
Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Artificial Intelligence in Automotive Technology

Johannes Betz / Prof. Dr.-Ing. Markus Lienkamp / Prof. Dr.-Ing. Boris Lohmann

Lecture Overview

Overall Introduction for the Lecture

18.10.2018 – Betz Johannes

6 Pathfinding: From British Museum to A*

29.11.2018 – Lennart Adenaw

11 Reinforcement Learning

17.01.2019 – Christian Dengler

1 Introduction: Artificial Intelligence

18.10.2018 – Betz Johannes

P6:

29.11.2018 – Lennart Adenaw

P11

17.01.2019 – Christian Dengler

P1:

18.10.2018 – Betz Johannes

7 Introduction: Artificial Neural Networks

06.12.2018 – Lennart Adenaw

12 AI-Development

24.01.2019 – Johannes Betz

2 Perception

25.10.2018 – Betz Johannes

P7

06.12.2018 – Lennart Adenaw

P12

24.01.2019 – Johannes Betz

P2:

25.10.2018 – Betz Johannes

8 Deep Neural Networks

13.12.2018 – Jean-Michael Georg

13 Free Discussion

31.01.2019 – Betz/Adenaw

3 Supervised Learning: Regression

08.11.2018 – Alexander Wischnewski

P8

13.12.2018 – Jean-Michael Georg

P3:

08.11.2018 – Alexander Wischnewski

9 Convolutional Neural Networks

20.12.2018 – Jean-Michael Georg

4 Supervised Learning: Classification

15.11.2018 – Jan-Cedric Mertens

P9

20.12.2018 – Jean-Michael Georg

P4:

15.11.2018 – Jan-Cedric Mertens

10 Recurrent Neural Networks

10.01.2019 – Christian Dengler

5 Unsupervised Learning: Clustering

22.11.2018 – Jan-Cedric Mertens

P10

10.01.2019 – Christian Dengler

1-

Objectives of the lecture 11

Remember Understand Utilize Analyze Estimate Develop

Understand which kind of problems

reinforcement learning (RL) can tackle.

Understand the concept of a value function

and action-value function in discrete state and

action spaces.

Understand the basic RL methods in discrete

state and action space.

Understand the basic policy gradient for

continuous state and actions space.

Depth of understanding

3

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

Revision

1.1 Terminology and problem definition

▪ Supervised Learning

 Learning on labeled data, e.g. image classification using labeled

dataset and a deep neural network

▪ Unsupervised Learning

 Learning on unlabeled data, e.g. clustering using K-means on a

database of customers

▪ Reinforcement Learning

 ?

6

1-

1.1 Terminology and problem definition

“… So what is that problem? It’s essentially the science
of decision making. I guess that’s what makes it so

general and so interesting across many many fields …
It’s trying to understand the optimal way to make

decisions...”

David Silver, DeepMind, 2015

7

1-

1.1 Terminology and problem definition

8

1-

1.1 Terminology and problem definition

▪ Agent:

The decision taking unit, in our case a

computer executing a policy/strategy.

▪ Environment:

Everything outside of the agent. This would

in theory include the universe, but it is usually

sufficient to only consider a small part, e.g. a space in proximity of

the agent.

▪ Reward:

A scalar signal that the agent receives, which depends on how it is

performing in the environment. In our case, we will design what is

rewarded.

9

1-

1.1 Terminology and problem definition

▪ State:

A signal describing the environment (or at least the important part),

e.g. the positions and velocities of the limbs of a robot. The state is

often assumed Markovian (full information).

▪ Action:

The agent decides on an action, following its policy

▪ Goal of RL:

Train the agent in a way that it receives as much reward as

possible.

10

1-

Example

1.1 Terminology and problem definition

11

▪ Agent:

▪ Environment:

▪ Reward:

▪ State:

▪ Action:

1-

1.1 Terminology and problem definition

Mnih et al.: Human-level control through deep reinforcement learning, Nature, 2015

13

1-

1.1 Terminology and problem definition

Heess et al.: Emergence of Locomotion Behaviours in Rich Environments, CoRR , 2017

14

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

4. Imitation Learning (Optional)

1-

Classical engineering approach for automatic control

1.2 Motivation for RL in engineering

1. Understand the problem and

derive a simplified model

2. Use the simplified model

equations and some analytical

tools to derive a control law

3. Apply the control law

16

1-

Classical engineering approach for automatic control

1.2 Motivation for RL in engineering

▪ Understand the problem and derive a simplified model

 Problems can be very complex, thus for complex problems it can be

very hard to deduce a model that accurately describes reality.

