARi values
when compared to those without without S-Bahn connections. This could be due to the S-Bahn being
directly connected to central Munich, and thus when the trunk line is blocked, accessibility could deteriorate
severely. This could be reflected when the ARglobal values are computed for municipalities with radial rail
connections and those without separately. Table 5.2 shows the difference in ARglobal values depending on
the existence of radial connections.

Municipality characteristics ARglobal

With radial line connection 1.0175
Without radial line connection 1.0170

Table 5.2 ARglobal values for municipalities with and without radial rail line connections
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Figure 5.1 Map of accessibility ratio ARi distribution over the study area
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Figure 5.2 Map of weighted accessibility decay index Ii distribution over the study area with respect to the unem-
ployed population
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Figure 5.3 Map of weighted accessibility decay index Ii distribution over the study area with respect to the disabled
population
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Figure 5.4 Map of weighted accessibility decay index Ii distribution over the study area with respect to the low-
income population
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Figure 5.5 Map of weighted accessibility decay index Ii distribution over the study area with respect to the older
population
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Figure 5.6 Map of weighted accessibility decay index Ii distribution over the study area with respect to the young
population
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5.2 Accounting for target population segments

Weighted accessibility decay indices Ii,k for each municipality and target population group were obtained
using Equation 3.3. The ranges, mean, and standard deviation values of the indices for each population
segment are summarized in Table 5.3:

Population group Minimum Mean Maximum Standard deviation
Unemployed 0.32 1.08 2.21 0.27

Disabled 4.56 6.94 14.75 1.35
Low-income 16.28 20.86 27.26 1.96

Older 11.28 19.18 28.92 3.49
Younger 9.84 13.75 25.98 1.92

Table 5.3 Ranges, mean and standard deviation values for weighted accessibility decay indices Ii,k

As seen from Tables 4.2 and 5.3, the higher proportions of old population and low-income taxpayers
influence the higher Ii,k values for these groups, while the young population also plays a prominent role,
albeit less prominent than the previously mentioned groups. While the mean values could provide a rough
insight on the vulnerability extent the population segments are subject to transit service disruptions, it must
be noted that these values are computed based on population composition, and thus while this holds true
in the Munich S-Bahn area, the same could not be claimed as true for any study areas.

Regarding the distribution of Ii,k values over the study area, Figures 5.2 to 5.6 show the distribution of
Ii,k values across the study area. These distributions depict reverse situations from the case of ARi

analysis. The City of Munich performed much worse in terms of Ii in comparison to ARi due to the higher
proportions of the underprivileged population residing within the City of Munich when compared to the
suburban municipalities.

5.3 Regression analysis

To examine the effect of population compositions towards public transport service resilience, a multivariate
linear regression model was generated using R according to Equation 3.5.

5.3.1 Multi-colinearity check

Figure 5.7 shows the correlation plot between predictors. It could be observed that the predictor of older
population composition is more prone to multi-colinearity as it has correlation values of 0.47 against the
categorical variable of radial lines and the disabled population composition predictor. However, from Table
5.4, the variance influence factor (VIF) values for all predictors do not exceed the threshold of 2.5, which
means multi-colinearity is not a serious issue in this model.

Radial line Unemployed Disabled Low-income Older Younger

1.507 1.377 1.546 1.306 2.147 1.490
Table 5.4 VIF values for the predictors

5.3.2 Summary of model

From Table 5.5, the coefficients for compositions of unemployed and disabled populations are positive,
with the one for unemployed population being more positive. This implies higher concentrations of these
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Figure 5.7 Correlation plot between predictors

two population groups would negatively affect the network resilience as they are more vulnerable to transit
service disruptions. For low-income, older and younger population groups, the slightly negative coefficients
mean that they are less vulnerable to transit service disruptions, as increases in population composition of
these groups decrease the value of ARi. The positive coefficient for the radial line predictor also proves
that a direct connection to central Munich would make the municipality more vulnerable to disruptions.

From the p-values, it could be observed that the disabled and younger population groups are statistically
insignificant due to their higher p-values. The p-value for unemployed workers is also less significant than
the remaining two groups, even though it falls under the 0.01 significance threshold. This means that older
and low-income population influence the model more.

5.3.3 Hypothesis testing

As stated in Table 5.5, the compositions of unemployed, low-income and older populations statistically
significantly influence the value of AR, especially in the case of unemployed residents where higher per-
centages of such residents would increase the value of ARi. While the coefficients for the standardized
population compositions are low, the results still run contrary to the null hypothesis H0, in that all population
compositions are not significant in affecting network resilience through the AR value. Hence, the thesis
rejects H0 and accepts the alternative hypothesis H1.
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Dependent variable:

ARi

Radial line 0.023∗∗

p = 0.026

Unemployed 3.365∗

p = 0.091

Disabled 0.104
p = 0.798

Low-income −0.570∗∗

p = 0.032

Older −0.438∗∗

p = 0.019

Younger −0.429
p = 0.141

Constant 1.226∗∗∗

p < 0.001

Observations 145
R2 0.119
Adjusted R2 0.081
Residual Std. Error 0.050 (df = 138)
F Statistic 3.105∗∗∗ (df = 6; 138)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 5.5 Results of linear regression model
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6 Discussions

6.1 Discussions on the methodology

6.1.1 Accessibility decay indicators

The methodology of this paper is based on the one used by Chang (2003) and Chang and Nojima (2001),
namely on using an accessibility ratio to measure the decay in accessibility. This ultimately traces back
to the concept of circuity as defined in Equation 2.4 by Barthélemy (2011), in that the indicators are
measuring the ratios between the shortest path and the actual path taken. As disruptions or construction
works occur, it would be necessary to take detours to complete the trip compared to the optimal path during
normal service. This creates an opportunity to analyze the change in accessibility. As Crucitti et al. (2006)
defined in Equation 2.5, averaging circuity values for a node could generate a network-based accessibility
index for the concerned node that reflects the relative ease to access the node. The ARi could therefore
be seen as a variation of this iteration.

Referring back to the fundamental definition of accessibility in Equation 2.1 by Hansen (1959), accessibility
could be defined as the potential of interaction opportunities while considering spatial separation through
travel cost. The change or decay in accessibility as a result of circuitous trips, either due to the transit
network layout itself when compared to automobile trips, or because of disruptions and resulting line
closures that force passengers to use alternative paths to complete their trips, is a result from the fact that
less destinations could be accessed within the same cost budget (Huang & Levinson, 2015).

The demand-weighted accessibility ratio ARi, based on the one developed by Chang (2003) and Chang
and Nojima (2001), reflects the detour factor for each node as accessibility decreases through the closure
or destruction of network links. Comparing to the mentioned studies, which measures the accessibility
performance simply on an infrastructure basis and takes distances as travel costs, this study incorporates
more realistic aspects of public transit trips, such as fixed-route networks and transfers through the use of
GTFS data and computations using the R5 algorithm. It is also calculated based on travel time, one of the
major cost determinants for public transit users. This allows transit accessibility decay to be reflected more
realistically from the perspective of riders. However, as mentioned further below, this approach should
be used with caution due to shortcomings of GTFS data, especially as conventional GTFS feeds are
static feeds that contain scheduled data and do not reflect real-time operational deviations or unplanned
disruptions.

