
Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Artificial Intelligence in Automotive Technology

Johannes Betz / Prof. Dr.-Ing. Markus Lienkamp/ Prof. Dr.-Ing. Boris Lohmann

Lecture Overview

1 Introduction: Artificial Intelligence
18.10.2018 – Betz Johannes

6 Pathfinding: From British Museum to A*
29.11.2018 – Lennart Adenaw

11 Reinforcement Learning
17.01.2019 – Christian Dengler

Practice 1
18.10.2018 – Betz Johannes

Practice 6
29.11.2018 – Lennart Adenaw

Practice 11
17.01.2019 – Christian Dengler

2 Perception
25.10.2018 – Betz Johannes

7 Introduction: Artificial Neural Networks
06.12.2018 – Lennart Adenaw

12 AI-Development
24.01.2019 – Johannes Betz

Practice 2
25.10.2018 – Betz Johannes

Practice 7
06.12.2018 – Lennart Adenaw

Practice 12
24.01.2019 – Johannes Betz

3 Supervised Learning: Regression
08.11.2018 – Alexander Wischnewski

8 Deep Neural Networks
13.12.2018 – Jean-Michael Georg

13 Guest Lecturer
07.02.2019 – Rasmus Rothe

Practice 3
08.11.2018 – Alexander Wischnewski

Practice 8
13.12.2018 – Jean-Michael Georg

4 Supervised Learning: Classification
15.11.2018 – Jan Cedric Mertens

9 Convolutional Neural Networks
20.12.2018 – Jean-Michael Georg

Practice 4
15.11.2018 – Jan Cedric Mertens

Practice 9
20.12.2018 – Jean-Michael Georg

5 Unsupervised Learning: Clustering
22.11.2018 – Jan Cedric Mertens

10 Recurrent Neural Networks
10.01.2019 – Christian Dengler

Practice 5
22.11.2018 – Jan Cedric Mertens

Practice 10
10.01.2019 – Christian Dengler

3

Objectives for Lecture 12: AI-Development

Remember Understand Apply Analyze Evaluate Develop

… remember the pipeline for developing DL algorithms

… apply transfer learning regarding a given problem

… apply data augmentation to a given set of data

… remember the important facts of the single and multiple
GPU usage in the field of DL

… analyze results from the training of DL algorithm and
evaluate the hyperparameter regarding the performance of
the algorithm

… analzye results from the inference of a DL algorithm and
evaluate the algorithm regarding his performance

Depth of understanding

After the lecture you are able to…

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

5

AI-Development

Deep Learning
Source: http://p.migdal.pl/2017/04/30/teaching-deep-learning.html

6

AI-Development – General AI-Development Pipeline

1. What kind of problem do I have?

2. What kind of machine learning method can I use: Regression,

Classification, Clustering?

3. If i need deep learning, what kind of neuronal networks are useful

regarding the problem I have?

4. Which programming language do I have to use?

5. Do i have enough data for the problem?

6. Can i vary the data I have?

7. Do i have small scale GPU Power for first shots?

8. Do i know how to vary my hyperparamters?

9. Is my problem too big but scalable so I need multiple GPUs?

10. What hardware do I need for the inference?

11. Is my hardware connectable with other hardware?

7

AI-Development – Specific ANN-Development Pipeline

ANN Defintion

ANN Training

Finished ANN

Data

Good results?

no

yes

yes

Over/

underfitting?

Hyperparamter
Tuning

no

ANN Framework

Validation

Training

Transfer Learning

8

AI-Development – Be aware!

Before you start to develop:

1. Think through the whole general pipeline first!

2. DL Development ≠ DL Training ≠ DL Inference

General Scaling up:

1. Make bigger models: More Layers, bigger Layers,..

2. Tackle more data: More data, variation of data, data augmentation,…

3. Reduce research cycle time with fast computing: Parallel computing,

GPU usage…

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

10

Transfer Learning

 When you tackeling a new problem with an ANN, it might help to
look at existing ANNs that were built for a similar task

 Accelerate your work: People but a lot of effort in developing the
architecture and training the ANN

 Take this ANN and adjust it for your problem

Source: https://de.mathworks.com/videos/training-deep-learning-models-with-transfer-learning-1486670648501.html

11

Transfer Learning

Examples:

• AlexNet: CNN for classification

• VGG: CNN for classification

• GoogLeNet: CNN for classification and detection

• MobileNet: ObjectDetection, Object Classification, Landmark
Recognition

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

Example Pretrained CNN

12

Transfer Learning – What can we do?

