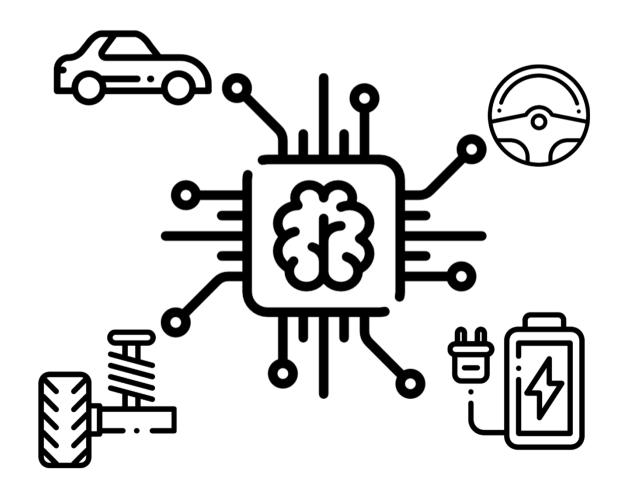


Artificial Intelligence in Automotive Technology

Johannes Betz / Prof. Dr.-Ing. Markus Lienkamp/ Prof. Dr.-Ing. Boris Lohmann



Lecture Overview

1 Introduction: Artificial Intelligence	6 Pathfinding: From British Museum to A*	11 Reinforcement Learning
18.10.2018 – Betz Johannes	29.11.2018 – Lennart Adenaw	17.01.2019 – Christian Dengler
Practice 1	Practice 6	Practice 11
18.10.2018 – Betz Johannes	29.11.2018 – Lennart Adenaw	17.01.2019 – Christian Dengler
2 Perception	7 Introduction: Artificial Neural Networks	12 Al-Development
25.10.2018 – Betz Johannes	06.12.2018 – Lennart Adenaw	24.01.2019 – Johannes Betz
Practice 2	Practice 7	Practice 12
25.10.2018 – Betz Johannes	06.12.2018 – Lennart Adenaw	24.01.2019 – Johannes Betz
3 Supervised Learning: Regression	8 Deep Neural Networks	13 Guest Lecturer
08.11.2018 – Alexander Wischnewski	13.12.2018 – Jean-Michael Georg	07.02.2019 – Rasmus Rothe
Practice 3 08.11.2018 – Alexander Wischnewski	Practice 8 13.12.2018 – Jean-Michael Georg	
4 Supervised Learning: Classification 15.11.2018 – Jan Cedric Mertens	9 Convolutional Neural Networks 20.12.2018 – Jean-Michael Georg	
Practice 4 15.11.2018 – Jan Cedric Mertens	Practice 9 20.12.2018 – Jean-Michael Georg	
5 Unsupervised Learning: Clustering 22.11.2018 – Jan Cedric Mertens	10 Recurrent Neural Networks 10.01.2019 – Christian Dengler	
Practice 5 22.11.2018 – Jan Cedric Mertens	Practice 10 10.01.2019 – Christian Dengler	

Objectives for Lecture 12: AI-Development

Depth of understanding

After the lecture you are able to	Remember	Understand Apply	Analyze	Evaluate	Develop
remember the pipeline for developing DL algorithms					
apply transfer learning regarding a given problem					
apply data augmentation to a given set of data					
remember the important facts of the single and multiple GPU usage in the field of DL		-			
analyze results from the training of DL algorithm and evaluate the hyperparameter regarding the performance of the algorithm					
analzye results from the inference of a DL algorithm and evaluate the algorithm regarding his performance					

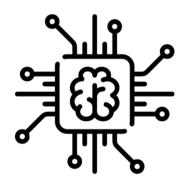
Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

Agenda

1. Chapter: Al-Development Pipeline

- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: AI-Inference
- 8. Chapter: Summary



AI-Development

What society thinks I do



What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

In [1]: import keras Using TensorFlow backend.

What I actually do

Deep Learning

Source: http://p.migdal.pl/2017/04/30/teaching-deep-learning.html

Al-Development – General Al-Development Pipeline

- 1. What kind of **problem** do I have?
- What kind of machine learning method can I use: Regression, Classification, Clustering?
- 3. If i need **deep learning**, what kind of neuronal networks are useful regarding the problem I have?
- 4. Which **programming language** do I have to use?
- 5. Do i have **enough data** for the problem?
- 6. Can i **vary the data** I have?
- 7. Do i have **small scale GPU Power** for first shots?
- 8. Do i know how to **vary my hyperparamters**?
- 9. Is my problem too big but scalable so I need **multiple GPUs**?
- 10. What hardware do I need for the **inference**?
- 11. Is my hardware **connectable** with other hardware?

ТШ

Al-Development – Specific ANN-Development Pipeline **Transfer Learning ANN Framework** no **ANN Defintion** Hyperparamter yes Training **ANN Training** Tuning Over/ underfitting? Data Validation **Finished ANN**

no

Good results?

yes

Al-Development – Be aware!

Before you start to develop:

Think through the whole general pipeline first!
 DL Development ≠ DL Training ≠ DL Inference

General Scaling up:

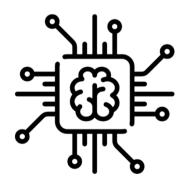
- 1. Make bigger models: More Layers, bigger Layers,...
- 2. Tackle more data: More data, variation of data, data augmentation,...
- Reduce research cycle time with fast computing: Parallel computing, GPU usage...

Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

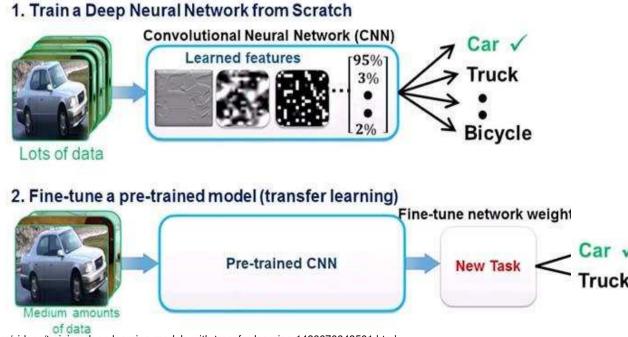
Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: AI-Inference
- 8. Chapter: Summary



Transfer Learning

- When you tackeling a new problem with an ANN, it might help to look at existing ANNs that were built for a similar task
- Accelerate your work: People but a lot of effort in developing the architecture and training the ANN
- Take this ANN and adjust it for your problem

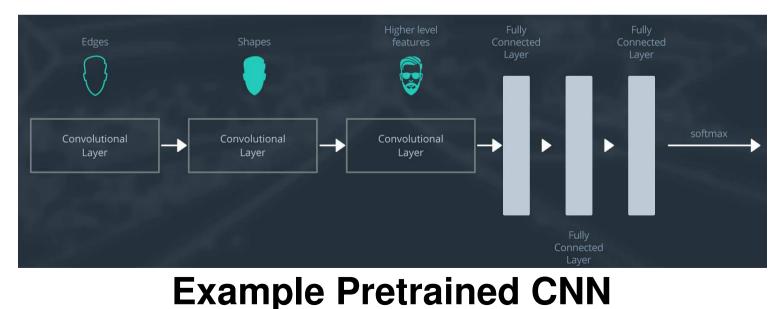


Source: https://de.mathworks.com/videos/training-deep-learning-models-with-transfer-learning-1486670648501.html

Transfer Learning

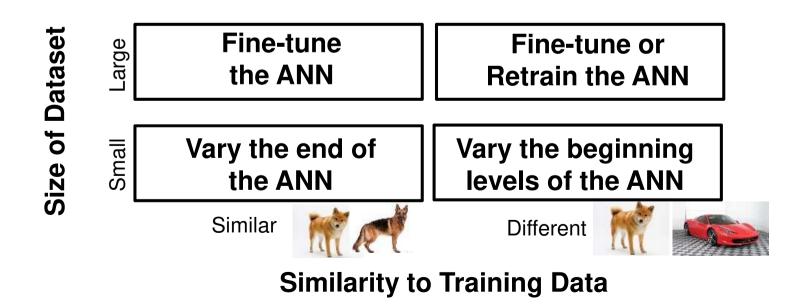
Examples:

- AlexNet: CNN for classification
- VGG: CNN for classification
- GoogLeNet: CNN for classification and detection
- **MobileNet:** ObjectDetection, Object Classification, Landmark Recognition



Transfer Learning – What can we do?

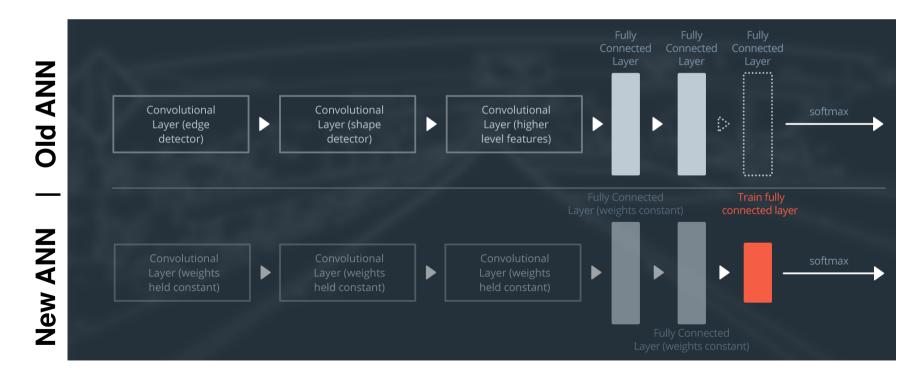
- **1. Vary Layers:** Vary layer in the end or the beginngy of the ANN, the rest of the network remains fixed
- 2. Finetuning: Train the entire network end-to-end, start with pretrained weights
- **3. Training from scratch:** Train the entire network end-to-end, start from **random** weights



Transfer Learning – Small Data Set & Similar Data

Consider vary the end of the ANN when ...