6.1.2 Accounting for underprivileged or transit-dependent population segments

There has been a gap in research in the impact on underprivileged or transit-dependent population due to
the lack of network resilience. This thesis therefore developed a population-weighted accessibility decay
index Ii,k based on ARi in order to take such population segments into consideration. As this is basically
a weighted ARi by the proportion of each population segment considered, it can consider the impacts
towards different population groups separately, thus cater the requirements of developing a transport equity
indicator as mentioned by Martens et al. (2019).

As Kenyon et al. (2002) explained, there exist various factors that result in mobility-related social exclusion,
itself being the result of reduced accessibility or insufficient mobility to undertake social functions. High Ii,k

and ARi values could be interpreted as a potential warning indicator to social exclusion for transit-reliant
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passengers since accessibility is severely deteriorated during disruptions, especially if rapid transit acts as
a lifeline to social activities for the users. Whereas neither ARi nor Ii,k captures the perceived accessibility
of users directly, especially because perceived accessibility involves more subjective assessments such
as satisfaction and comfort (Lättman et al., 2016; Lättman et al., 2018), these values could still indirectly
reflect whether users would travel during disruptions, especially if the indicator values suggest high circuity
ratios and thus imply more transfers, which can be perceived as a disutility (Cascajo et al., 2017) and thus
inhibit residents from partaking in social functions due to the impedance to travel should the circuity and the
resulting travel disutility increases. As Kenyon et al. (2002) warned, mobility-related social exclusion, such
as due to the inability to access public transit, often reinforces social exclusion in other dimensions such
as economic, political, environmental, or cultural aspects. This ultimately results in increasing deprivation
among underprivileged social groups and the fragmentation of social structures (Bocarejo S. & Oviedo H.,
2012).

Whereas this thesis used a generalized approach which assessed accessibility decay between munici-
palities, the same methodology could be extended to cater for the needs of specific demographics, such
as including points of interests specific to the population groups concerned like hospitals, care homes, or
universities as population group-specific destinations to further investigate the impact towards the popu-
lation segments during transit service disruptions. Recalling the theories by Delbosc and Currie (2011)
and Litman (2002), public transport could operate under either the "mass transit" or the "social transit"
paradigms depending on which equity approach (horizontal or vertical) is considered. Vertically equitable
transportation systems should aim to achieve social justice by considering impact distribution among user
segments thoroughly, such as those incurred towards passengers during disruptions. As a rule of thumb,
when designing policies to achieve social equity, resources should be distributed such that underprivileged
or disadvantaged users are appropriately compensated when inequitable situations occur, and not simply
distributing the resources equally across all demographics as in a horizontal equitable system. Therefore,
under the "social transit" paradigm, it is of utmost priority to consider how transit-reliant passengers are
affected during disruptions when planning contingency procedures, and therefore allocate resources to
better compensate these users.

The structure of ARi as the ratios of sums of weighted travel costs adds a layer of versatility to calculations.
While this study takes ARi as the accessibility ratio to all municipalities within the study area, each analysis
zone (such as a county, municipality or city borough) may have several ARi values to suit the research
demand when multiple sets of points of interest are studied. This can be achieved simply by manipulating
the set of O-D pairs that are considered in the ARi. While not being tested in this thesis, the potential
of tailoring ARi values to the needs of different population segments could help planners to comprehend
how accessibility would be impacted onto different user groups.

6.2 Discussions on the results

6.2.1 Accessibility decay analysis

The distribution of ARi values over the study area in Figure 5.1 shows an interesting pattern. Municipalities
along S-Bahn corridors often perform worse than those away from S-Bahn corridors, having greater ARi

values in this case. A possible explanation for this phenomenon is the direct connection to central Munich
with the S-Bahn for those municipalities, and as Munich’s public transit network is of a radial structure with a
strong hierarchy, the disruption of an important link such as the S-Bahn would cause network connectivity
to severely deteriorate by disconnecting network segments from the rest. The radial network structure
in Munich poses additional challenges where there are no circumferential or tangential rail connections
between radial corridors, which means feasible alternative routes are often unavailable. Using buses to
connect to other lines would prolong the trip excessively and could render the alternative path infeasible. As
Xu et al. (2015) explained, a lack of travel alternatives as a result of poor connectivity could be problematic
during disruptions, as this fails to meet the travel alternative diversity criteria on having high resilience on
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a public transit network. Recommendations to overcome the topological disadvantages of radial networks,
such as including loop lines that serve as tangential connections outside the core (Laporte et al., 1997;
Saidi et al., 2016), also double as measures to improve network resilience by providing users a feasible
alternative route to bypass the blocked paths.

Another effect on accessibility is the necessity to take detours, which involves prolonged trip durations
and additional transfers, and thus contribute to a drop in travel utility. Referring to Cascajo et al. (2017),
transfers are poorly perceived by passengers, even to a point where circuitous one-seat rides are preferred
over direct trips with transfers. With the disruption case in mind, not only do passengers need to undergo
extra transfers, but it is very often the case where the overall trip duration is lengthened. Ultimately, the
increased travel duration, number of transfers, as well as other factors such as decreased comfort due to
insufficient capacity on the alternative routes, all contribute to the disutility of transit users and in turn lower
accessibility values during disruptions.

Given a strong hierarchical structure in Munich’s suburban transit network, it is of no doubt that a direct
S-Bahn connection plays a prominent role on whether a municipality is highly accessible to central Munich
and by extension locations along other rail corridors. However, ARglobal values for these locations have
seen that such structure is not resilient enough, and they could even underperform municipalities without
S-Bahn connections. While passengers in municipalities without S-Bahn connections need to use buses
as feeder services, there also exist municipalities where local or express bus services connect multiple rail
corridors and thus contribute to the higher resilience through lower ARi values.

6.2.2 Accounting for underprivileged population

Comparing Figure 5.1 with Figures 5.2 to 5.6, the City of Munich performed worse in terms of Ii,k values
when compared to ARi analysis. This could be attributed to the higher concentrations of underprivileged
population in the City than in the suburbs. As Ii,k weighs ARi by the population composition, higher
proportions of the concerned population segments contribute to higher Ii,k values.

As shown in Figures 4.2 to 4.6, the City of Munich has some of the highest proportions of unemployed
and low-income population across the study area. A plausible reason could be the concentration of job
opportunities in the City, and such unemployed people are more likely to reside within the City to attempt
to search for jobs more easily, while low-income workers would try to minimize their expenses on public
transit by residing in the city limits. As the City of Munich itself forms a single central flat fare zone in the
MVV network, low-income workers might tend to reside towards the fringe areas within the city instead of
moving out towards the suburbs, which are situated in separate fare zones that incur additional trip costs.