1. Vary Layers: Vary layer in the end or the beginngy of the ANN,
the rest of the network remains fixed

2. Finetuning: Train the entire network end-to-end, start with pre-
trained weights

3. Training from scratch: Train the entire network end-to-end, start
from random weights

Similarity to Training Data

S
iz

e
 o

f
D

a
ta

s
e

t

S
m

a
ll

L
a

rg
e

Similar Different

Vary the end of
the ANN

Vary the beginning
levels of the ANN

Fine-tune
the ANN

Fine-tune or
Retrain the ANN

13

Transfer Learning – Small Data Set & Similar Data

Consider vary the end of the ANN when ...

... the new dataset is small and similar to the original dataset. The
higher-level features learned from the original dataset should transfer
well to the new dataset.

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

N
e
w

 A
N

N

|

O

ld
 A

N
N

14

Transfer Learning - Small Data Set & Different Data

Consider vary the beginning of the ANN when ...
…the new dataset is small and very different from the original dataset. You

could also make the case for training from scratch. In this case we will only

use features from the first few layers of the pre-trained network  features

from the final layers of the pre-trained network might be too specific to the

original dataset.

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

N
e
w

 A
N

N

|

O

ld
 A

N
N

15

Transfer Learning - Large Data Set & Similar Data

Consider finetuning when ...
... the new dataset is large and similar to the original dataset. Altering the

original weights should be safe because the network is unlikely to overfit the

new, large dataset.

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

N
e
w

 A
N

N

|

O

ld
 A

N
N

16

Transfer Learning – Large Data Set & Different Data

Consider training from scratch when ...

... the dataset is large and very different from the original dataset. In
this case we have enough data to confidently train from scratch.
However, even in this case it might be beneficial to initialize the entire
network with pretrained weights and finetune it on the new dataset.

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

N
e
w

 A
N

N

|

O

ld
 A

N
N

Additional Slide

17

Keep in mind that for a lot of problems you won't need an architecture as complicated and powerful
as VGG, Inception, or ResNet.

These architectures were made for the task of classifying thousands of complex classes. A smaller
network might be a better fit for a smaller problem, especially if you can comfortably train it on
moderate hardware.

GoogLeNet

AlexNet

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15 / https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-
classification-c2b3565a64e7

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

19

AI-Frameworks – Whats that ?

 AI software can be developed from scratch, but it is tediously and
complex

 A lot of people put time and effort in the development computer
programs, application programming interface (APIs), libraries and
software frameworks, which make the development much easier

 USE IT !!!!!

 A software framework is an abstraction in
which software providing generic functionality can be selectively
changed by additional user-written code

 The software framework provides a standard way to build and deploy

applications

 Better then normal library: Inversion of control, extensibility, non

modifiable framework code

20

AI-Frameworks – Scikit-learn Library

 Free software framework

 Machine Learning Library

 Language: Python, C, C++

 Operating System: Linux, macOS,
Windows

 Includes: Clustering, Regression,
Clustering with algorithms like
SVM, Nearest Neighbors, Gaussian
Process, Decision Trees

 Pros: Everything you need, Good
Documentation, powerful, GPU
boost

 Cons: Not for hardcore statistics,
limited in parameters

Source: https://scikit-learn.org/stable/

21

AI-Frameworks – Matlab

 Commercial Software (Free for
students)

 Machine and Deep Learning Toolbox

 Language: Matlab, Simulink

 Operating System: Linux, macOS,
Windows

 Includes:

 Machine Learning

 Deep Learing

 Pros: Easy to use, good
documentation, GPU boost

 Cons: Closed Environment,
Performance

Source: https://www.cbcity.de/portfolio/matlab-simulink

22

AI-Frameworks – Tensorflow

 Free software framework

 Deep Learning software framework

 Language: Python, C++

 Operating System: Linux, macOS,
Windows

 Includes: CNN, RNN,  Voice and
image recognition

 Pros: High performance, multiple
GPU, connects research and
Production, true portability,
tensorboard for visualization, good
documentation

 Cons: Hard to learn in comparison to
other frameworks

Source: https://www.tensorflow.org/

23

AI-Frameworks – Keras

 Free software framework

 Neural network library

 Language: Python

 Operating System: Linux, macOS,
Windows

 Includes: Neural Network interface
for CNN and RNN – Speach
recognition, image classification

 Pros: Makes Tensorflow and Theano
easier to use, easy prototyping, fully
configurable modles, GPU support

 Cons: It might be too high-level and
not always easy to customize

Source: https://keras.io/

24

AI-Frameworks – Caffe and Caffe 2

 Free software framework

 Deep Learning software framework

 Language: C, C++, Python, MATLAB

 Operating System: Linux, macOS,
Windows

 Includes: CNN

 Pros: Pre-trained networks available,
fast and scalable, GPU usage

 Cons: a few input formats and only
one output format, no exact layer
definition like Tensorflow

Source: https://caffe2.ai/

25

AI-Frameworks – mxnet

 Free software framework

 Deep Learning software framework

 Language: Python, C++, Javascript,
R,….

 Operating System: Linux, macOS,
Windows

 Includes: CNN, RNN, LSTM

 Pros: Fast and flexible, GPU support,
can run on any device (productivity),
highly scalable, different languages

 Cons: Small community

Source: https://mxnet.apache.org/

Additional Slide

26
Quelle: https://www.datasciencecentral.com/profiles/blogs/open-source-deep-learning-frameworks-and-visual-analytics

27

AI Frameworks - Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 GPU 2 GPU 4 GPU 8 GPU

Im
a

g
e

s
 p

e
r

s
e

c
o

n
d

Caffe Caffe 2 Tensorflow MXNet

RESNET-50 FP32 Performance

28

AI Frameworks - Comparison

0

10000

20000

30000

40000

50000

60000

Google -

Tensorflow

Caffe Microsoft -

CNTK

MXNet Facebook -

Torch

Deeplearning4j

(DL4J)

Theano Facebook -

Caffe 2

G
it

h
u

b
S

ta
r

C
o

u
n

t

Source: https://www.cio.com/article/3193689/artificial-intelligence/which-deep-learning-network-is-best-for-you.html / http://p.migdal.pl/2017/04/30/teaching-deep-learning.html

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

30

Data

Data is the crucial part of Machine Learning:

 We need data for training our algorithms

 We need labeled data for training our algorithms

 We need more and different data for not overfitting our training

 We need even more data for good regression, clustering, classification

Source: http://visualdl.paddlepaddle.org/docs/develop/documentation/fluid/en/design/memory/memory_optimization.html

31

Data – Labeled Datesets

 We need data that is labeled

 Label = What does the data include?

 The more specific, the better the regression, classification, clustering

Source: https://www.researchgate.net/publication/274780609_Geometry_Driven_Semantic_Labeling_of_Indoor_Scenes/figures?lo=1

32

Data – Labeled Datesets

1. Search for datasets online, other people have done a lot in this area

• Cityscapes: Pixel based label of streets

• Kitti Dataset: Pixeld based label of over 5000 pictures

• Berkeley Deep Drive: Labeld pictures of streets, GPS locations, IMU

data…

2. Create your own dataset

• Aggregate your data

• Label the data with the information you want to be later detected

• Takes a lot of time

Source: https://www.cityscapes-dataset.com/examples/

33

Data – Labeled Datesets

Source: https://www.sadanduseless.com/ten-year-challenge/

https://www.forbes.com/sites/nicolemartin1/2019/01/17/was-the-facebook-10-year-challenge-a-way-to-mine-data-for-facial-

recognition-ai/#27e43bcf5859

Additional Slide

34

Berkeley DeepDrive - Explore 100,000 HD video sequences of over 1,100-hour driving experience
across many different times in the day, weather conditions, and driving scenarios. Our video
sequences also include GPS locations, IMU data, and timestamps.