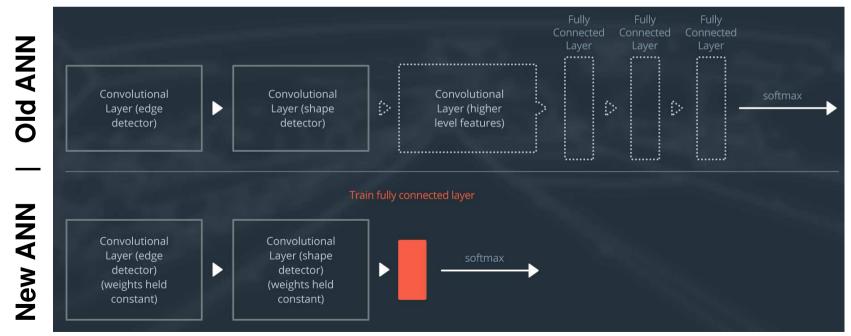
... the new dataset is small and similar to the original dataset. The higher-level features learned from the original dataset should transfer well to the new dataset.



Transfer Learning - Small Data Set & Different Data

Consider vary the beginning of the ANN when ...

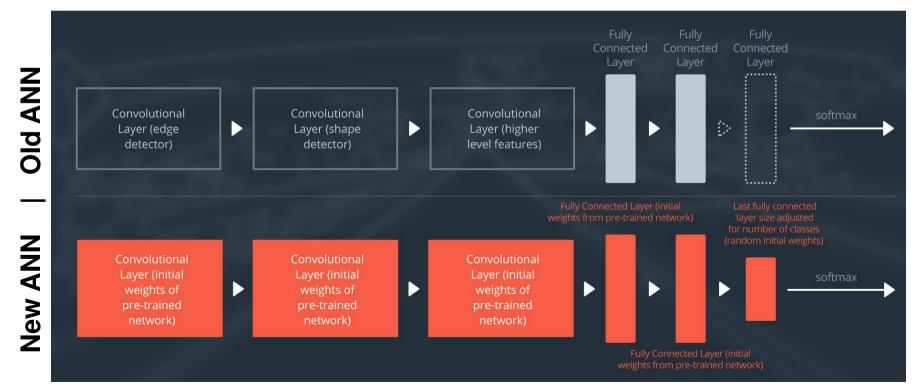
...the new dataset is small and very different from the original dataset. You could also make the case for training from scratch. In this case we will only use features from the first few layers of the pre-trained network \rightarrow features from the final layers of the pre-trained network might be too specific to the original dataset.



Transfer Learning - Large Data Set & Similar Data

Consider finetuning when ...

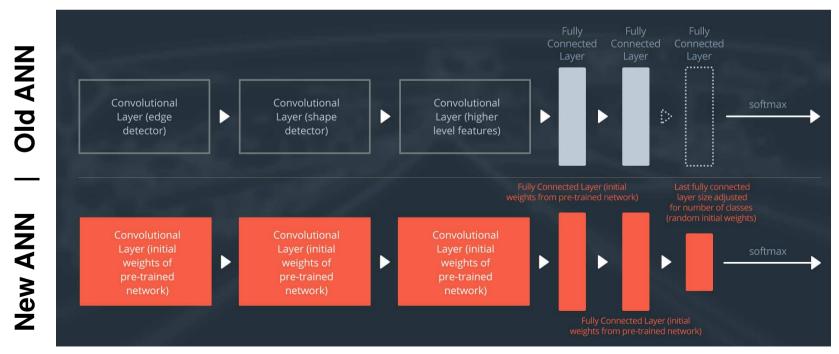
... the new dataset is large and similar to the original dataset. Altering the original weights should be safe because the network is unlikely to overfit the new, large dataset.



Transfer Learning – Large Data Set & Different Data

Consider training from scratch when ...

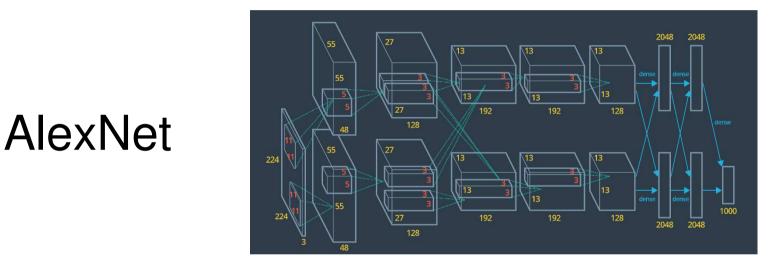
... the dataset is large and very different from the original dataset. In this case we have enough data to confidently train from scratch. However, even in this case it might be beneficial to initialize the entire network with pretrained weights and finetune it on the new dataset.

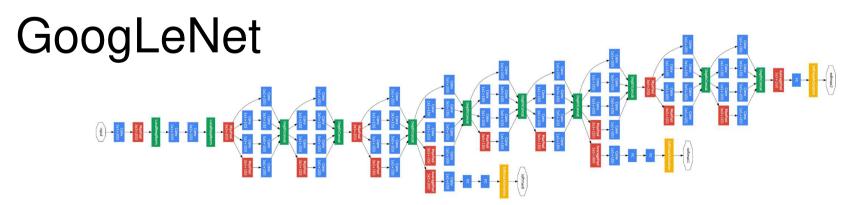


Additional Slide

Keep in mind that for a lot of problems you won't need an architecture as complicated and powerful as VGG, Inception, or ResNet.

These architectures were made for the task of classifying thousands of complex classes. A smaller network might be a better fit for a smaller problem, especially if you can comfortably train it on moderate hardware.



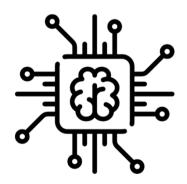


Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: Al-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: Al-Inference
- 8. Chapter: Summary

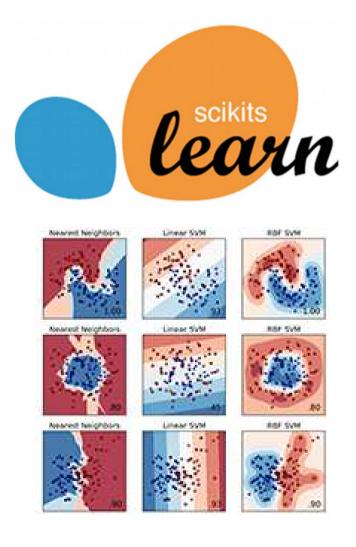


AI-Frameworks – Whats that ?

- Al software can be developed from scratch, but it is tediously and complex
- A lot of people put time and effort in the development computer programs, application programming interface (APIs), libraries and software frameworks, which make the development much easier
 → USE IT !!!!
- A software framework is an abstraction in which software providing generic functionality can be selectively changed by additional user-written code
 - The software framework provides a standard way to build and deploy applications
 - Better then normal library: Inversion of control, extensibility, non modifiable framework code

AI-Frameworks – Scikit-learn Library

- Free software framework
- Machine Learning Library
- Language: Python, C, C++
- Operating System: Linux, macOS, Windows
- Includes: Clustering, Regression, Clustering with algorithms like SVM, Nearest Neighbors, Gaussian Process, Decision Trees
- Pros: Everything you need, Good Documentation, powerful, GPU boost
- Cons: Not for hardcore statistics, limited in parameters



AI-Frameworks – Matlab

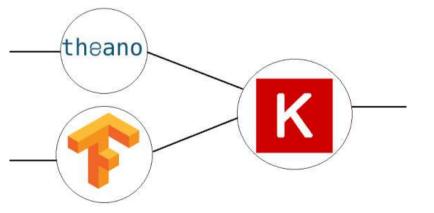
- Commercial Software (Free for students)
- Machine and Deep Learning Toolbox
- Language: Matlab, Simulink
- Operating System: Linux, macOS, Windows
- Includes:
 - Machine Learning
 - Deep Learing
- Pros: Easy to use, good documentation, GPU boost
- Cons: Closed Environment, Performance

AI-Frameworks – Tensorflow

- Free software framework
- Deep Learning software framework
- Language: Python, C++
- Operating System: Linux, macOS, Windows
- Includes: CNN, RNN, → Voice and image recognition
- Pros: High performance, multiple GPU, connects research and Production, true portability, tensorboard for visualization, good documentation
- Cons: Hard to learn in comparison to other frameworks

AI-Frameworks – Keras

- Free software framework
- Neural network library
- Language: Python
- Operating System: Linux, macOS, Windows
- Includes: Neural Network interface for CNN and RNN – Speach recognition, image classification
- Pros: Makes Tensorflow and Theano easier to use, easy prototyping, fully configurable modles, GPU support
- Cons: It might be too high-level and not always easy to customize