6.2.3 Regression analysis

The results of the regression model as summarized in Table 5.5 showed some interesting patterns. Higher
proportions of unemployed and disabled populations contribute to greater ARi values, while the other
three groups contribute to smaller ARi values. This means disabled and unemployed people are more
vulnerable to disruptions. While it is intuitive that disabled people are more vulnerable to disruptions due
to their need to access healthcare regularly, the reason behind the opposing impacts towards ARi by un-
employed and low-income people, and thus their vulnerability towards transit disruptions, is understudied.
Sanchez et al. (2004) summarized theories suggesting how these users are disadvantaged. While there
exist theories suggesting spatial disadvantages due to the inaccessibility to automobiles, others contradict
this and suggest the reliance on unreliable, meandering transit services as a reason. However, one thing
that can be sure from the model is that proportions of both population groups are significant towards the
ARi value, given their high reliance on transit. For younger residents, the age group considered in this
study (18 to 25) corresponds to the age group for typical university students. Given the presence of large
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research campuses in Garching and Freising, it is of a high probability that students based in these cam-
puses would reside within their respective municipalities to minimize their commute costs, thus contributing
to higher population concentrations and travel demand for these locations.

The explanation for the negative coefficient for the older population, however, is slightly more complex.
Referring to Figure 5.7, the predictor for the older population is more prone to multi-colinearity due to a
high correlation value against disabled population proportions. The predictor also possesses the greatest
VIF value among all independent variables. This could be attributed to the high probability for older people
to be disabled the same time. Research such as Berg et al. (2014), Burnett and Lucas (2010), and
Mollenkopf et al. (2011) discovered changing mobility behaviors during the transition into retirement, such
as overall reduced travel activities due to reduced physical ability. This overall reduced travel behavior
means older users might in general use less transit, and thus explains the negative coefficient in the
model, as this lower demand could mean they are less vulnerable towards disruptions.

6.3 Limitations

A shortcoming of using standard GTFS data is the inability to capture disruptions due to unpredictable
incidents, since standard GTFS data only contains scheduled data, while real-time data is captured in
separate GTFS Realtime (GTFS-RT) feeds. This created a challenge in the thesis, as with conventional
GTFS feeds, only construction work disruptions that are already reflected in the schedules could be used
to replicate the disruption scenario. During incidents or emergencies, operators are more keen on keeping
the system in operation and would be more flexible on dispatching services, which is completely contrasting
to a planned closure during constructions.

The ARi and Ii,k values, while being straightforward to calculate, do have their own shortcomings. In this
study, a synthetic travel demand is used to calculate the ARi values and then multiplied by the population
compositions to obtain the accessibility decay index for each population segment. However, travel demand
within a particular population segment need not be proportional to the overall travel demand, especially
when the O-D pairs consider points of interest and not generic spatial units. A remedy to this could be to
directly inquire the travel demand for the population group and use this to calculate the AR, in which the
value would reflect the accessibility decay for the O-D pair for the particular user group. Such demographic-
specific travel demand, however, could be challenging to obtain, let alone collecting, and thus the approach
considered in this thesis could be a suitable alternative.

While this thesis mainly investigates the network aspects of accessibility by analyzing network connectivity
in general, accessibility itself is a multifaceted study area which also includes spatial, temporal and per-
sonal aspects (Geurs & Ritsema van Eck, 2001). Therefore, achieving a socially inclusive public transport
system requires thorough understanding of the target population segments, such as the quantity of travel
demand, frequently traveled time periods, or their own personal needs towards public transit. Ultimately,
it is essential to incorporate both objective and perceived accessibility analyses to fully comprehend the
needs of transit users. As low perceived accessibility could imply low satisfaction towards the transporta-
tion system, given the intertwined nature between objective and perceived accessibilities, there could be
additional potential demand that is being neglected. Such neglected potential demand is often the result
of potential users not traveling at all due to their perceptions to the transit network, which could be realized
should service be improved, such as improved accessibility.

As shown in Table 5.1, about a quarter of municipalities had ARi values less than 1, implying that ac-
cessibility during a trunk line closure would be better than during normal service. A possible explanation
for this counterintuitive result could be due to the algorithms that R5R used to compute travel times. One
problem is that the travel time matrix for case C1 sometimes returns faster travel times than for case C0.
The R5 routing algorithm is based on the Round-Based Public Transit Optimized Router (RAPTOR) routing
algorithm (Conway et al., 2017) to compute the optimal public transit trip duration. As Delling et al. (2015)
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pointed out, travel time is not the sole determinant for computing optimal paths on public transit networks,
and other factors like transfers or monetary costs often place as much importance as travel time. Thus
the RAPTOR algorithm aims not only to minimize the travel time, but also the number of transfers made
on a trip. This might result in the routing algorithm prioritizing slower one-seat rides over faster trip com-
binations with transfers in case C0, especially when the S-Bahn is concerned. A second reason to this
could be simply due to different operating timetables during case C1, especially when trains are routed
onto the long-distance tracks and therefore skip the inner-city S-Bahn stops, which contribute to the faster
trip durations. Such counterintuitively faster travel times, combined with the demand weighting, eventually
result in unrealistic ARi values of less than 1.

Besides, this study uses municipalities as the spatial unit of study, which means only inter-municipality
travel is actually considered in the study. It should be noted that this limitation is caused by the de-
mographic data that can be obtained from official sources, which are accurate to the municipality level.
Census data, while having the advantage of sorting data into 100×100 meter grid cells, do not provide
detailed demographic data within each grid cell out of privacy reasons. A finer distribution of the popula-
tion considered in this study, such as assigning population to the nearest public transit stop, was therefore
not possible. This means intra-municipality trips could not be evaluated since they would be essentially
having the same origin and destination points in the model. Whereas a general resilience analysis using
total population data could be possible using the same methodology with higher accuracy, data availability
means it is not possible to improve the accuracy of this study.
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7 Conclusions

7.1 Findings of the thesis

This study has developed a straightforward methodology to measure the impact of transit service disrup-
tion on underprivileged, transit-reliant population, and by extension the effects of a lack of resilience on the
public transit network to these users, in order to address the existing research gap on the intersectionality
between network resilience and transit equity. As transport planning moves on to a more equitable and
sustainable paradigm, it is important to consider the impacts towards different passenger groups and to
design policies based on their needs. Accessibility is considered one of the important performance indi-
cators for transportation systems, such as evaluating impacts of disruptions towards passengers, where
a decay factor might be useful. The methodology proposed in this paper has the advantage of being
compatible with existing data such as population compositions, travel demand and travel times, and could
be readily adapted to GIS and coding environments for computation. As Chang and Nojima (2001) men-
tioned, while sophisticated models could be used to achieve the same purpose of calculating accessibility
decay, especially in metropolitan regions, these models themselves are already data-intensive and are
often tailored for one region, and adding the population composition factor would further complicate the
model. These simple, generic methods therefore, have the advantage of rapid calculations and the ability
to enable inter-regional analysis.