▪ Use the simplified model equations and some analytical tools to

derive a control law

 This approach works well for most simple problems, for general

nonlinear models in high state-space, this is often very tricky and

requires a team of experts on this specific problem.

▪ Apply the control law

 The control law is executed as is, any change in the system needs a

manual change in the control law by experts.

17

1-

Interaction of mechanics, electronics and software

1.2 Motivation for RL in engineering

18

1-

1.2 Motivation for RL in engineering

https://thenextweb.com/artificial-intelligence/2018/12/07/deepminds-alphazero-ai-is-the-new-champion-in-chess-

shogi-and-go/

19

1-

1.1 + 1.2 Wrap up

▪ Reinforcement Learning describes the high level idea of learning

to make good decisions by repeating a task and receiving a

reward signal. It is not an algorithm!

▪ The specific algorithm then depends on the task. E.g. do we want

to learn to play a game or control a robot?

▪ The RL setup includes an agent and his environment. The agent

takes actions, and perceives/receives the state and receives a

reward.

▪ Can lead to better decision making than manual human designs →

promising also for engineering (topic of research).

20

1-

1.3 Depth of the topic and scope of the lecture

▪ Lecture by David Silverman (Google Deepmind),15h material

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

▪ Lecture by Sergey Levine (UC Berkeley), >20h material

http://rail.eecs.berkeley.edu/deeprlcourse/

▪ Requires knowledge of basic probability theory.

→ Focus here on the most simple case of making decisions in

discrete states and actions.

21

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/

1-

Basic probability theory for discrete variables

1.3 Depth of the topic and scope of the lecture

▪ Probability mass function (PMF) , dice example:

random variable, describes the number of rolled eyes.

▪ Sampling from a PMF:

→actually throwing the dice and observing the result.

22

1-

Basic probability theory for discrete variables

1.3 Depth of the topic and scope of the lecture

▪ Probability mass function (PMF), 2 dice example .

23

random variable: 1 if (sum of eyes)>5, else 0

random variable: 1 if atleast one dice rolled a 5, else 0

1-

Basic probability theory for discrete variables

1.3 Depth of the topic and scope of the lecture

▪ Probability mass function (PMF), 2 dice example .

24

random variable: 1 if (sum of eyes)>5, else 0

random variable: 1 if atleast one dice rolled a 5, else 0

Dice1\Dice2 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6
7 8 9 10 11 12

1-

Basic probability theory for discrete variables

1.3 Depth of the topic and scope of the lecture

▪ Conditional probability, dice example .

25

random variable: 1 if sum of eyes>5, else 0

random variable: 1 if atleast one dice rolled a 5, else 0

We know that there is no 5!

1-

Basic probability theory for discrete variables

1.3 Depth of the topic and scope of the lecture

▪ Expected value, dice example:

▪ Useful relations:

26

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

Markov State

2.1 Markov-decision-process

A state is Markov, if

28

1-

Markov-process

2.1 Markov-decision-process

A Markov-process is sequence of random states with the Markov

property.

Taking a

Nap0.2
0.8

0.1

0.4

0.5

0.4

0.1

0.5
Paying

Attention

:= .

Looking at

smartphone

:= .

29

1-

Markov-decision-process

2.1 Markov-decision-process

A Markov-decision-process is a Markov-process with additional

rewards, and the possibility to affect transition probabilities.

Paying

Attention

:= .

Looking at

smartphone

:= .

Taking a

nap0.2
0.8

r = 1

r = -2

r = -1

30

1-

Markov-decision-process

2.1 Markov-decision-process

0.2

0.8

r = 1

r = -2

r = -1

▪ Goal:

 Find strategy which maximizes future rewards, i.e.:

31

1-

2.1 Markov-decision-process

▪ Legend:

 State:

 Action:

 Policy:

 Behavior of the environment:

▪ Assumptions:

 and are discrete probability distributions.

 is a Markovian state.

32

1-

2.1 Markov-decision-process

▪ Goal:

 Find strategy which maximize rewards

33

1-

2.1 Markov-decision-process

▪ Goal:

 Find strategy which maximize rewards

34

1-

Example of discrete MDP’s

2.1 Markov-decision-process

35

1-

Example: Grid World

2.1 Markov-decision-process

▪ 12 states/positions

▪ 4 actions per state: go up, down left, right

(Hitting a wall is possible and means

no movement)

▪ Different reward depending on the state.