AI-Frameworks – Caffe and Caffe 2

- Free software framework
- Deep Learning software framework
- Language: C, C++, Python, MATLAB
- Operating System: Linux, macOS, Windows
- Includes: CNN
- Pros: Pre-trained networks available, fast and scalable, GPU usage
- Cons: a few input formats and only one output format, no exact layer definition like Tensorflow

facebook

AI-Frameworks – mxnet

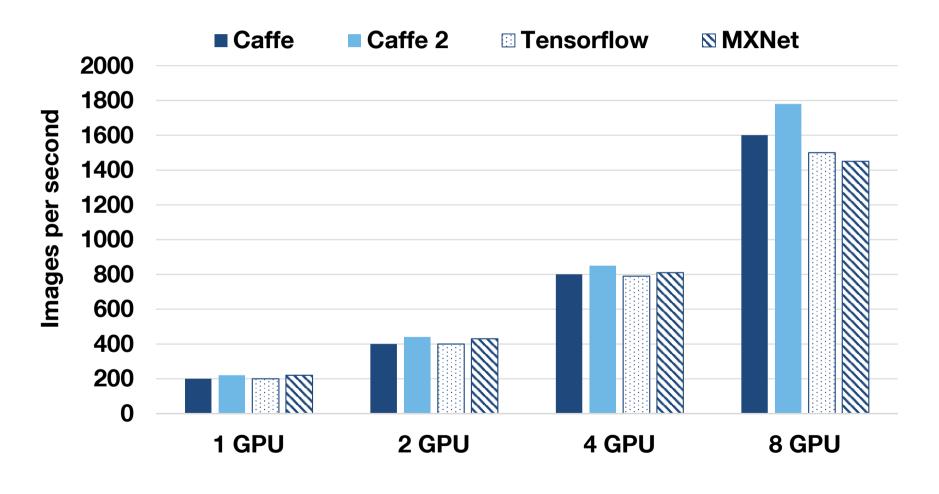
- Free software framework
- Deep Learning software framework
- Language: Python, C++, Javascript, R,....
- Operating System: Linux, macOS, Windows
- Includes: CNN, RNN, LSTM
- Pros: Fast and flexible, GPU support, can run on any device (productivity), highly scalable, different languages
- Cons: Small community

Additional Slide

	Languages	Tutorials and training materials	CNN modeling capability	RNN modeling capability	Architecture: easy-to-use and modular front end	Speed	Multiple GPU support	Keras compatible
Theano	Python, C++	++	++	++	+	++	+	+
Tensor- Flow	Python	+++	+++	++	+++	++	++	+
Torch	Lua, Python (new)	+	+++	++	++	+++	++	
Caffe	C++	+	++		+	+	+	
MXNet	R, Python, Julia, Scala	++	++	+	++	++	+++	
Neon	Python	+	++	+	+	++	+	
CNTK	C++	+	+	+++	+	++	+	

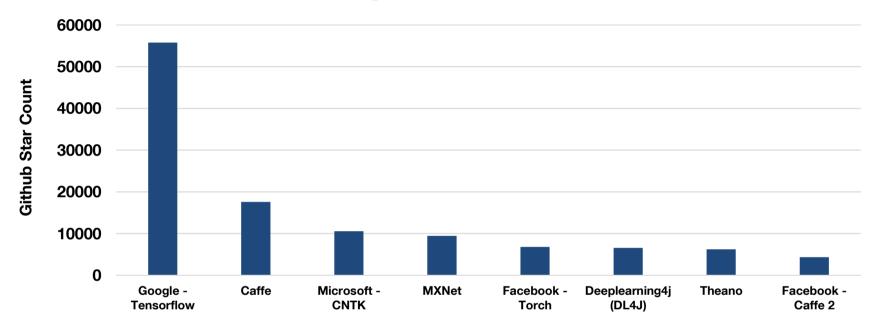
Quelle: https://www.datasciencecentral.com/profiles/blogs/open-source-deep-learning-frameworks-and-visual-analytics

AI Frameworks - Comparison



RESNET-50 FP32 Performance

AI Frameworks - Comparison



new	contributors	from 2017-02-11 to 2017-04-12	new	forks	from	2017-02-11	to 2017-04-12
#1:	131	tensorflow/tensorflow	#1:	4192			tensorflow/tensorflow
#2:	63	fchollet/keras	#2:	991			fchollet/keras
#3:	51	pytorch/pytorch	#3:	810			BVLC/caffe
#4:	49	dmlc/mxnet	#4:	517			<pre>deeplearning4j/deeplearning4j</pre>
#5:	18	Theano/Theano	#5:	414			dmlc/mxnet
#6:	11	BVLC/caffe	#6:	307			pytorch/pytorch
#7:	11	Microsoft/CNTK	#7:	244			Microsoft/CNTK
#8:	9	tflearn/tflearn	#8:	211			tflearn/tflearn
#9:	9	pfnet/chainer	#9:	134			torch/torch7
#10:	8	torch/torch7	#10:	131			Theano/Theano
#11:	5	<pre>deeplearning4j/deeplearning4j</pre>	#11:	116			baidu/paddle
#12:	4	NVIDIA/DIGITS	#12:	88			NVIDIA/DIGITS
#13:	3	baidu/paddle	#13:	55			pfnet/chainer

Source: https://www.cio.com/article/3193689/artificial-intelligence/which-deep-learning-network-is-best-for-you.html / http://p.migdal.pl/2017/04/30/teaching-deep-learning.html

Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

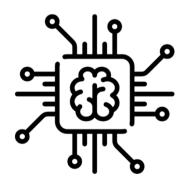
Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: AI-Inference
- 8. Chapter: Summary

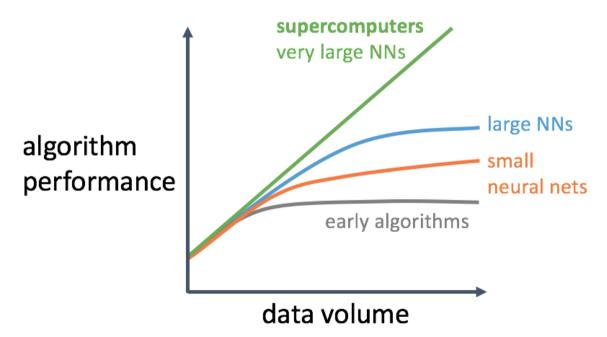
٦Π



Data

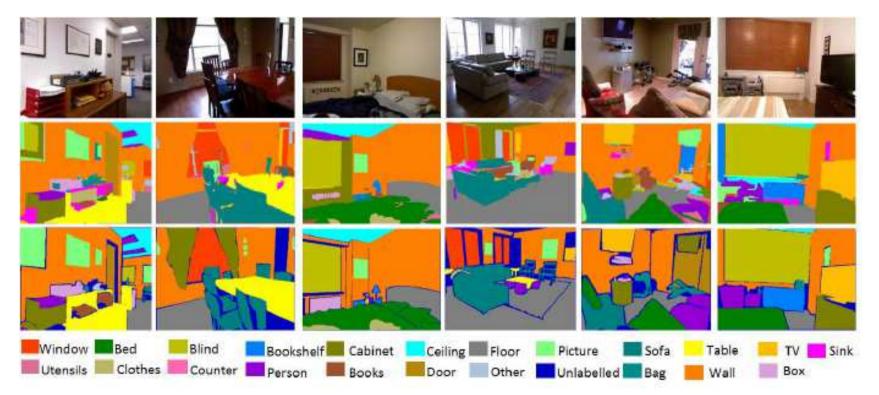
Data is the crucial part of Machine Learning:

- We need **data** for training our algorithms
- We need labeled data for training our algorithms
- We need more and different data for not overfitting our training
- We need even more data for good regression, clustering, classification



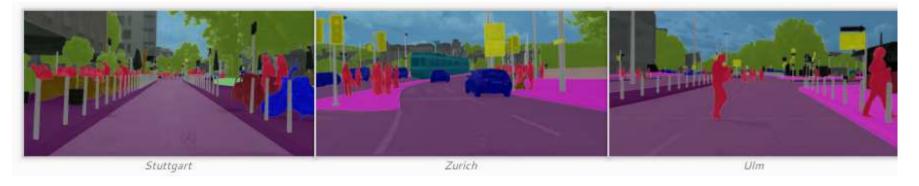
Data – Labeled Datesets

- We need data that is labeled
- Label = What does the data include?
- The more specific, the better the regression, classification, clustering



Data – Labeled Datesets

- 1. Search for datasets online, other people have done a lot in this area
 - **Cityscapes:** Pixel based label of streets
 - Kitti Dataset: Pixeld based label of over 5000 pictures
 - Berkeley Deep Drive: Labeld pictures of streets, GPS locations, IMU data...



- 2. Create your own dataset
 - Aggregate your data
 - Label the data with the information you want to be later detected
 - Takes a lot of time

Data – Labeled Datesets

\equiv Forbes

À

167,739 views | Jan 17, 2019, 12:35 pm

Was The Facebook '10 Year Challenge' A Way To Mine Data For Facial Recognition AI?

Nicole Martin Contributor (i)

Al & Big Data I write about technology, data and privacy.

Source: https://www.sadanduseless.com/ten-year-challenge/ https://www.forbes.com/sites/nicolemartin1/2019/01/17/was-the-facebook-10-year-challenge-a-way-to-mine-data-for-facialrecognition-ai/#27e43bcf5859

Additional Slide

<u>Berkeley DeepDrive</u> - Explore 100,000 HD video sequences of over 1,100-hour driving experience across many different times in the day, weather conditions, and driving scenarios. Our video sequences also include GPS locations, IMU data, and timestamps.

<u>Udacity</u> - Udacity driving datasets released for <u>Udacity Challenges</u>. Contains ROSBAG training data. (~80 GB).

<u>Comma.ai</u> - 7 and a quarter hours of largely highway driving. Consists of 10 videos clips of variable size recorded at 20 Hz with a camera mounted on the windshield of an Acura ILX 2016. In parallel to the videos, also recorded some measurements such as car's speed, acceleration, steering angle, GPS coordinates, gyroscope angles. These measurements are transformed into a uniform 100 Hz time base.

<u>KITTI Vision Benchmark Suite</u> - 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as highresolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system.