The linear regression model acts as an extension to the geospatial accessibility decay analysis, in that
the regression equation provides a generic overview of how vulnerable are the concerned demographics
towards disruptions through assessing the relationships between population compositions and ARi. The
case study of the Munich suburban area found that disabled and unemployed people are more vulnerable
to disruptions and the lack of resilience in transit networks, echoing findings of previous research. While
the regression model does vary by study area, it does have the advantage of allowing planners and re-
searchers to inquire the demographics that are more vulnerable to disruptions, and assess the impacts
towards accessibility should there be changes to population compositions.

As transport planning starts to emphasize more on social equity aspects, it is essential for researchers and
planners to understand the causes and effects of inequity in the current transport planning paradigm, and
thus identify solutions to remedy this inequity situation. Inequity indicators, such as those developed in this
paper, could be useful in identifying deficiencies in accessibility and the impacts on individual population
segments. By quantifying the performance in accessibility decay during disruptions, the indicators allow
decision-makers to have objective values on deciding the permissible threshold of ARi or Ii,k before
interventions should be taken. As the ultimate goal of public transit should be to serve the entire population,
thorough consideration across all population segments is needed when setting policies or emergency
plans, such that the inconveniences caused to passengers are appropriately compensated.

7.2 Recommendations to stakeholders and future research

With real-time transit data becoming available through GTFS-RT feeds, it is expected that future research
could attempt to combine the methodology proposed in this thesis with dynamic GTFS-RT feeds that reflect
real-life variations and unplanned disruptions. As stated above, operators are more keen on keeping the
system in operation and thus are more flexible when developing emergency plans, which is different from
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planned constructions where timetables could be planned in advance. As accessibility research using
GTFS-RT data such as L. Liu et al. (2023, 2024) starts to evolve, it would be interesting to see how real-
time data could assist researchers in identifying deficiencies in transit service, especially on the equity
aspect. Such emerging research have been applying real-time data into accessibility analysis to capture
the effects of actual operational deviations or disruptions, and such data could be valuable in assessing
transit system resilience. The next step could be to further develop these methods to account for transit-
dependent population segments and assess the extent of vulnerability towards such service disruptions.

An application potential is to incorporate demographic-specific points of interest within the study area to
assess accessibility decay more accurately. The methodology used in this study is compatible with Open-
StreetMap data and can be easily adapted to GIS environments, which are commonly used in research
and planning contexts and are readily available, and is thus flexible in terms of accessibility calculations.
Underprivileged population often have specific needs that needs to be considered separately from the
general commuting demand analysis, such as healthcare access for older or disabled users, or access to
education in the case of younger residents.

While the methodology in this paper is straightforward, it is not without its drawbacks as described above.
Therefore, future research could aim to improve the computation methods to more realistically reflect the
accessibility decay during disruptions. Moreover, refining the spatial unit could also bring drastic improve-
ments to the model, especially since population distribution data in fine grid cells is publicly available,
which means population could be mapped to nearest transit stops and then calculate accessibility decay
between stops instead of municipalities.

Besides, whereas Equation 3.1 takes weighted travel times as input values, the nature of ARi as a ratio
means that it is versatile and can be easily adapted to different accessibility measurement methods such as
utility-based measurements. This is especially true as utility-based measurements have the advantage of
capturing aspects of perceived accessibility, which needs to be concurrently considered besides objective
accessibility measures (Lättman et al., 2018).

Policymakers should, as recommended by existing literature such as Keeling (2008), also focus on social
inequity issues when planning transportation systems and policies. The findings from this thesis echoed
with previous studies in that transit-reliant users are more vulnerable to transit service disruptions. The
methodology used in this paper allows planners to conveniently assess both areas and user groups that are
more vulnerable to disruptions, and thus assists them to remedy existing deficiencies in the network such
that the public transit system is more resilient and equitable. This is especially essential during unplanned
disruptions or emergencies when rapid response is needed. Public transit operators and coordinators,
such as the Munich S-Bahn and the MVV, should take advantage of methods used in research to identify
inequalities within the transit-dependent population, and develop strategies to compensate them during
disruptions to prevent these users from being socially excluded.
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A Percentages of underprivileged population
segments for each municipality in the study area
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Municipality County Unemployed (%) Disabled (%) Low-income (%) Older (%) Younger (%)

Adelshofen Fürstenfeldbruck 0.629 6.346 19.752 17.496 13.265
Allershausen Freising 1.079 5.120 21.210 13.904 14.127
Alling Fürstenfeldbruck 0.787 6.014 18.336 19.614 12.890
Althegnenberg Fürstenfeldbruck 1.261 7.517 23.311 17.459 12.706
Altomünster Dachau 0.854 8.178 21.849 19.912 12.852
Andechs Starnberg 0.741 6.506 18.631 18.857 12.113
Anzing Ebersberg 0.958 6.635 18.174 18.650 13.087
Aschheim München 1.247 5.265 19.545 15.721 13.174
Aßling Ebersberg 0.817 6.116 21.983 18.260 14.197
Attenkirchen Freising 1.029 6.070 20.282 15.655 14.874
Au i.d.Hallertau Freising 1.240 7.079 21.192 17.142 14.109
Aying München 1.107 5.849 21.402 15.609 12.048
Bad Heilbrunn Bad Tölz-Wolfratshausen 0.833 7.347 19.768 20.071 12.497
Bad Tölz Bad Tölz-Wolfratshausen 1.587 9.992 24.419 23.336 13.182
Baierbrunn München 1.162 5.567 19.676 19.088 10.217
Baiern Ebersberg 0.999 5.260 23.198 13.715 17.443
Benediktbeuern Bad Tölz-Wolfratshausen 0.861 8.384 21.389 24.764 13.826
Berg Starnberg 0.988 5.096 22.021 20.997 14.071
Bergkirchen Dachau 0.720 5.647 20.421 16.902 12.542
Berglern Erding 1.274 5.164 18.411 11.268 15.560
Bichl Bad Tölz-Wolfratshausen 0.929 6.192 19.808 17.868 14.109
Bockhorn Erding 0.837 5.684 18.144 15.207 14.001
Bruck Ebersberg 0.311 6.599 21.463 18.168 14.286
Brunnthal München 0.905 5.772 18.510 16.103 11.417
Buch a.Buchrain Erding 0.657 6.509 18.447 18.738 11.966
Dachau Dachau 1.266 7.881 20.456 18.929 14.457
Dietramszell Bad Tölz-Wolfratshausen 0.908 4.650 20.213 17.566 14.696
Dorfen Erding 1.102 8.145 21.636 19.256 14.615
Ebersberg Ebersberg 1.001 8.808 20.725 22.029 12.942
Eching Freising 1.049 6.079 20.426 17.667 16.190
Egenhofen Fürstenfeldbruck 0.886 6.032 18.694 18.353 13.179
Egling Bad Tölz-Wolfratshausen 0.768 4.812 21.191 18.789 12.935
Egmating Ebersberg 0.761 5.711 22.593 16.709 12.098
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Municipality County Unemployed (%) Disabled (%) Low-income (%) Older (%) Younger (%)