 -1 when moving to a grey or green state

 -2 when moving to a red state

▪ Initial state (One always starts here)

▪ Absorbing state (episode finished,

0 reward from here on)

36

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

Definitions

2.2 Value function, Q-learning etc

Value Function

Function depending on the state and a policy. The function returns the

expected future reward, starting in a state and then always following

a policy .

Action Value Function

Function depending on the state, the next action and a policy. The

function returns the expected future reward, starting in a state , then

choosing action and afterwards following policy .

38

1-

Value function

2.2 Value function, Q-learning etc

Value Function

Function depending on the state and a policy. The function returns the

expected future reward, starting in a state and then always following

a policy .

39

discount factor

1-

Value function

2.2 Value function, Q-learning etc

40

discount factor

1-

Grid World, Value Function

2.2 Value function, Q-learning etc

42

Uniform random strategy:

1-

Policy evaluation using the Bellman equation

2.2 Value function, Q-learning etc

43

The value function can be determined if

all probabilities are known (transitions +

policy) by iterating the Bellman equation

for all states.

1-

Policy evaluation using the Bellman equation

2.2 Value function, Q-learning etc

45

For small MDP one could just solve a

system of equations instead of doing it

iteratively. The equations are the Bellman

equation for each state, and the

unknowns are the value function at the

states.

1-

Policy evaluation using the Bellman equation

2.2 Value function, Q-learning etc

46

1-

Grid World, Value Function

2.2 Value function, Q-learning etc

47

Different Strategy:

Uniform random strategy:

1-

Policy improvement

2.2 Value function, Q-learning etc

48

In order to improve the policy and get more reward, one creates a new

deterministic policy, choosing in every state the action with the most

expected future reward, according to the old V(x)

1-

Policy improvement

2.2 Value function, Q-learning etc

49

1-

2.2 Value function, Q-learning etc

Policy evaluation

Policy improvement

50

1-

2.2 Value function, Q-learning etc

Policy evaluation

Policy improvement

This is guaranteed to converge to the optimal policy, however for

simple MDP‘s with known transitions, there are much more efficient

algorithms.

51

1-

Reducing Computation Time: Generalized Policy iteration

2.2 Value function, Q-learning etc

52

Partial policy evaluation

Policy improvement

It is not always necessary to let the value function converge,

improvements on the policy can be made earlier.

1-

Definitions

2.2 Value function, Q-learning etc

Action Value Function

Function depending on the state, the next action and a policy. The

function returns the expected future reward, starting in a state , then

choosing action and afterwards following policy .

53

1-

Definitions

2.2 Value function, Q-learning etc

Action Value Function

Function depending on the state, the next action and a policy. The

function returns the expected future reward, starting in a state , then

choosing action and afterwards following policy .

54

1-

Grid World, Action Value Function

2.2 Value function, Q-learning etc

55

1-

Why Q-function instead of Value Function

2.2 Value function, Q-learning etc

▪ Advantage:

 Contains all the information needed to do the policy improvement. No

need to know the transition probabilities!!!

▪ Disadvantage:

 More memory required and needs more time to be trained.

56

1-

Grid World, Action Value Function

2.2 Value function, Q-learning etc

57

1-

Short wrap up

2.2 Value function, Q-learning etc

58

▪ Using the Bellman equation we can learn the value or action-value

function. (e.g. iterative or system of equations)

▪ Once we have value or action-value function, we can improve the

policy

 If we used the value function, we need to know the transition dynamics

also.

 If we use the action-value function, we can just read the best value (no

need to know the transition dynamics), but we need more memory.

Policy evaluation

Policy improvement

1-

Model free learning

2.2 Value function, Q-learning etc

▪ So far, we assumed to know the transition dynamics (where do we

end up if we chose in state ?).

▪ If we don‘t have the model, we can use data from interactions

with the MDP. We assume the data was generated by (on-

policy).

59

Do this if you want to

improve later

1-

Model free learning

2.2 Value function, Q-learning etc

▪ Necessary assumptions for convergence:

 All states and actions have a non-zero probability of being visited.

Problem if we chose a greedy policy, we need to explore other actions

(and states) too!