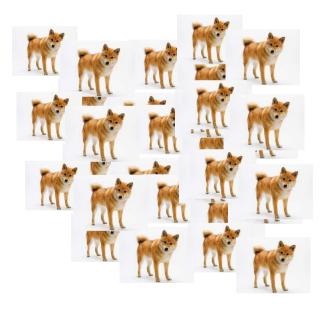
<u>University of Michigan North Campus Long-Term Vision and LIDAR Dataset</u> - consists of omnidirectional imagery, 3D lidar, planar lidar, GPS, and proprioceptive sensors for odometry collected using a Segway robot. pedestrian, cyclist, lanemarking.

<u>Cityscape Dataset</u> - focuses on semantic understanding of urban street scenes. large-scale dataset that contains a diverse set of stereo video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames in addition to a larger set of 20 000 weakly annotated frames. The dataset is thus an order of magnitude larger than similar previous attempts. Details on annotated classes and examples of our annotations are available.

MIT AGE Lab - a small sample of the 1,000+ hours of multi-sensor driving datasets collected at AgeLab.

Data – Check your dataset

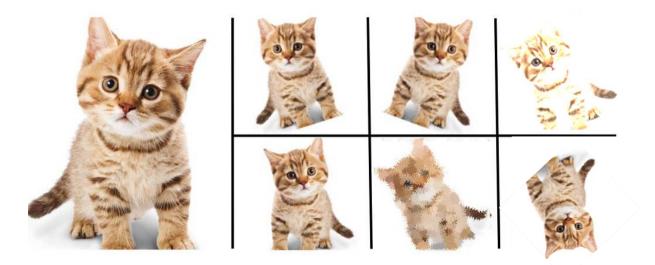
Is there a bias in your dataset? If yes, it will impact the training



1000 dogs

Data – More data with data augmentation

How to use Deep Learning when you have limited data?



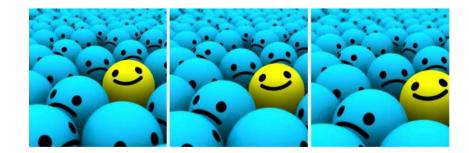
Enlarge your available Dataset with Data Augmentation

Data – More data with data augmentation

1. Flip the images

2. Rotate the images

3. **Scale** the images outward or inward



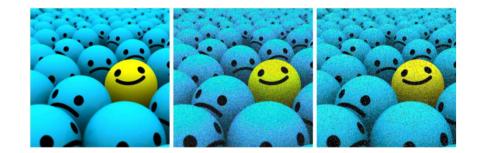
Data – More data with data augmentation

4. **Crop**



5. **Translation** of objects in x,y-position

6. Gaussian Noise



Data – More data with data augmentation

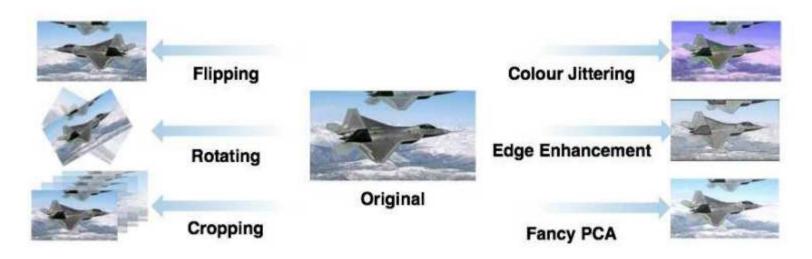
Original photo

Reference photo

Result

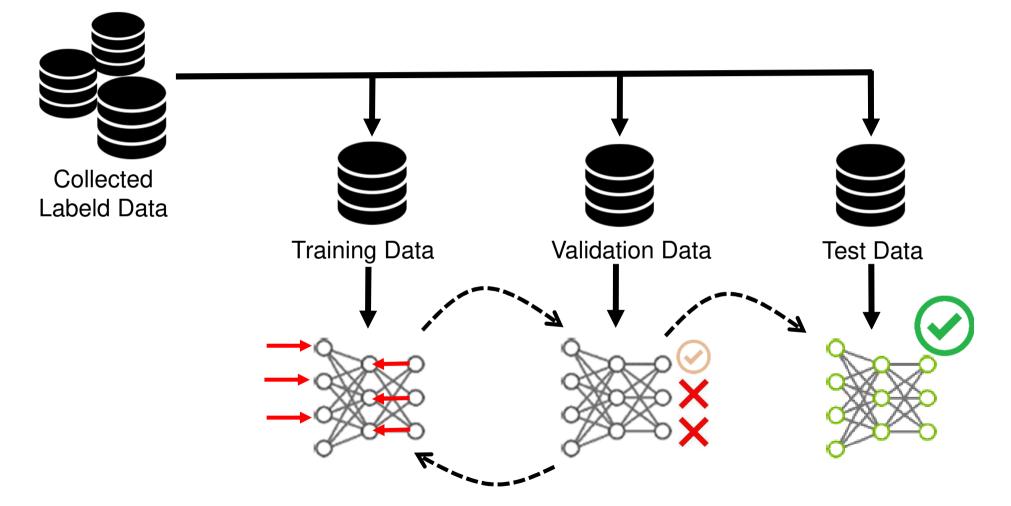
7. **Deep Photo Style Transfer:** Transform one image from one domain to an image to another domain using Deep Learing

Data – Improvement with data augmentation



	Top-1 Accuracy	Top-5 Accuracy	
Baseline	$48.13 \pm 0.42\%$	$64.50 \pm 0.65\%$	
Flipping	$49.73 \pm 1.13\%$	$67.36 \pm 1.38\%$	
Rotating	$50.80 \pm 0.63\%$	$69.41 \pm 0.48\%$	
Cropping	ropping $61.95 \pm 1.01\%$ $79.10 \pm 0.$		
Color Jittering $49.57 \pm 0.53\%$ $67.18 \pm 0.53\%$		$67.18 \pm 0.42\%$	
Edge Enhancement $49.29 \pm 1.16\% = 66.49 \pm 0.000$		$66.49 \pm 0.84\%$	
Fancy PCA	$49.41 \pm 0.84\%$	$67.54 \pm 1.01\%$	

Data – Provide the data in your dataset



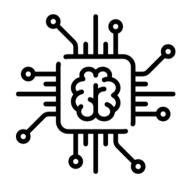
Split your data into Training (60%), Validation (20%) and test (20%) dataset

Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

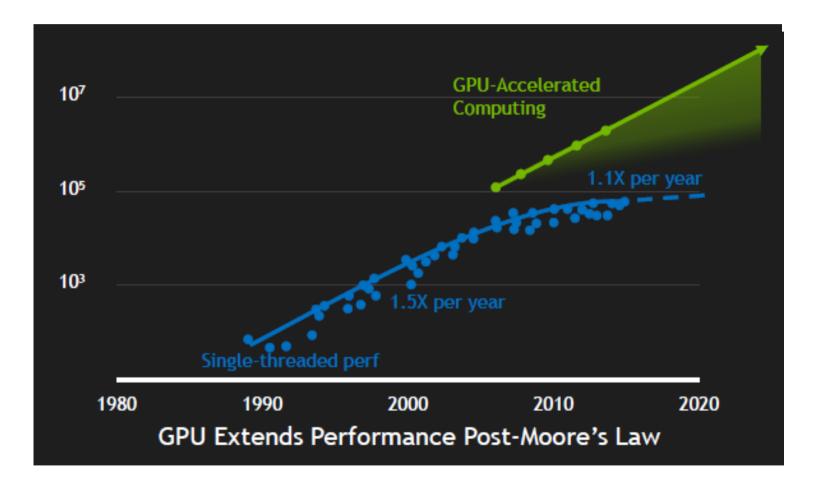
(Johannes Betz, M. Sc.)

Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: AI-Inference
- 8. Chapter: Summary



GPU Computing – What is a GPU?

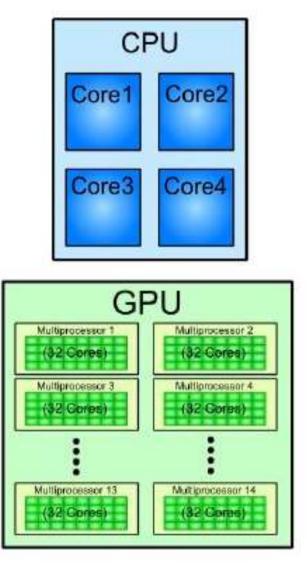


GPU Computing – What is a GPU?

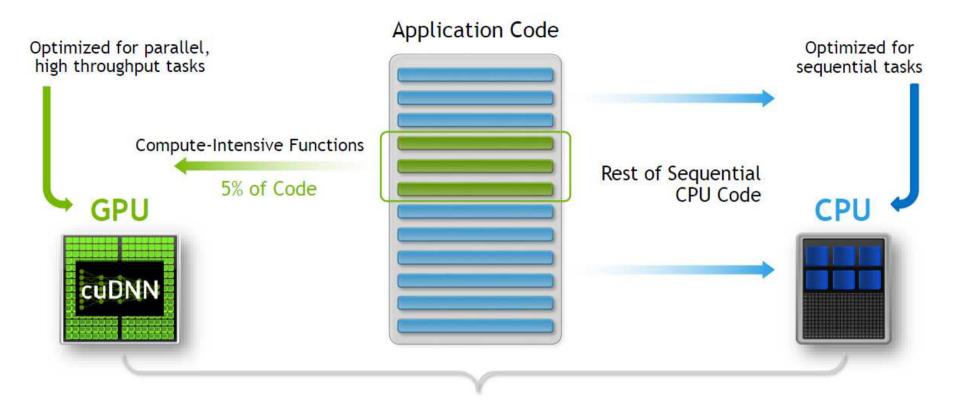
- A GPU is an **Graphical Processing Unit**
- Specialized electronic circuit design
- Rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer
- By 2012, GPUs had evolved into highly parallel multi-core systems allowing very efficient manipulation of large blocks of data.
- This design is more effective than generalpurpose central processing unit (CPUs) for algorithms in situations where processing large blocks of data is done in parallel, such as:
 - Push-relabel maximum flow algorithm
 - Fast sort algorithms of large lists
 - Two-dimensional fast wavelet transform
 - Molecular dynamics simulations
 - Artificial Neural Networks

Source: https://www.vrnerds.de/nvidia-pascal-ab-27-mai/ https://www.notebookcheck.net/Like-AMD-Nvidia-promises-to-ramp-up-GPU-production.282024.0.html

GPU Computing – What is a GPU?