Udacity - Udacity driving datasets released for Udacity Challenges. Contains ROSBAG training data.
(~80 GB).

Comma.ai - 7 and a quarter hours of largely highway driving. Consists of 10 videos clips of variable
size recorded at 20 Hz with a camera mounted on the windshield of an Acura ILX 2016. In parallel to
the videos, also recorded some measurements such as car's speed, acceleration, steering angle,
GPS coordinates, gyroscope angles. These measurements are transformed into a uniform 100 Hz
time base.

KITTI Vision Benchmark Suite - 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor
modalities such as highresolution color and grayscale stereo cameras, a Velodyne 3D laser scanner
and a high-precision GPS/IMU inertial navigation system.

University of Michigan North Campus Long-Term Vision and LIDAR Dataset - consists of
omnidirectional imagery, 3D lidar, planar lidar, GPS, and proprioceptive sensors for odometry
collected using a Segway robot. pedestrian, cyclist, lanemarking.

Cityscape Dataset - focuses on semantic understanding of urban street scenes. large-scale dataset
that contains a diverse set of stereo video sequences recorded in street scenes from 50 different
cities, with high quality pixel-level annotations of 5 000 frames in addition to a larger set of 20 000
weakly annotated frames. The dataset is thus an order of magnitude larger than similar previous
attempts. Details on annotated classes and examples of our annotations are available.

MIT AGE Lab - a small sample of the 1,000+ hours of multi-sensor driving datasets collected at
AgeLab.

35

Data – Check your dataset

Is there a bias in your dataset? If yes, it will impact the training

1 cat1000 dogs

Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

36

Data – More data with data augmentation

How to use Deep Learning when you have limited data?

Enlarge your available Dataset with

Data Augmentation
Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

37

Data – More data with data augmentation

1. Flip the images

2. Rotate the images

3. Scale the images
outward or inward

Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

38

Data – More data with data augmentation

4. Crop

5. Translation of
objects in x,y-position

6. Gaussian
Noise

Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

39

Data – More data with data augmentation

7. Deep Photo Style Transfer: Transform one image from one domain to an

image to another domain using Deep Learing

Source: https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

40

Data – Improvement with data augmentation

Source: https://arxiv.org/pdf/1708.06020.pdf

41

Data – Provide the data in your dataset

Split your data into Training (60%), Validation (20%) and test (20%) dataset

Collected

Labeld Data

Training Data Validation Data Test Data

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

43

GPU Computing – What is a GPU?

https://www.fedscoop.com/era-ai-computing/

44

GPU Computing – What is a GPU?

 A GPU is an Graphical Processing Unit
 Specialized electronic circuit design

 Rapidly manipulate and alter memory to

accelerate the creation of images in
a frame buffer

 By 2012, GPUs had evolved into highly

parallel multi-core systems allowing very

efficient manipulation of large blocks of data.

 This design is more effective than general-

purpose central processing unit (CPUs)

for algorithms in situations where

processing large blocks of data is done in

parallel, such as:

 Push-relabel maximum flow algorithm

 Fast sort algorithms of large lists

 Two-dimensional fast wavelet

transform

 Molecular dynamics simulations

 Artificial Neural Networks
Source: https://www.vrnerds.de/nvidia-pascal-ab-27-mai/
https://www.notebookcheck.net/Like-AMD-Nvidia-promises-to-ramp-up-GPU-production.282024.0.html

45

GPU Computing – What is a GPU?

Source: Udacity Self-Driving Car Nanodegree – Part 1, Lesson 15

Additional Slide

46
Source: Nvidia Deep Learning Workshop @LRZ

GPU Engine Specs
CUDA Cores

3584
Graphics Clock (MHz)

1480
Processor Clock (MHz)

1582

Memory Specs
Standard Memory Config

11 GB GDDR5X
Memory Interface Width

352-bit
Memory Bandwidth (GB/sec)

11 Gbps

GTX 1080 Ti

47

GPU Computing – Why a GPU for DL?