 The learning rate is decreasing

 We learn an infinite amount of time

▪ In practice not as bad, the assumptions can be relaxed and results

still be good.

60

1-

Model free learning

2.2 Value function, Q-learning etc

▪ Necessary assumptions for convergence:

 All states and actions have a non-zero probability of being visited.

Problem if we chose a greedy policy, we need to explore other actions

(and states) too!

61

Policy evaluation

Policy improvement

1-

Model free learning

2.2 Value function, Q-learning etc

▪ How to handle the assumptions:

 Do greedy update, but give all other actions a small probability too.

all other actions share probability (chose e.g.

0.1).

This is called -greedy policy.

 The learning rate can be reduced during training, but sometimes

keeping it constant is enough. It‘s like with learning rates for NN.

 As we saw for generalized policy iteration, we don‘t need full

convergence of the value function anyway to do an update, so we just

stop at some point.

62

1-

Combining it all: Q-Learning

2.2 Value function, Q-learning etc

▪ Learning without a model. Does policy improvement and

evaluation in one step. Also need exploration, -greedy is common.

63

Policy evaluation

Policy improvement

Q-learning

1-

Combining it all: Q-Learning

2.2 Value function, Q-learning etc

▪ Learning without a model. Does policy improvement and

evaluation in one step. Also need exploration, -greedy is common.

64

1-

Example of discrete MDP’s

2.2 Value function, Q-learning etc

65

1-

2.2 Value function, Q-learning etc

66

Do we really need to save one float for every state and action? Some

states can be very similar! Generalize over large state and action

spaces!

1-

2.2 Value function, Q-learning etc

67

Also some states are simply irrelevant as they have very low or zero

probability!

Couple these methods with (Deep) NN -> Find Q-function and/or

policy on relevant states only and learn to generalize!

1-

Wrap up

2.2 Value function, Q-learning etc

68

1. Learn value function or action-value function of current policy

using the Bellman equation

2. Use 1. to improve.

3. Repeat.

▪ Learning the value function or action-value function requires to visit

all states →deterministic policy problematic →epsilon-greedy

▪ No need to learn the value function to full convergence, can do

update step earlier

▪ Q-learning can be used to learn the optimal greedy policy using

state transitions from any policy → algorithm of choice in discrete

MDPs

1-

What I expect you to know for the exam from chapter 2.2

2.2 Value function, Q-learning etc

69

1. The Bellman equation

2. How to compute the value function in discrete MDP’s

3. How to compute the action-value function in discrete MDP’s

4. How to get a new greedy policy given a value or action-value

function.

5. Calculate a Q-learning update step.

6. Understand why a deterministic policy in a deterministic

environment does not work for learning.

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

3.1 Overview of methods

Optimization of

policy parameters

Dynamic

Programming

BlackBox

Optimization

Policy Gradient

Actor-Critic

Policy Iteration

Q-Learning

3.3
2.2

3.4

Inspired by „Schulman, J.: Optimizing expectations: from deep reinforcement learning to

stochatic computation graphs.“
71

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

3.1 Connection to Optimal Control

▪ Legend:

 State:

 Action:

 Policy:

 Behavior of the environment:

▪ Changes:

 and are continuous probability distributions.

73

1-

3.1 Connection to Optimal Control

Find the best parameters for the policy/control law.

Optimization Problem:

74

1-

Optimal Control, Linear Case, LQR control

3.1 Connection to Optimal Control

▪ Model description

▪ Optimization Problem (analytical solution: see Wikipedia)

▪ Same problem, minimizing cost instead of maximizing reward.

Only for linear model and quadratic costs. Solution independent of

starting state.

75

1-

Nonlinear Case: Model Predictive Control

3.1 Connection to Optimal Control

▪ Model description:

▪ Optimization Problem solved at each :

76

1-

Wrap up

3.1 Connection to Optimal Control

▪ Optimal Control Reinforcement Learning

77

Control people Machine Learning people

Minimize costs Maximize rewards

Optimize the control inputs each time.
(Unless the model is linear)

Optimize the policy/control law
parameters.

Uncertainties in nonlinear MPC
problematic.

Can deal somewhat with uncertainty.

Usual background in electical or
mechanical engineering

Usual background in computer science,
informatics, mathematics.

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

3.2 Exploration in action space

▪ Policy based reinforcement learning is an optimization problem.