Additional Slide



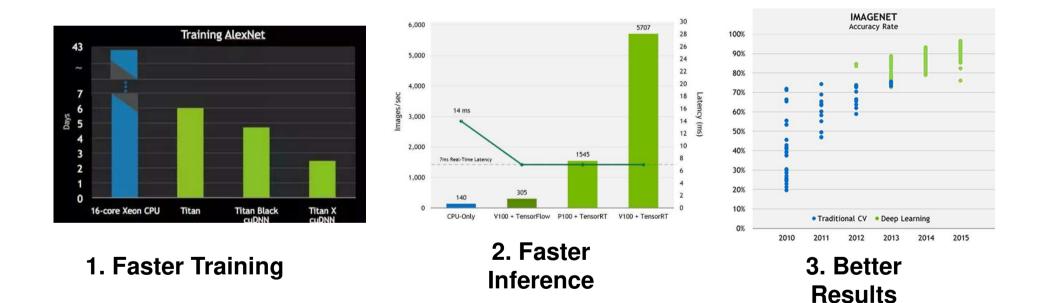
GTX 1080 Ti

GPU Engine Specs CUDA Cores

3584 Graphics Clock (MHz) 1480 Processor Clock (MHz) 1582

Memory Specs Standard Memory Config 11 GB GDDR5X Memory Interface Width 352-bit Memory Bandwidth (GB/sec) 11 Gbps

GPU Computing – Why a GPU for DL?



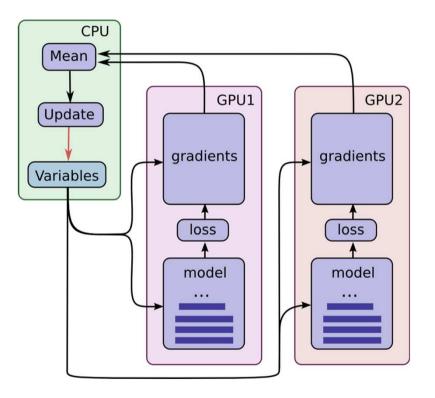
Source: https://www.quora.com/Would-the-success-of-deep-learning-have-been-possible-without-GPUs-and-CUDA/ https://www.tomshardware.co.uk/nvidia-ai-technology-improves-efficiency,news-56853.html

GPU Computing – Nvidia GPU for DL

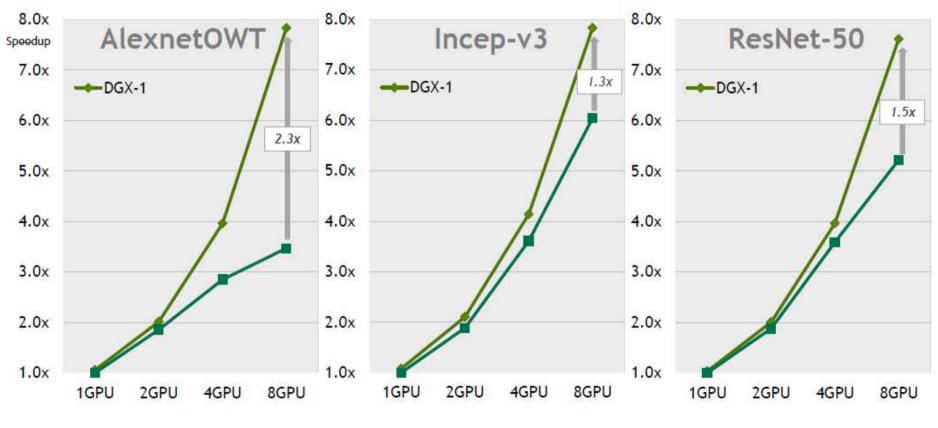
- Using the NVIDIA hard- and software for your DL development
- NVIDIA is one of the leading GPU manufacteres
- NVIDIA is one of the leading Deep Learning developer and is building a complete Environment

GPU Computing – Mulitple GPU

- What is better than training faster on One GPU? → Training on Multiple GPUs!
- You can either use a normal PC with a motherboard that fits multiple GPUs (2x, 3x, 4x) or use a special GPU Cluster (NVIDIA DGX-1)
- Multi-GPU can be used in different ways:
 - Use a single GPU for the training of specific
 Hyperparamter set and do the same on the others
 - Use multiple GPUs for simultanous calculation → Takes time to adjust the model



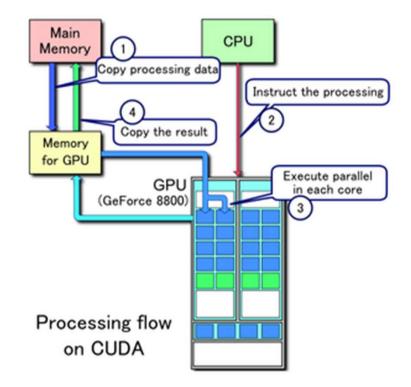
GPU Computing – Mulitple GPU Training



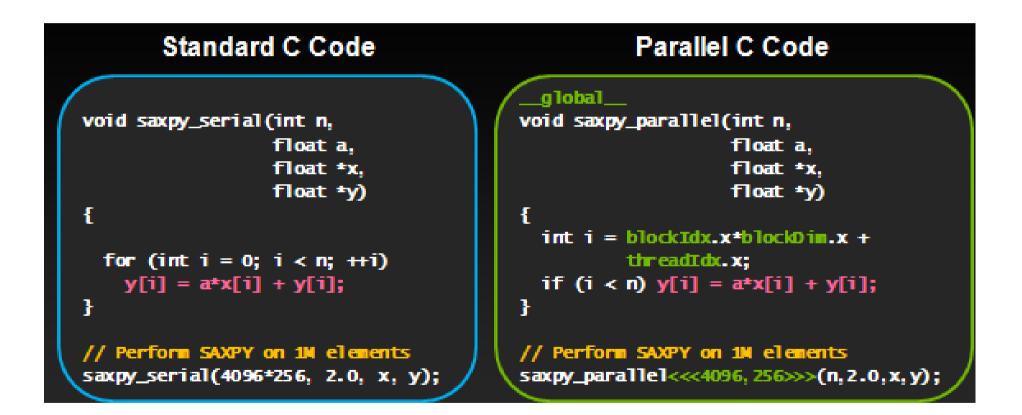
Multiple GPU: DGX vs. Normal Motherboard

GPU Computing – Cuda

- CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia.
- It allows to use a CUDAenabled GPU for general purpose processing
- The CUDA platform is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements, for the execution of compute kernels
- Programming languages in C, C++
- Full support for integer and bitwise operations, including integer texture lookups
- Unified Memory



GPU Computing – Cuda

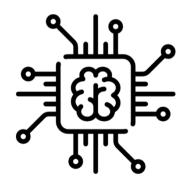


Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: Al-Inference
- 8. Chapter: Summary



Hyperparamter Tuning – Whats that?

- When we train the ANN, we focus on not overfitting in the training loss and getting a good evaluation at the end
- To achieve that, we can vary different paramters for the training of the ANN → These are the Hyperparameters
- The tuning of the Hyperparameters is the "magic" behind a good ANN and changes the ANN from a Black Box to a system we can understand
- Hyperparamter Tuning is nothing official, more like a "best practice" or a "tipps and tricks" collection

Important: Hyperparameter tuning differs from problem to problem!!!

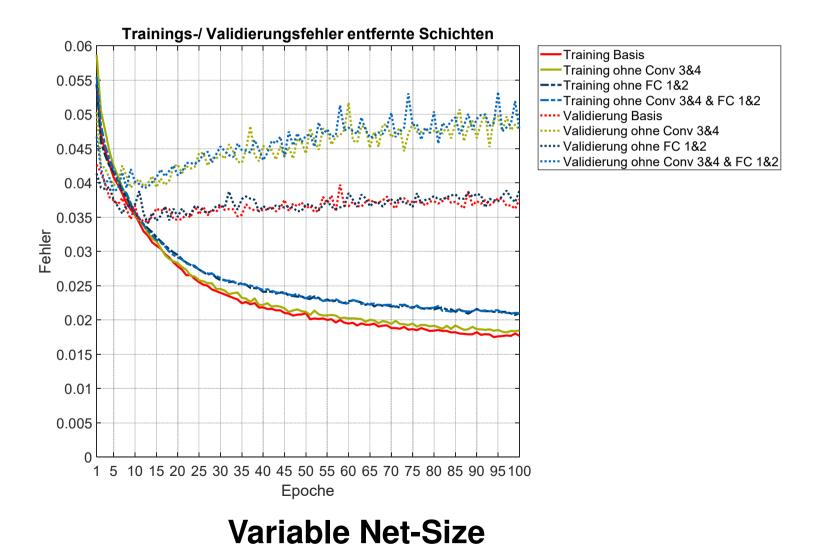
Hyperparamter Tuning – Whats that?