1. Faster Training
2. Faster
Inference

3. Better
Results

Source: https://www.quora.com/Would-the-success-of-deep-learning-have-been-possible-without-GPUs-and-CUDA/ https://www.tomshardware.co.uk/nvidia-ai-technology-
improves-efficiency,news-56853.html

48

GPU Computing – Nvidia GPU for DL

 Using the NVIDIA hard- and software for your DL development

 NVIDIA is one of the leading GPU manufacteres

 NVIDIA is one of the leading Deep Learning developer and is building a

complete Environment

Consumer GPUs
~800 €

HPC GPUs
~16.000 €

GPU Cluster (8x)
~120.000 €

CUDA API
Parallel Computing

cuDNN
DL Library

NVLINK
>5x-12x PCI

Digits
DL Training

TensorRT
Faster Inference

49

GPU Computing – Mulitple GPU

 What is better than training faster

on One GPU?  Training on

Multiple GPUs!
 You can either use a normal PC

with a motherboard that fits

multiple GPUs (2x, 3x, 4x) or use

a special GPU Cluster (NVIDIA

DGX-1)

 Multi-GPU can be used in

different ways:

 Use a single GPU for the

training of specific

Hyperparamter set and do

the same on the others

 Use multiple GPUs for

simultanous calculation 

Takes time to adjust the

model

Source: https://blog.rescale.com/deep-learning-with-multiple-gpus-on-rescale-tensorflow/

50

GPU Computing – Mulitple GPU Training

Source: https://blog.slavv.com/picking-a-gpu-for-deep-learning-3d4795c273b9

Multiple GPU: DGX vs. Normal Motherboard

51

GPU Computing – Cuda

 CUDA is a parallel

computing platform and application

programming interface (API) model

created by Nvidia.

 It allows to use a CUDA-

enabled GPU for general purpose

processing

 The CUDA platform is a software

layer that gives direct access to the

GPU's virtual instruction set and

parallel computational elements, for

the execution of compute kernels

 Programming languages in C, C++

 Full support for integer and bitwise

operations, including integer texture

lookups

 Unified Memory

52

GPU Computing – Cuda

Source: https://www.youtube.com/watch?v=nRSxp5ZKwhQ/
https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/documents/public/CUDA-2013-07-31/GPU-overview.pdf

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

54

Hyperparamter Tuning – Whats that?

 When we train the ANN, we focus on not overfitting in the training
loss and getting a good evaluation at the end

 To achieve that, we can vary different paramters for the training of
the ANN  These are the Hyperparameters

 The tuning of the Hyperparameters is the „magic“ behind a good
ANN and changes the ANN from a Black Box to a system we can
understand

 Hyperparamter Tuning is nothing official, more like a „best
practice“ or a „tipps and tricks“ collection

Important: Hyperparameter tuning
differs from problem to problem!!!

55

Hyperparamter Tuning – Whats that?

Things you can vary in your ANN:

 Number of hidden layers

 Number of fully connected layers

 Number of neurons in one layer

 Number of training epochs

 Weight Initialization

 Learning rate

 Batch size

 Activation function

 Dropout Rate

 ……

 Usage of optimization algorithms for hyperparamter tuning
possible

Source: http://colinraffel.com/wiki/neural_network_hyperparameters

56

Hyperparamter Tuning – Size of the net

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
F

e
h

le
r

Trainings-/ Validierungsfehler entfernte Schichten

Training Basis

Training ohne Conv 3&4

Training ohne FC 1&2

Training ohne Conv 3&4 & FC 1&2

Validierung Basis

Validierung ohne Conv 3&4

Validierung ohne FC 1&2

Validierung ohne Conv 3&4 & FC 1&2

Variable Net-Size

57

Hyperparamter Tuning – Size of the net

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

F
e
h
le

r

Trainings-/ Validierungsfehler Neuronenanzahl aller FC-Schichten

Training 1/4

Training 1

Training 4

Validierung 1/4

Validierung 1

Validierung 4

Variable Number of Neurons

58

Hyperparamter Tuning – Number of Epochs

Same ANN structure, Same Input Data, Different Epochs

59

Hyperparamter Tuning – Activation Function

Additional Slide

60

Relu

� � max �0,
�

y

x

Identität/Linear

� � �

y

x

Softplus

� � ln �1 � ��)