Eichenau Fürstenfeldbruck 1.174 8.472 20.986 26.061 11.718
Eitting Erding 0.903 4.896 17.751 12.049 15.000
Emmering Ebersberg 0.928 7.029 22.296 19.231 14.456
Emmering Fürstenfeldbruck 1.430 7.446 20.652 20.879 13.152
Erding Erding 1.422 8.104 19.563 18.407 14.375
Erdweg Dachau 0.984 6.607 17.791 17.115 13.262
Eurasburg Bad Tölz-Wolfratshausen 0.864 5.954 20.118 18.819 12.888
Fahrenzhausen Freising 0.955 5.770 19.604 14.604 13.729
Feldafing Starnberg 1.179 7.805 20.893 27.847 12.167
Feldkirchen München 1.112 5.310 17.358 12.897 12.262
Finsing Erding 1.065 5.988 19.077 15.470 13.041
Forstern Erding 0.893 4.953 19.575 13.884 13.640
Forstinning Ebersberg 0.803 6.579 20.507 17.845 13.701
Frauenneuharting Ebersberg 1.015 5.644 22.347 15.726 15.663
Fraunberg Erding 0.668 5.612 19.176 16.221 13.041
Freising Freising 1.512 6.687 24.339 15.289 19.851
Fürstenfeldbruck Fürstenfeldbruck 1.803 9.088 21.699 20.919 14.077
Gaißach Bad Tölz-Wolfratshausen 0.775 6.748 20.567 18.631 14.143
Gammelsdorf Freising 1.027 6.366 18.133 16.359 10.951
Garching b.München München 1.329 7.168 25.335 17.337 20.197
Gauting Starnberg 1.117 6.665 20.886 22.380 12.209
Geltendorf Landsberg am Lech 1.198 6.347 18.868 18.523 13.821
Geretsried Bad Tölz-Wolfratshausen 1.411 9.572 24.149 22.529 12.768
Germering Fürstenfeldbruck 1.401 8.389 20.445 23.451 12.839
Gilching Starnberg 1.242 6.895 19.877 20.502 12.443
Glonn Ebersberg 0.824 6.483 20.522 19.037 12.217
Gräfelfing München 1.046 6.690 21.634 23.754 12.974
Grafing b.München Ebersberg 1.154 7.412 21.476 20.907 14.171
Grafrath Fürstenfeldbruck 0.903 7.639 19.497 23.587 11.303
Grasbrunn München 0.881 5.572 18.673 17.468 11.665
Greiling Bad Tölz-Wolfratshausen 0.814 6.581 18.642 21.031 13.772
Gröbenzell Fürstenfeldbruck 1.213 7.564 20.278 24.619 11.783
Grünwald München 0.843 5.963 19.134 25.626 10.603
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Municipality County Unemployed (%) Disabled (%) Low-income (%) Older (%) Younger (%)

Haag a.d.Amper Freising 0.809 5.767 19.730 16.560 14.233
Haar München 1.425 9.066 20.520 20.898 13.615
Haimhausen Dachau 0.872 5.863 18.019 16.891 13.401
Hallbergmoos Freising 1.046 5.282 18.098 10.898 15.080
Hattenhofen Fürstenfeldbruck 1.099 7.434 19.775 17.970 12.864
Hebertshausen Dachau 0.944 7.043 18.952 18.909 13.212
Herrsching a.Ammersee Starnberg 1.391 8.076 22.829 25.432 11.726
Hilgertshausen-Tandern Dachau 0.846 6.711 18.913 18.062 13.306
Hohenbrunn München 1.036 6.010 23.070 19.884 12.896
Hohenkammer Freising 0.835 4.784 16.284 14.655 12.263
Höhenkirchen-Siegertsbrunn München 1.213 6.011 19.894 17.969 12.904
Hohenlinden Ebersberg 0.747 6.596 19.419 16.024 15.432
Hohenpolding Erding 0.945 7.561 22.017 17.958 13.611
Holzkirchen Miesbach 1.100 6.701 20.749 18.389 13.450
Hörgertshausen Freising 1.103 7.623 18.555 17.503 14.443
Icking Bad Tölz-Wolfratshausen 0.759 5.233 20.108 22.370 12.825
Inning a.Ammersee Starnberg 1.159 5.983 21.484 21.449 10.787
Inning a.Holz Erding 0.808 7.066 20.885 18.371 12.584
Isen Erding 0.891 6.974 20.558 18.506 12.491
Ismaning München 1.042 7.315 18.675 19.751 13.657
Jachenau Bad Tölz-Wolfratshausen 0.697 6.156 18.500 19.280 12.079
Jesenwang Fürstenfeldbruck 1.146 7.575 17.912 23.043 11.649
Karlsfeld Dachau 1.177 7.901 20.095 19.966 12.898
Kirchberg Erding 0.842 7.297 18.010 15.716 15.154
Kirchdorf a.d.Amper Freising 1.014 4.545 19.792 13.053 15.356
Kirchheim b.München München 1.093 7.228 20.829 24.791 11.763
Kirchseeon Ebersberg 1.437 7.551 21.455 18.295 14.444
Kochel a.See Bad Tölz-Wolfratshausen 1.537 7.978 25.098 24.055 12.027
Königsdorf Bad Tölz-Wolfratshausen 0.830 5.651 18.066 18.838 12.867
Kottgeisering Fürstenfeldbruck 0.684 6.468 18.636 21.580 11.443
Krailling Starnberg 1.119 7.576 20.549 25.219 11.796
Kranzberg Freising 0.963 5.275 19.991 18.401 14.186
Landsberied Fürstenfeldbruck 0.806 6.324 16.828 16.243 13.329
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Municipality County Unemployed (%) Disabled (%) Low-income (%) Older (%) Younger (%)