Things you can vary in your ANN:

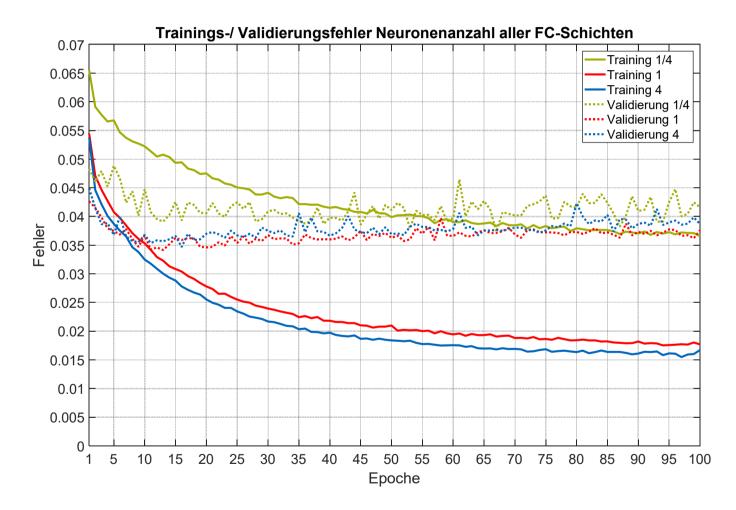
- Number of hidden layers
- Number of fully connected layers
- Number of neurons in one layer
- Number of training epochs
- Weight Initialization
- Learning rate
- Batch size
- Activation function
- Dropout Rate
-