y

x

Sigmoid

� � 1
1 � ���

y

x

1

Elu

� � ��� � 1 , � � 0� , � � 0

y

x

-1

Tanh

� � ���ℎ ���

y

x

-1

1

61

Hyperparamter Tuning – Learningrate

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

F
e

h
le

r
Trainings-/ Validierungsfehler Lernrate

Training 10
-3

Training 10
-4

Training 10
-5

Training 10
-6

Validierung 10
-3

Validierung 10
-4

Validierung 10
-5

Validierung 10
-6

62

Hyperparamter Tuning – Dropout

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08
F

e
h
le

r
Trainings-/ Validierungsfehler Dropout Rate

Training 0

Training 0.1

Training 0.3

Training 0.5

Training 0.7

Training 0.9

Validierung 0

Validierung 0.1

Validierung 0.3

Validierung 0.5

Validierung 0.7

Validierung 0.9

Additional Slide

63

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

F
e
h
le

r

Trainings-/ Validierungsfehler Optimierungsalgorithmen

Training Adamax

Training Adadelta

Training Adam

Training SGD

Validierung Adamax

Validierung Adadelta

Validierung Adam

Validierung SGD

Hyperparamter Tuning – Optimization Function

Additional Slide

64

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoche

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
F

e
h
le

r
Trainings-/ Validierungsfehler L2 Regularisierung

Training 10
-3

Training 10
-4

Training 10
-5

Training 10
-6

Training Basis

Validierung 10
-3

Validierung 10
-4

Validierung 10
-5

Validierung 10
-6

Validierung Basis

Hyperparamter Tuning – Regularization

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

66

AI-Inference – What is Inference?

Inference: The actual application and usage
of your ANN

Source: Nvidia Deep Learning Workshop @LRZ

Additional Slide

67

Both DNN training and Inference start out with the same forward propagation calculation, but training
goes further. As Figure 1 illustrates, after forward propagation, the results from the forward
propagation are compared against the (known) correct answer to compute an error value.
A backward propagationphase propagates the error back through the network’s layers and updates
their weights using gradient descent in order to improve the network’s performance at the task it is
trying to learn. It is common to batch hundreds of training inputs (for example, images in an image
classification network or spectrograms for speech recognition) and operate on them simultaneously
during DNN training in order to prevent overfitting and, more importantly, amortize loading weights
from GPU memory across many inputs, increasing computational efficiency.

For inference, the performance goals are different. To minimize the network’s end-to-end response
time, inference typically batches a smaller number of inputs than training, as services relying on
inference to work (for example, a cloud-based image-processing pipeline) are required to be as
responsive as possible so users do not have to wait several seconds while the system is
accumulating images for a large batch. In general, we might say that the per-image workload for
training is higher than for inference, and while high throughput is the only thing that counts during
training, latency becomes important for inference as well.

68

AI-Inference – What is Inference?

Example: Live Image Classification

Camera

Input

Thing to

classify

PC with software for

ANN Integration

„People“ 93 %

Trained

ANN

Classi-

fication

Source: https://github.com/dusty-nv/jetson-inference
https://www.google.de/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj7oZOz7LncAhUGmrQKHThBDIMQjRx6BAgBEAU&url=https%3A%2F%2Fwww.onlinewebfonts.co
m%2Ficon%2F395988&psig=AOvVaw35HUnkc45PR1hxkOdoZQ42&ust=1532594180959688

69

AI-Inference – Inference Hardware: Nvidia Drive PX2

 Linux Ubuntu based „Mini-Computer“
(SoC)

 Automotive Grade!