Langenbach Freising 0.965 6.807 25.688 16.485 14.926
Langenpreising Erding 0.908 6.110 19.439 16.341 13.268
Lengdorf Erding 0.877 5.263 19.734 16.849 14.510
Lenggries Bad Tölz-Wolfratshausen 0.926 7.464 21.898 22.860 12.102
Maisach Fürstenfeldbruck 1.210 7.941 20.114 19.184 13.391
Mammendorf Fürstenfeldbruck 1.263 6.066 19.433 15.694 15.321
Markt Indersdorf Dachau 0.866 7.328 20.430 19.852 14.703
Markt Schwaben Ebersberg 1.172 7.128 19.215 17.079 13.888
Marzling Freising 0.962 6.762 21.994 16.160 14.578
Mauern Freising 0.832 5.890 20.814 17.542 12.612
Mittelstetten Fürstenfeldbruck 1.401 7.122 21.934 19.848 11.267
Moorenweis Fürstenfeldbruck 1.034 6.324 18.878 17.432 13.248
Moosach Ebersberg 0.929 6.171 19.750 15.793 12.210
Moosburg a.d.Isar Freising 1.517 8.855 23.918 18.643 14.794
Moosinning Erding 1.101 5.839 19.197 15.849 14.014
München München 2.059 7.580 21.907 17.456 17.156
Münsing Bad Tölz-Wolfratshausen 0.748 5.004 18.932 20.856 12.111
Nandlstadt Freising 1.357 7.953 23.042 17.490 13.645
Neubiberg München 0.643 5.695 15.907 16.814 24.829
Neuching Erding 0.975 5.664 17.772 14.854 13.541
Neufahrn b.Freising Freising 1.270 6.834 22.101 16.578 16.221
Neuried München 1.009 6.773 19.791 19.807 12.965
Oberding Erding 0.814 5.288 18.506 13.611 15.316
Oberhaching München 0.960 6.286 19.767 20.851 12.834
Oberpframmern Ebersberg 0.818 6.465 18.407 17.349 13.666
Oberschleißheim München 1.318 8.730 22.869 21.601 14.730
Oberschweinbach Fürstenfeldbruck 0.698 7.974 21.634 20.838 12.049
Odelzhausen Dachau 1.190 7.080 19.202 17.340 12.463
Olching Fürstenfeldbruck 1.283 7.643 19.815 19.564 12.650
Ottenhofen Erding 0.877 5.879 19.712 15.678 13.306
Otterfing Miesbach 0.911 5.548 19.396 18.733 12.627
Ottobrunn München 1.300 7.799 18.874 21.997 12.755
Pastetten Erding 0.799 7.260 19.334 15.535 14.374
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Paunzhausen Freising 1.254 6.799 18.061 15.380 13.399
Petershausen Dachau 1.070 8.012 19.508 18.930 13.287
Pfaffenhofen a.d.Glonn Dachau 0.668 5.699 16.479 15.850 13.313
Planegg München 1.198 7.090 20.712 22.838 14.649
Pliening Ebersberg 0.791 5.712 16.757 15.237 12.759
Pöcking Starnberg 1.304 7.270 21.181 26.652 11.665
Poing Ebersberg 1.054 6.054 17.989 13.472 13.075
Puchheim Fürstenfeldbruck 1.606 7.942 21.278 23.696 12.252
Pullach i.Isartal München 0.952 6.523 20.990 23.654 11.573
Putzbrunn München 1.181 8.387 19.106 22.006 11.287
Reichersbeuern Bad Tölz-Wolfratshausen 0.856 4.853 19.714 16.476 16.150
Röhrmoos Dachau 0.884 14.804 23.838 18.633 13.517
Rudelzhausen Freising 0.863 6.676 22.765 16.892 14.446
Sachsenkam Bad Tölz-Wolfratshausen 0.854 4.193 21.114 16.227 14.907
Sankt Wolfgang Erding 0.737 7.746 20.360 17.634 13.862
Sauerlach München 0.936 5.931 18.497 18.960 11.534
Schäftlarn München 0.941 5.662 21.821 23.076 11.427
Schlehdorf Bad Tölz-Wolfratshausen 0.695 7.259 22.467 20.618 15.444
Schöngeising Fürstenfeldbruck 1.259 7.132 20.297 22.549 11.589
Schwabhausen Dachau 0.953 5.947 20.494 17.689 13.170
Seefeld Starnberg 1.072 5.839 21.869 22.137 11.916
Starnberg Starnberg 1.277 7.429 20.865 23.395 12.117
Steinhöring Ebersberg 0.946 9.069 24.718 17.410 14.113
Steinkirchen Erding 1.030 7.052 20.881 18.859 15.372
Straßlach-Dingharting München 1.045 4.917 19.939 21.174 10.633
Sulzemoos Dachau 0.939 4.919 23.844 13.495 14.207
Taufkirchen München 1.789 9.544 22.755 26.165 12.444
Taufkirchen (Vils) Erding 0.962 8.737 23.325 18.795 13.528
Türkenfeld Fürstenfeldbruck 1.139 6.316 20.772 18.921 13.256
Tutzing Starnberg 1.190 7.028 20.874 26.033 11.182
Unterföhring München 1.276 6.549 20.237 15.686 12.912
Unterhaching München 1.309 8.222 18.669 22.634 11.489
Unterschleißheim München 1.392 8.169 20.721 18.781 14.079
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Valley Miesbach 0.947 5.625 20.854 17.111 13.410
Vaterstetten Ebersberg 0.959 6.937 19.323 21.513 12.031
Vierkirchen Dachau 0.884 8.197 20.857 17.796 13.395
Wackersberg Bad Tölz-Wolfratshausen 0.828 6.139 19.291 19.617 14.792
Walpertskirchen Erding 0.743 5.483 17.477 15.613 15.660
Wang Freising 1.028 5.929 21.429 15.099 14.229
Wartenberg Erding 1.153 7.333 19.993 17.189 13.225
Weichs Dachau 1.021 7.315 21.274 20.017 13.864
Weßling Starnberg 1.094 5.397 22.308 21.477 12.799
Wolfersdorf Freising 1.038 5.419 25.292 13.182 14.489
Wolfratshausen Bad Tölz-Wolfratshausen 1.256 7.545 21.165 22.267 12.641
Wörth Erding 1.224 6.889 19.733 17.902 14.775
Wörthsee Starnberg 1.006 5.753 20.078 22.651 10.742
Zolling Freising 1.029 6.462 20.421 16.938 13.521
Zorneding Ebersberg 0.972 7.331 20.383 22.077 12.374
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Adelshofen Fürstenfeldbruck 1.0024 0.6305 6.3619 19.7996 17.5381 13.2969
Allershausen Freising 1.0026 1.0816 5.1333 21.2660 13.9407 14.1639
Alling Fürstenfeldbruck 1.0435 0.8208 6.2753 19.1332 20.4674 13.4508
