Technical University of Munich TUM School of Engineering and Design Institute of Automotive Technology

Smart Charging Management

Charging & Operations

- Connected Energy Management
- Dynamic Charging Stop Strategies

User Profile

- Individual weighted strategies
- Individual Pol selection

Reservation and Queueing

- Minimal waiting time
- Less costs due to plannability for grid operators

€ Business Models ¬

Connected Services

CPO and MSP Contracts

Shared Private Infrastructure

Optimized utilization of infrastructure

• Innovative concepts in terms of space and time

- Shared private charging infrastructure
 - Maximum utilization of charging points
 - Third party vehicle charging

- Charging in context of carsharing
 - Electrified carsharing for residential districts
 - Increased efficiency and capacity utilization

Energy Management

- **Coordinated Charging & V2B**
 - Charging power prediction
 - Intelligent charging of vehicle fleets
 - Enable peak shaving

Scale-Up

Business models

- Investigation of revenue potentials
- Optimization of charging strategies to reduce TCO
- Several new roles as MSP, CPO or Energy Provider

Simulation

- Scale-up to larger energy systems
- Definition of infrastructure requirements