Tegra X2 Architecture („Parker“)

 6x ARM Cortex-A57

 1x 256-core Pascal GPU

 16GB LPDDR4, 128-bit interface

 Peripherie: USB, HDMI, SATA,
UART, SPI, I2C, GPIO,CAN, LIN,…

+Software Package „Driveworks SDK“:
Cuda, CudNN, TensorRT + Autonomous
Driving Functions API

70

Additional Slide

Software SDK for inference of AI software for autonomous driving

Nvidia Driveworks SDK

71

AI-Inference – Inference Hardware: Nvidia Drive AGX

Nvidia Drive AGX Hardware + Driveworks Software SDK

Source: https://www.youtube.com/watch?v=KS_4xjXNTxg&t=20s

72

AI-Inference – Project Roborace

Perception Strategy Control

Nvidia Drive PX2 Speedgoat

Hardware

Software

Software

Language

Interface
Ethernet

C++

ROS

UDP

73

AI-Inference – Inference Hardware: Nvidia Jetson

 Linux Ubuntu based „Mini-Computer“

 Size 50x87mm

 Quad-core ARM Cortex-A57

 256-core Pascal GPU

 8GB LPDDR4, 128-bit interface

 Peripherie: USB, HDMI, SATA,
UART, SPI, I2C, GPIO,….

 Software Package „Jetpack“; Cuda,
CudNN, TensorRT,…

74

AI-Inference – Inference Hardware: Nvidia Jetson

FTM Autonomous RC-Car

HOKOYU Lidar

~ 60m

StereocameraNVIDIA JETSON

75

AI-Inference – Fasten the Inference

TensorRT can help to otimize the trained ANN

76

AI-Inference – Rate your Inference

Intersection over Union (IoU)

Source: https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

77

AI-Inference – Rate your Inference

GPU load / Images per second / GPU calculation time /

mean average precision (mAP)

Source: https://arxiv.org/pdf/1611.10012.pdf

Agenda

AI-Development
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: AI-Development Pipeline

2. Chapter: Transfer Learning

3. Chapter: AI-Frameworks

4. Chapter: Data and Labeling

5. Chapter: GPU Computing

6. Chapter: Hyperparamter Tuning

7. Chapter: AI-Inference

8. Chapter: Summary

79

Summary

What did we learn today:

 Deep Learning algorithm development is all about the problem:
Same same but different

 Take advantage of pre-trained networks and use them for your
problem. In addition you can used published ANN architectures for
your problem by using transfer learning. You will save a lot time

 There are a lot of frameworks for setting up your ANN in code.
Check first what do you need (e. g. multiple GPUs, inference
hardware) and decide what you want to use

 Be aware of the data you need. Search for labeled datasets first
before you acquire your own data

 Data is the crucial part in deep learning:

 The better and specific your data, the better your results

 The more data you have, the better your results

80

Summary

What did we learn today:

 GPUs are your number one tool for fast training and fast inference

 Scale your model for training on multiple GPUs

 ANN development is all about hyperparamter tuning. Check the
crucial parameters first and try to understand your ANN.

 When your ANN is ready, it is time for the real live experience that we
call Inference. You can test your ANN model in your application and
evaluate it afterwards

 Hardware like the Jetson (embedded) and DrivePX2 (automotive)
enable software SDK and GPU accelerated Inference for your
development

81

Summary

82

Guest Lecturer Rasmus Rothe – 07.02.2018

Rasmus Rothe
● Born in Bremen, 29 years

● PhD in Deep Learning from ETH Zurich, Master from

Oxford / Princeton

● Co-Founder and CTO of Merantix, a Berlin-based AI

company

● Founded and runs KI Bundesverband

● Founded HackZurich

● World champion in Robocup Junior

What is the talk about?
● Insights on the differences between academia and

industry when applying deep learning
● Technical tricks for building robust real-world deep

learning applications
● Advice on how to start an AI company

83

Evaluation

84

Evaluation

 In this lecture we are doing in regularly evaluation

 We want your feedback for every individual session

 We evaluate the session each week

 We give feedback based on the evaluation the week after

85

Evaluation – Step by Step

1. Get out your smartphones

2. Open an app for QR-code reading

3. Read the following QR-code on the

right side 
4. Open the website

5. Answer the questions

6. Send the evaluation

OR

1.Open the following website in your browser:

https://evasys.zv.tum.de/evasys/online.php?p=AIAT-12

2. Answer the questions

3.Send the evaluation