→ Usage of optimization algorithms for hyperparamter tuning possible

Hyperparamter Tuning – Size of the net

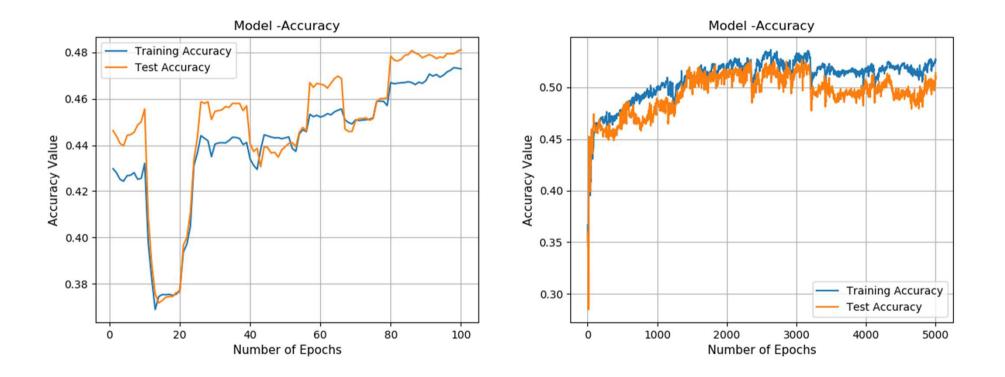


Hyperparamter Tuning – Size of the net



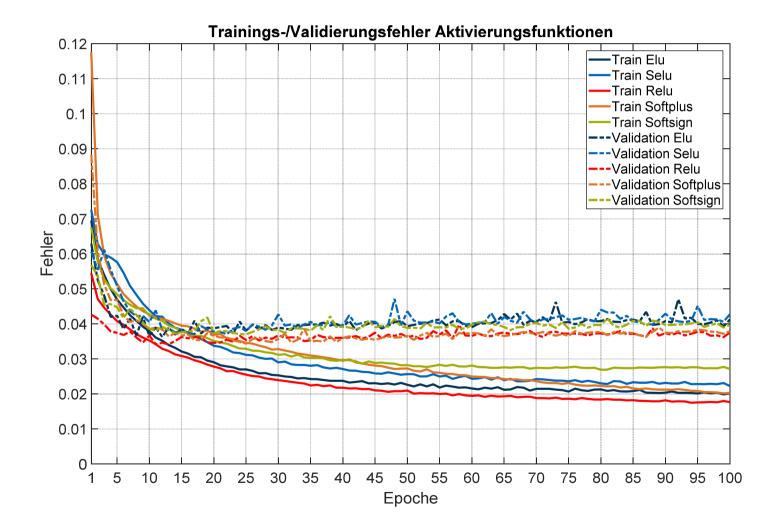
Variable Number of Neurons

Hyperparamter Tuning – Number of Epochs

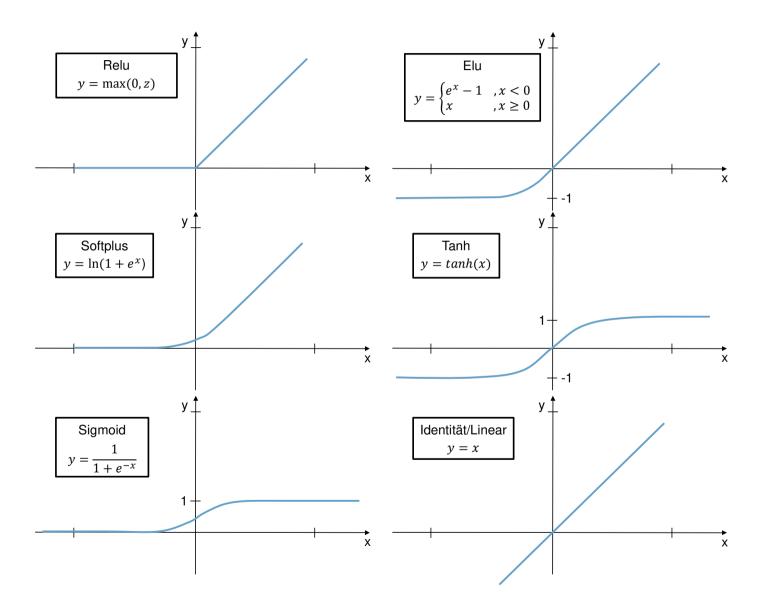


Same ANN structure, Same Input Data, Different Epochs

Hyperparamter Tuning – Activation Function

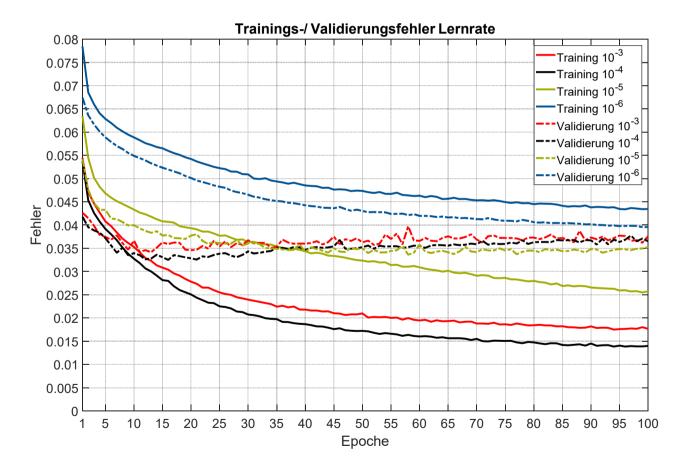


Additional Slide

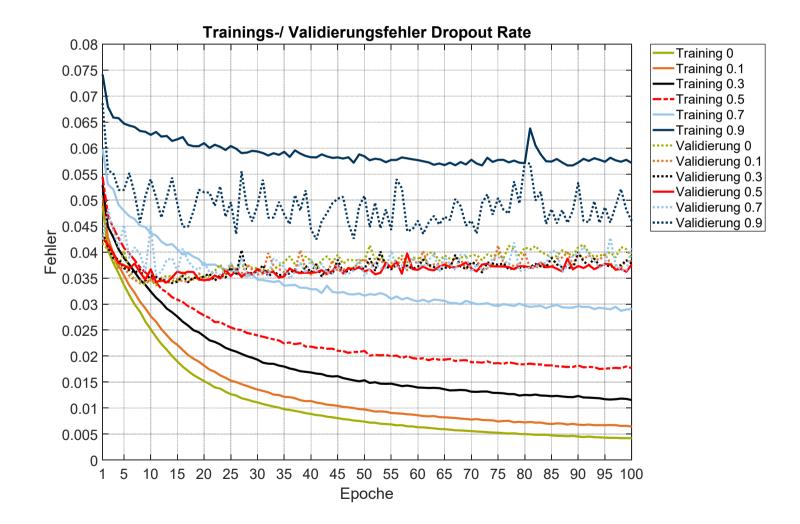


60

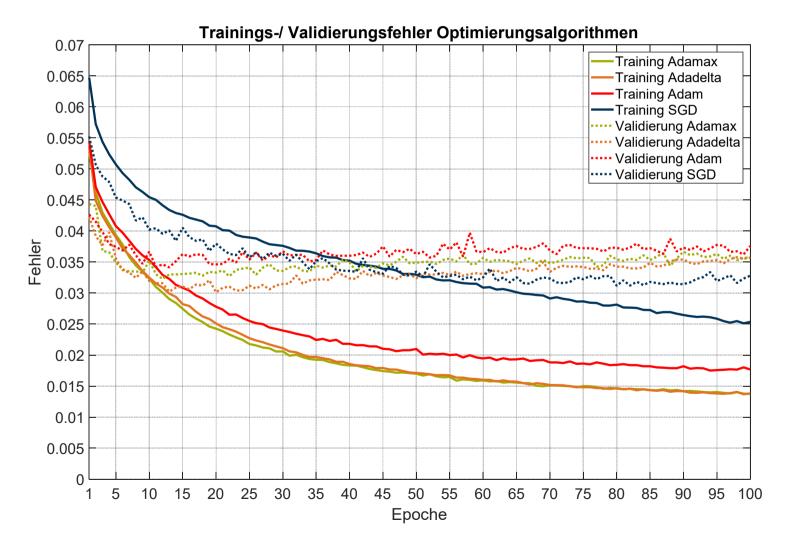
Hyperparamter Tuning – Learningrate



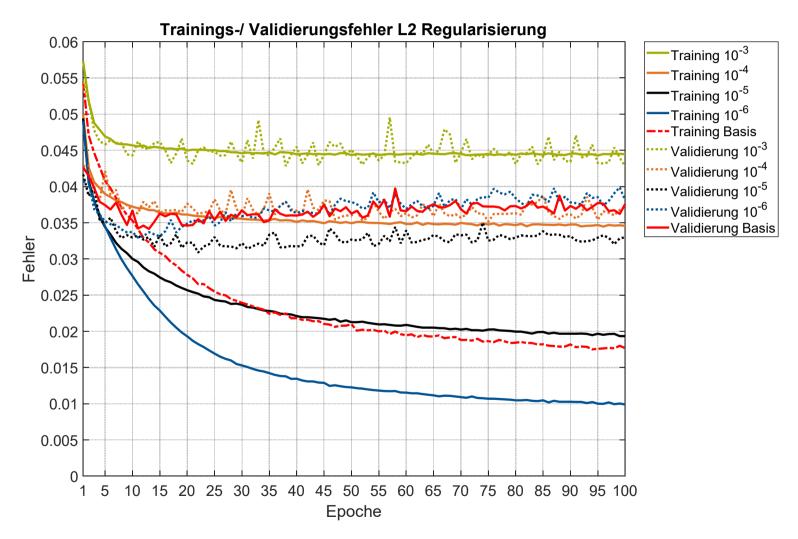
Hyperparamter Tuning – Dropout



Hyperparamter Tuning – Optimization Function



Hyperparamter Tuning – Regularization

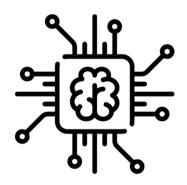


Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

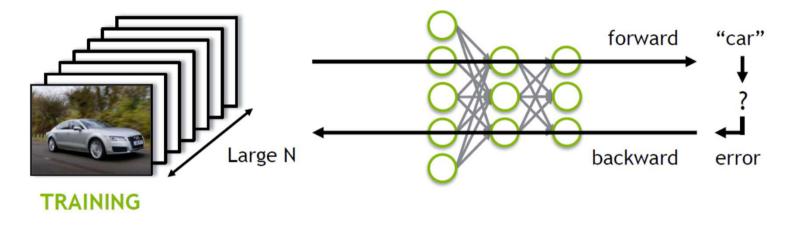
(Johannes Betz, M. Sc.)

Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: Al-Inference
- 8. Chapter: Summary



AI-Inference – What is Inference?



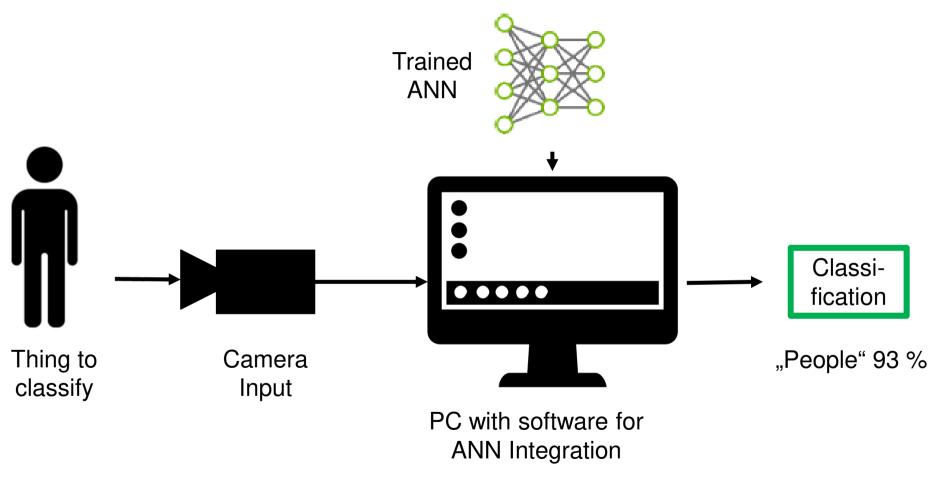
Inference: The actual application and usage of your ANN

Additional Slide

Both DNN training and Inference start out with the same *forward propagation* calculation, but training goes further. As Figure 1 illustrates, after forward propagation, the results from the forward propagation are compared against the (known) correct answer to compute an error value. A *backward propagation* phase propagates the error back through the network's layers and updates their weights using gradient descent in order to improve the network's performance at the task it is trying to learn. It is common to batch hundreds of training inputs (for example, images in an image classification network or spectrograms for speech recognition) and operate on them simultaneously during DNN training in order to prevent overfitting and, more importantly, amortize loading weights from GPU memory across many inputs, increasing computational efficiency.

For inference, the performance goals are different. To minimize the network's end-to-end response time, inference typically batches a smaller number of inputs than training, as services relying on inference to work (for example, a cloud-based image-processing pipeline) are required to be as responsive as possible so users do not have to wait several seconds while the system is accumulating images for a large batch. In general, we might say that the per-image workload for training is higher than for inference, and while high *throughput* is the only thing that counts during training, *latency* becomes important for inference as well.

Al-Inference – What is Inference?



Example: Live Image Classification

Source: https://github.com/dusty-nv/jetson-inference

https://www.google.de/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj7oZOz7LncAhUGmrQKHThBDIMQjRx6BAgBEAU&url=https%3A%2F%2Fwww.onlinewebfonts.co 68 m%2Ficon%2F395988&psig=AOvVaw35HUnkc45PR1hxkOdoZQ42&ust=1532594180959688

Al-Inference – Inference Hardware: Nvidia Drive PX2

- Linux Ubuntu based "Mini-Computer" (SoC)
- Automotive Grade!

Tegra X2 Architecture ("Parker")

- 6x ARM Cortex-A57
- 1x 256-core Pascal GPU
- 16GB LPDDR4, 128-bit interface
- Peripherie: USB, HDMI, SATA, UART, SPI, I2C, GPIO,CAN, LIN,...

+Software Package "Driveworks SDK": Cuda, CudNN, TensorRT + Autonomous Driving Functions API

Additional Slide

Software SDK for inference of AI software for autonomous driving

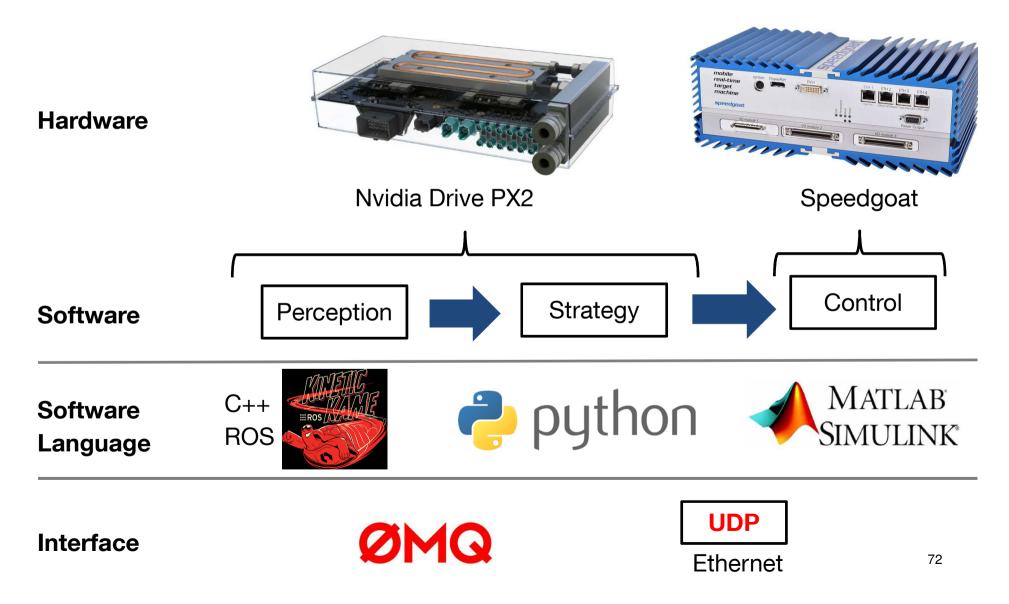
DRIVEWORKS SDK	DETECTION	LOCALIZATION	PLANNING	VISUALIZATION	
	Detection/Classification	Map Localization	Vehicle Control	Streaming to cluster	
	Sensor Fusion	HD-Map Interfacing	Scene understanding	ADAS rendering	
	Segmentation	Egomotion (SFM, Visual Odometry)	Path Planning solvers	Debug Rendering	
System SW	V4L/V4Q, CUDA , cuDNN, NPP, OpenGL,				
Hardware	Tegra , dGPU				
Sensors	Camera, LIDAR, Radar, GPS, Ultrasound, Odometry, Maps				

Nvidia Driveworks SDK

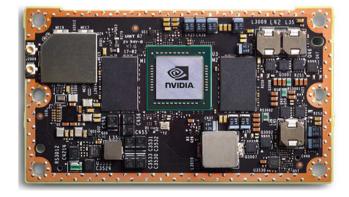
AI-Inference – Inference Hardware: Nvidia Drive AGX

