

Cell Production

Prognose der Lithium-Ionen-Batterieproduktionskapazität

Herausforderungen in der Batterieproduktion

Fachkräftemangel in den nächsten 10 Jahren

Nachfrage nach Anlagentechnik deutlich größer als Angebot

Materialverfügbarkeit stellt Herausforderung dar

Entwicklung als Herausforderung und Chance

Herausforderungen in der Batterieproduktion

Prozessentwicklung – Zentrale Rolle in der Produktion

Produkt muss auf Produktion abgestimmt werden

- Mehrere Entwicklungsphasen
- Produktion muss kostentechnisch darstellbar sein

Schnittstelle zwischen Forschung und Industrie

- Frühe Phasen der Entwicklung
- Beschleunigung der Entwicklung

Die Kompetenzen der TUM

Hohes Forschungsvolumen sichert Arbeitsplätze

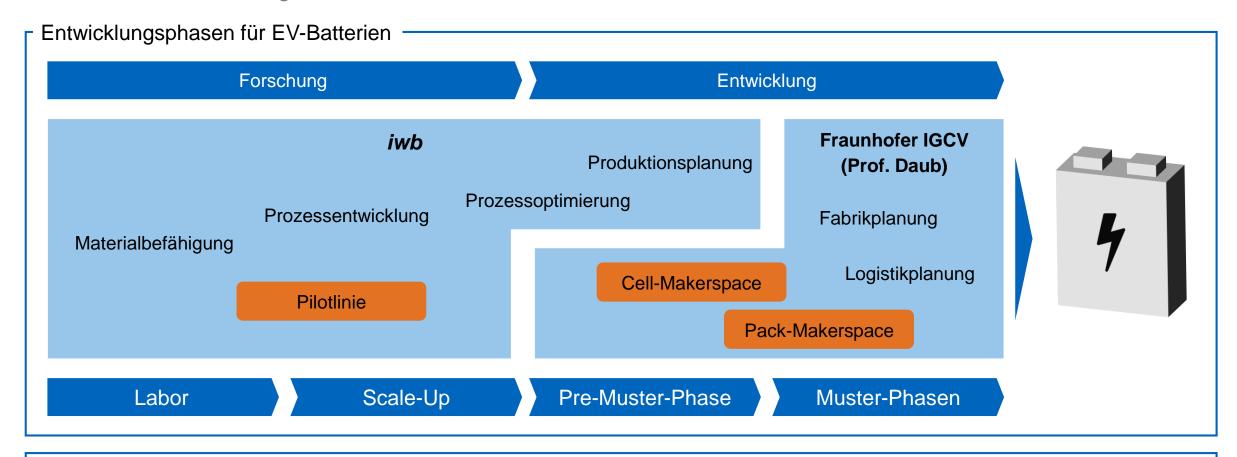
- 11.500 Beschäftigte, 50.000 Studierende
- Etat: 1,77 Mrd. €
- Drittmittel: 430 Mio. €

Batterie-Netzwerk der TUM – Seit über 10 Jahren herausragende Forschung im Batteriebereich

- 8 Lehrstühle
- 2 Institute
- 12 Professuren
- Über 100 Mitarbeitende

Herausragende Infrastruktur

- Vielfältige Anlagentechnik
- Zentraler Standort
- Enge Verbindung zur Industrie



Durch ihre gebündelten Kompetenzen ist die TUM der ideale Standort zur Forschung im Batterie-Bereich.

Kompetenzen entlang aller Entwicklungsphasen für EV-Batterien

Industrienahe Forschung

Die TUM beforscht die gesamte Wertschöpfungskette für Lithium-Ionen-Batterien und Elektrofahrzeuge. Sie schafft die Schnittstelle zwischen Forschung und Industrie für eine effiziente Entwicklung.

Vielen Dank für Ihren Besuch!