Althegnenberg Fürstenfeldbruck 1.0207 1.2870 7.6723 23.7928 17.8195 12.9686
Altomünster Dachau 1.0130 0.8654 8.2846 22.1324 20.1707 13.0187
Anzing Ebersberg 1.1125 1.0654 7.3815 20.2197 20.7493 14.5600
Aschheim München 1.1010 1.3724 5.7971 21.5183 17.3085 14.5046
Aßling Ebersberg 1.0346 0.8452 6.3275 22.7433 18.8912 14.6881
Attenkirchen Freising 1.0064 1.0360 6.1089 20.4115 15.7546 14.9687
Au i.d.Hallertau Freising 1.0023 1.2425 7.0954 21.2418 17.1826 14.1417
Aying München 1.0032 1.1105 5.8672 21.4694 15.6583 12.0861
Baiern Ebersberg 0.9926 0.9912 5.2205 23.0254 13.6131 17.3137
Berg Starnberg 1.0004 0.9882 5.0979 22.0300 21.0063 14.0765
Bergkirchen Dachau 0.9995 0.7200 5.6441 20.4102 16.8936 12.5352
Berglern Erding 1.0013 1.2760 5.1712 18.4360 11.2827 15.5809
Bruck Ebersberg 1.0386 0.3225 6.8539 22.2904 18.8684 14.8367
Brunnthal München 1.0067 0.9107 5.8104 18.6340 16.2110 11.4934
Buch a.Buchrain Erding 1.0397 0.6836 6.7672 19.1786 19.4812 12.4406
Dachau Dachau 0.9845 1.2461 7.7592 20.1398 18.6357 14.2331
Dorfen Erding 0.9975 1.0995 8.1242 21.5821 19.2076 14.5788
Ebersberg Ebersberg 1.0597 1.0603 9.3343 21.9627 23.3445 13.7147
Eching Freising 0.9730 1.0206 5.9152 19.8751 17.1902 15.7530
Egenhofen Fürstenfeldbruck 1.0041 0.8899 6.0568 18.7706 18.4288 13.2332
Egling Bad Tölz-Wolfratshausen 1.0145 0.7796 4.8815 21.4996 19.0622 13.1226
Egmating Ebersberg 1.0201 0.7767 5.8252 23.0460 17.0441 12.3408
Eichenau Fürstenfeldbruck 0.8394 0.9857 7.1113 17.6163 21.8759 9.8361
Eitting Erding 0.9777 0.8827 4.7869 17.3556 11.7804 14.6661
Emmering Ebersberg 1.0238 0.9505 7.1965 22.8272 19.6886 14.8004
Emmering Fürstenfeldbruck 0.9999 1.4301 7.4451 20.6495 20.8758 13.1506
Erding Erding 1.0627 1.5108 8.6125 20.7889 19.5610 15.2767
Erdweg Dachau 0.9999 0.9835 6.6060 17.7893 17.1133 13.2612
Eurasburg Bad Tölz-Wolfratshausen 1.0100 0.8725 6.0131 20.3182 19.0060 13.0165
Fahrenzhausen Freising 1.0284 0.9822 5.9341 20.1620 15.0195 14.1191
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Feldafing Starnberg 0.9796 1.1549 7.6454 20.4662 27.2785 11.9185
Feldkirchen München 1.2971 1.4427 6.8872 22.5148 16.7285 15.9041
Finsing Erding 1.0934 1.1649 6.5470 20.8596 16.9149 14.2589
Forstern Erding 1.0044 0.8970 4.9744 19.6606 13.9445 13.6999
Forstinning Ebersberg 1.0026 0.8050 6.5956 20.5598 17.8912 13.7365
Frauenneuharting Ebersberg 1.0371 1.0523 5.8531 23.1767 16.3099 16.2441
Fraunberg Erding 0.9866 0.6591 5.5367 18.9186 16.0036 12.8661
Freising Freising 1.0003 1.5128 6.6887 24.3451 15.2933 19.8563
Fürstenfeldbruck Fürstenfeldbruck 0.9998 1.8022 9.0868 21.6955 20.9162 14.0747
Garching b.München München 1.0760 1.4298 7.7125 27.2599 18.6542 21.7320
Gauting Starnberg 0.9721 1.0862 6.4797 20.3045 21.7567 11.8686
Geretsried Bad Tölz-Wolfratshausen 1.0096 1.4248 9.6641 24.3810 22.7454 12.8908
Germering Fürstenfeldbruck 1.1039 1.5466 9.2605 22.5693 25.8878 14.1735
Gilching Starnberg 1.0495 1.3037 7.2363 20.8610 21.5171 13.0593
Glonn Ebersberg 1.0147 0.8366 6.5784 20.8238 19.3168 12.3962
Gräfelfing München 0.9646 1.0090 6.4536 20.8684 22.9135 12.5149
Grafing b.München Ebersberg 1.0671 1.2317 7.9090 22.9163 22.3093 15.1208
Grafrath Fürstenfeldbruck 1.0010 0.9041 7.6465 19.5164 23.6111 11.3147
Grasbrunn München 1.1095 0.9770 6.1825 20.7176 19.3804 12.9416
Gröbenzell Fürstenfeldbruck 1.0046 1.2188 7.5985 20.3703 24.7316 11.8367
Grünwald München 0.9857 0.8309 5.8773 18.8602 25.2585 10.4515
Haag a.d.Amper Freising 1.0003 0.8097 5.7689 19.7358 16.5644 14.2366
Haar München 1.2173 1.7345 11.0362 24.9801 25.4394 16.5742
Haimhausen Dachau 1.0467 0.9132 6.1369 18.8612 17.6802 14.0272
Hallbergmoos Freising 1.0465 1.0943 5.5280 18.9399 11.4050 15.7821
Hattenhofen Fürstenfeldbruck 1.0015 1.1006 7.4450 19.8048 17.9976 12.8831
Hebertshausen Dachau 0.9990 0.9428 7.0358 18.9326 18.8902 13.1987
Herrsching a.Ammersee Starnberg 1.0249 1.4257 8.2769 23.3971 26.0650 12.0182
Hilgertshausen-Tandern Dachau 0.9997 0.8460 6.7094 18.9072 18.0570 13.3021
Hohenkammer Freising 1.0000 0.8352 4.7836 16.2841 14.6545 12.2627
Höhenkirchen-Siegertsbrunn München 1.0166 1.2334 6.1109 20.2244 18.2673 13.1188
Hohenlinden Ebersberg 1.0024 0.7485 6.6121 19.4656 16.0624 15.4698
Holzkirchen Miesbach 1.0013 1.1011 6.7091 20.7748 18.4124 13.4664
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Icking Bad Tölz-Wolfratshausen 1.0178 0.7727 5.3264 20.4661 22.7682 13.0537
Inning a.Ammersee Starnberg 1.0089 1.1698 6.0370 21.6761 21.6412 10.8833
Inning a.Holz Erding 0.9624 0.7771 6.8000 20.0985 17.6800 12.1105
Isen Erding 1.0438 0.9300 7.2792 21.4576 19.3157 13.0381
Ismaning München 1.1332 1.1804 8.2888 21.1623 22.3818 15.4755
Jesenwang Fürstenfeldbruck 1.0033 1.1496 7.5999 17.9717 23.1189 11.6872
Karlsfeld Dachau 0.9663 1.1375 7.6348 19.4171 19.2929 12.4636
Kirchdorf a.d.Amper Freising 1.0026 1.0161 4.5572 19.8434 13.0865 15.3959
Kirchheim b.München München 1.1666 1.2749 8.4325 24.2990 28.9218 13.7233