Nvidia Drive AGX Hardware + Driveworks Software SDK

Al-Inference – Project Roborace

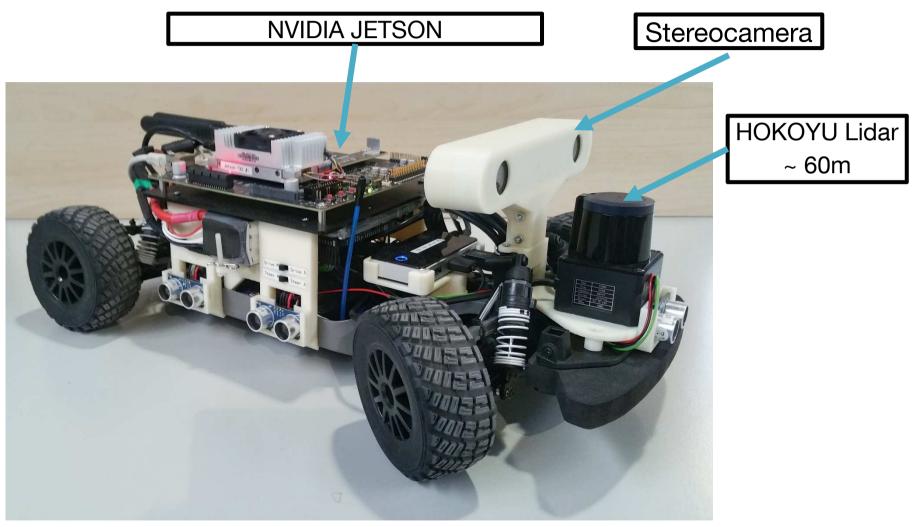


Al-Inference – Inference Hardware: Nvidia Jetson



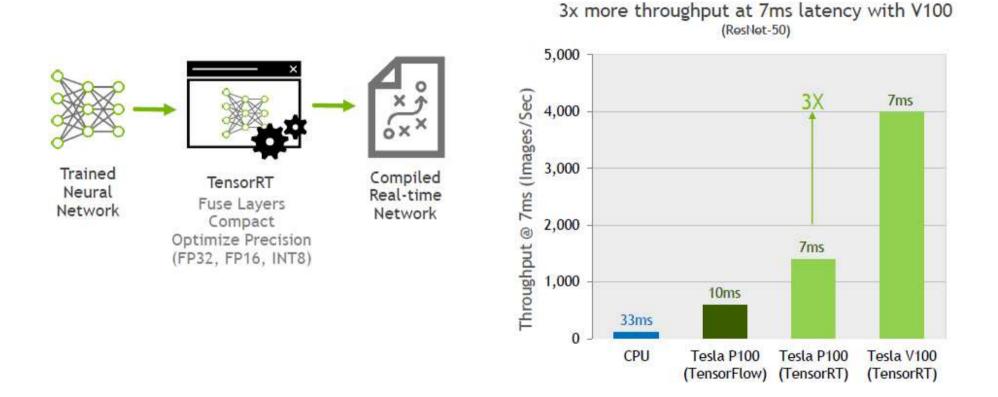
- Linux Ubuntu based "Mini-Computer"
- Size 50x87mm
- Quad-core ARM Cortex-A57
- 256-core Pascal GPU
- 8GB LPDDR4, 128-bit interface
- Peripherie: USB, HDMI, SATA, UART, SPI, I2C, GPIO,....
- Software Package "Jetpack"; Cuda, CudNN, TensorRT,…

Al-Inference – Inference Hardware: Nvidia Jetson



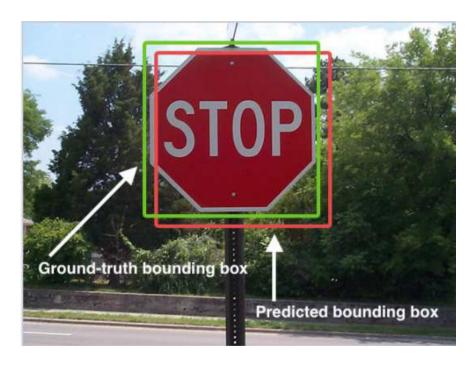
FTM Autonomous RC-Car

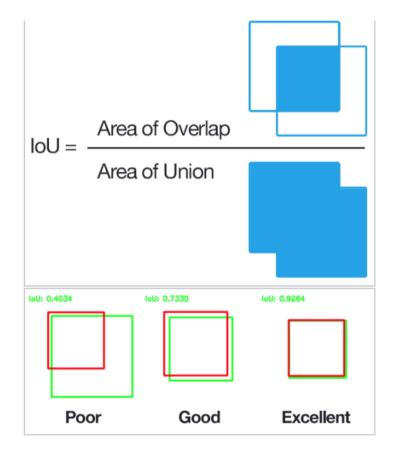
AI-Inference – Fasten the Inference



TensorRT can help to otimize the trained ANN

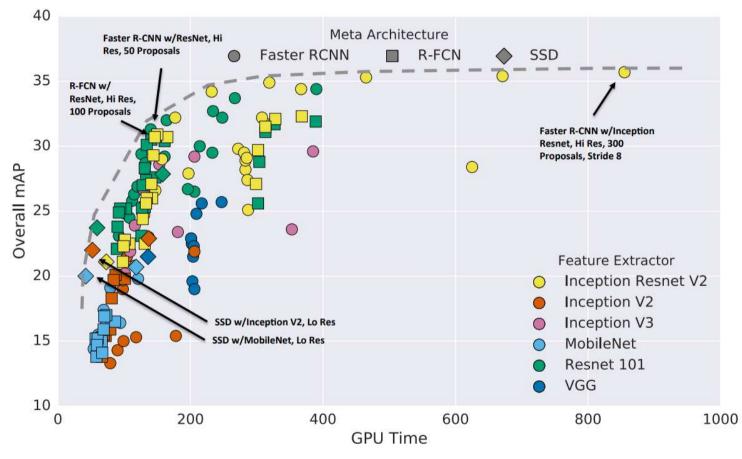
Al-Inference – Rate your Inference





Intersection over Union (IoU)

Al-Inference – Rate your Inference



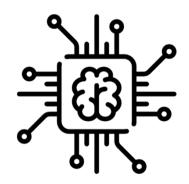
GPU load / Images per second / GPU calculation time / mean average precision (mAP)

Al-Development Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

Agenda

- 1. Chapter: AI-Development Pipeline
- 2. Chapter: Transfer Learning
- 3. Chapter: AI-Frameworks
- 4. Chapter: Data and Labeling
- 5. Chapter: GPU Computing
- 6. Chapter: Hyperparamter Tuning
- 7. Chapter: AI-Inference
- 8. Chapter: Summary



Summary

What did we learn today:

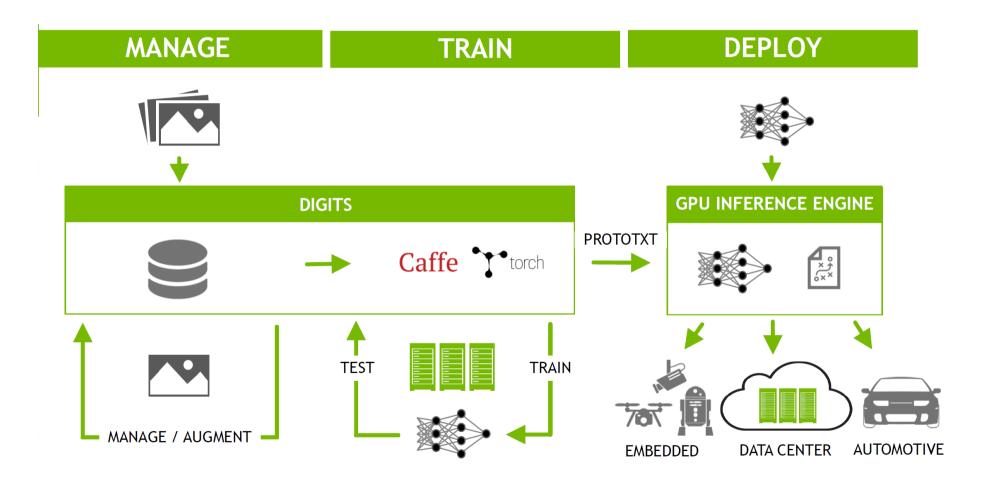
- Deep Learning algorithm development is all about the problem:
 Same same but different
- Take advantage of pre-trained networks and use them for your problem. In addition you can used published ANN architectures for your problem by using transfer learning. You will save a lot time
- There are a lot of **frameworks** for setting up your ANN in code. Check first what do you need (e.g. multiple GPUs, inference hardware) and decide what you want to use
- Be aware of the data you need. Search for labeled datasets first before you acquire your own data
- Data is the crucial part in deep learning:
 - The better and specific your data, the better your results
 - The more data you have, the better your results

Summary

What did we learn today:

- **GPUs** are your number one tool for fast training and fast inference
- Scale your model for training on multiple GPUs
- ANN development is all about hyperparamter tuning. Check the crucial parameters first and try to understand your ANN.
- When your ANN is ready, it is time for the real live experience that we call **Inference**. You can test your ANN model in your application and evaluate it afterwards
- Hardware like the Jetson (embedded) and DrivePX2 (automotive) enable software SDK and GPU accelerated Inference for your development

Summary



ТШ

Guest Lecturer Rasmus Rothe – 07.02.2018

What is the talk about?

- Insights on the differences between academia and industry when applying deep learning
- Technical tricks for building robust real-world deep learning applications
- Advice on how to start an AI company

Rasmus Rothe

- Born in Bremen, 29 years
- PhD in Deep Learning from ETH Zurich, Master from Oxford / Princeton
- Co-Founder and CTO of Merantix, a Berlin-based Al company
- Founded and runs KI Bundesverband
- Founded HackZurich
- World champion in Robocup Junior

Evaluation

ТШ

Evaluation

- In this lecture we are doing in regularly evaluation
- We want **your** feedback for every **individual** session
- We evaluate the session each week
- We give feedback based on the evaluation the week after

Evaluation – Step by Step

- 1. Get out your smartphones
- 2. Open an app for QR-code reading
- 3. Read the following QR-code on the

right side \rightarrow

- 4. Open the website
- 5. Answer the questions
- 6. Send the evaluation

OR

1.Open the following website in your browser: https://evasys.zv.tum.de/evasys/online.php?p=AIAT-12

2. Answer the questions

3.Send the evaluation