Kirchseeon Ebersberg 1.0845 1.5583 8.1887 23.2682 19.8403 15.6645
Königsdorf Bad Tölz-Wolfratshausen 1.0059 0.8350 5.6847 18.1731 18.9490 12.9431
Kottgeisering Fürstenfeldbruck 0.9991 0.6835 6.4619 18.6191 21.5602 11.4325
Landsberied Fürstenfeldbruck 0.9997 0.8057 6.3216 16.8227 16.2378 13.3249
Langenbach Freising 1.0020 0.9673 6.8207 25.7405 16.5186 14.9560
Langenpreising Erding 0.9923 0.9009 6.0635 19.2901 16.2155 13.1664
Lengdorf Erding 0.9977 0.8752 5.2512 19.6892 16.8111 14.4773
Mammendorf Fürstenfeldbruck 1.0098 1.2753 6.1255 19.6228 15.8470 15.4707
Markt Indersdorf Dachau 1.0016 0.8674 7.3392 20.4621 19.8825 14.7260
Markt Schwaben Ebersberg 1.1035 1.2937 7.8659 21.2033 18.8461 15.3244
Marzling Freising 1.0185 0.9794 6.8871 22.4019 16.4595 14.8483
Mittelstetten Fürstenfeldbruck 1.0015 1.4031 7.1326 21.9665 19.8777 11.2835
Moorenweis Fürstenfeldbruck 0.9996 1.0335 6.3211 18.8700 17.4251 13.2431
Moosach Ebersberg 1.0549 0.9800 6.5098 20.8337 16.6595 12.8796
Moosburg a.d.Isar Freising 1.0001 1.5172 8.8564 23.9216 18.6456 14.7964
Moosinning Erding 1.0766 1.1854 6.2864 20.6677 17.0630 15.0873
München München 1.0726 2.2083 8.1301 23.4976 18.7234 18.4013
Nandlstadt Freising 1.0013 1.3587 7.9633 23.0712 17.5117 13.6621
Neubiberg München 1.0462 0.6723 5.9583 16.6423 17.5917 25.9772
Neuching Erding 1.0410 1.0153 5.8963 18.5008 15.4631 14.0964
Neufahrn b.Freising Freising 0.9806 1.2449 6.7013 21.6727 16.2571 15.9070
Neuried München 0.9650 0.9736 6.5352 19.0971 19.1133 12.5109
Oberding Erding 0.9660 0.7858 5.1079 17.8761 13.1476 14.7948
Oberhaching München 1.0610 1.0189 6.6691 20.9719 22.1222 13.6160
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Oberpframmern Ebersberg 1.0301 0.8429 6.6592 18.9607 17.8703 14.0770
Oberschleißheim München 1.0023 1.3214 8.7498 22.9217 21.6501 14.7637
Oberschweinbach Fürstenfeldbruck 1.0089 0.7047 8.0455 21.8269 21.0239 12.1563
Odelzhausen Dachau 0.9932 1.1817 7.0322 19.0720 17.2222 12.3790
Olching Fürstenfeldbruck 0.9968 1.2787 7.6190 19.7519 19.5015 12.6092
Ottenhofen Erding 1.0736 0.9412 6.3119 21.1617 16.8316 14.2847
Otterfing Miesbach 1.0042 0.9146 5.5709 19.4777 18.8120 12.6799
Ottobrunn München 1.0355 1.3461 8.0766 19.5452 22.7787 13.2080
Pastetten Erding 1.0594 0.8460 7.6905 20.4815 16.4576 15.2271
Paunzhausen Freising 1.0008 1.2551 6.8039 18.0745 15.3914 13.4096
Petershausen Dachau 1.0170 1.0885 8.1482 19.8391 19.2509 13.5130
Planegg München 0.9719 1.1646 6.8910 20.1307 22.1967 14.2374
Pliening Ebersberg 1.0854 0.8584 6.1993 18.1875 16.5379 13.8484
Pöcking Starnberg 1.0106 1.3179 7.3477 21.4057 26.9354 11.7888
Poing Ebersberg 1.1666 1.2301 7.0621 20.9849 15.7162 15.2531
Puchheim Fürstenfeldbruck 1.0054 1.6148 7.9849 21.3920 23.8232 12.3177
Pullach i.Isartal München 1.0461 0.9963 6.8234 21.9575 24.7450 12.1061
Putzbrunn München 1.0312 1.2179 8.6484 19.7020 22.6924 11.6391
Röhrmoos Dachau 0.9963 0.8803 14.7497 23.7508 18.5646 13.4678
Sankt Wolfgang Erding 0.9938 0.7321 7.6976 20.2339 17.5249 13.7759
Sauerlach München 1.0241 0.9584 6.0741 18.9438 19.4172 11.8121
Schäftlarn München 1.0315 0.9704 5.8402 22.5072 23.8018 11.7862
Schöngeising Fürstenfeldbruck 0.9972 1.2549 7.1114 20.2394 22.4845 11.5560
Schwabhausen Dachau 0.9968 0.9498 5.9287 20.4295 17.6329 13.1289
Seefeld Starnberg 1.0227 1.0968 5.9713 22.3653 22.6393 12.1862
Starnberg Starnberg 0.9998 1.2770 7.4279 20.8606 23.3903 12.1144
Steinhöring Ebersberg 1.0000 0.9457 9.0689 24.7176 17.4103 14.1125
Sulzemoos Dachau 0.9874 0.9267 4.8573 23.5444 13.3256 14.0286
Taufkirchen München 1.0625 1.9007 10.1408 24.1781 27.8015 13.2220
Taufkirchen (Vils) Erding 0.9970 0.9592 8.7106 23.2558 18.7390 13.4874
Türkenfeld Fürstenfeldbruck 0.9997 1.1382 6.3144 20.7664 18.9161 13.2521
Tutzing Starnberg 1.0054 1.1962 7.0657 20.9868 26.1744 11.2422
Unterföhring München 1.1816 1.5079 7.7385 23.9127 18.5347 15.2571
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Unterhaching München 1.0833 1.4182 8.9075 20.2248 24.5201 12.4464
Unterschleißheim München 0.9681 1.3477 7.9090 20.0606 18.1823 13.6309
Vaterstetten Ebersberg 1.1396 1.0927 7.9056 22.0199 24.5152 13.7099
Vierkirchen Dachau 0.9968 0.8815 8.1703 20.7897 17.7382 13.3520
Walpertskirchen Erding 0.9966 0.7410 5.4645 17.4168 15.5600 15.6063
Wartenberg Erding 0.9863 1.1374 7.2330 19.7199 16.9541 13.0443
Weichs Dachau 1.0002 1.0210 7.3168 21.2796 20.0220 13.8679
Weßling Starnberg 1.0358 1.1330 5.5895 23.1055 22.2449 13.2563
Wolfersdorf Freising 1.0013 1.0390 5.4259 25.3247 13.1991 14.5075
Wolfratshausen Bad Tölz-Wolfratshausen 1.0115 1.2702 7.6318 21.4089 22.5233 12.7869
Wörthsee Starnberg 1.0247 1.0306 5.8952 20.5726 23.2098 11.0071
Zolling Freising 1.0003 1.0293 6.4640 20.4264 16.9424 13.5251
Zorneding Ebersberg 1.1201 1.0892 8.2110 22.8313 24.7286 13.8605
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