▪ You should know by now, that we can optimize parameters with

respect to a cost/reward function if we can get the gradient (or

atleast a stochastic version of it).

Problem:

Gradient?:

79

1-

Policy Gradient, basics

3.2 Exploration in action space

▪ Expected Value:

▪ Usefull Identity:

▪ Log property:

80Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

1-

Policy Gradient

3.2 Exploration in action space

▪ Let be the random variable describing a trajector. We can

sample from it through simulation

81Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

1-

Policy Gradient

3.2 Exploration in action space

82Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

▪ Sampled future reward, short notation

▪ Objective Function

1-

Policy Gradient

3.2 Exploration in action space

83Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

1-

Policy Gradient

3.2 Exploration in action space

84Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

▪ We can build this expectation by sampling.

But what is ?

1-

Policy Gradient

3.2 Exploration in action space

85Inspired by UC Berkley: http://rail.eecs.berkeley.edu/deeprlcourse/index.html

1-

Policy Gradient

3.2 Exploration in action space

86

▪ Policy Gradient:

▪ However we can‘t sample an infinitely large random variable .

1-

Policy Gradient

3.2 Exploration in action space

87

▪ Possibility 1: sample only first T states.

1-

Reinforce

3.2 Exploration in action space

88

▪ Model:

▪ Cost:

▪ Hyperparameters:

1-

Wrap up

3.2 Exploration in action space

▪ We can get a stochastic gradient of the cost function with respect

to the control parameters once we have multiple trajectories.

▪ We use the gradient for gradient descent/ascent = improvement

of the policy. Gradient descent when minimizing costs and ascend

when maximizing reward.

89

1-

What I expect you to know for the exam from chapter 3.2

3.2 Exploration in action space

90

1. Know the steps of the Reinforce algorithm

2. Be able to write down the expression for the policy gradient.

3. Know that the gradient can have very high variance, which can

lead to convergence issues.

Reinforcement Learning

Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Christian Dengler, M. Sc.)

Agenda

1. Terminology and Concept

1.1 Terminology and problem definition

1.2 Motivation for RL in engineering

2. RL in discrete state- and action-spaces

2.1 Markov decision processes

2.2 Value-Function, Q-learning etc.

3. RL in continuous state- and action-spaces

3.1 Overview of methods

3.2 Connection to Optimal Control

3.3 Exploration in the action space

3.4 Exploration in parameter space (Optional)

1-

Motivation

3.4 Exploration in parameter space

▪ Gradient based optimization is efficient if the gradient can be

evaluated fast and accurately, e.g. analytically, in RL this is not

the case.

▪ As we need multiple samples to estimate one gradient, why

not just try different parameters immediately and combine results?

▪ So far: we have a probability distribution over actions, and find

the gradient to chose the better actions more often.

▪ Now: we have a probability distribution over parameters, and try

to increase the probability of good parameters.

92

1-

Motivation

3.4 Exploration in parameter space

▪ We want to have low variance → deterministic policy

▪ No need to learn a Value-Function, continuous-time models

possible

▪ Optimization Problem

93

1-

Simple ES

3.4 Exploration in parameter space

Salimans, T.; Ho, J.; Chen, X. & Sutskever, I.

Evolution strategies as a scalable alternative to reinforcement learning

arXiv preprint arXiv:1703.03864, 2017 94

▪ ~ Random finite differences. Also called simultaneous perturbation

stochastic approximation, parameter exploring policy gradient and

others

1-

Simple ES

3.4 Exploration in parameter space

95

▪ Its still gradient descent! Gradient is built by perturbing parameters

this time.

1-

Simple ES

3.4 Exploration in parameter space

96

▪ Problems with steep gradient/flat regions and high variance not

gone. Practical application requires some more tweaks, e.g.

normalization or fitness shaping, mirroring of the perturbation

▪ Pros:

 Only need to store one Float per trajectory, instead of all the states

and actions.

 Easy and efficient to parallelize as simulations are independent.

 No need to learn a value function.

▪ Cons:

 In general more trajectories needed as parameter space is usally

much larger than action space →requires more exploration

Salimans, T.; Ho, J.; Chen, X. & Sutskever, I.

Evolution strategies as a scalable alternative to reinforcement learning

arXiv preprint arXiv:1703.03864, 2017

1-

CMA-ES

3.4 Exploration in parameter space

97

▪ Incorporates second order information of the parameter

distribution → Storage of the covariance matrix.

▪ Unsuited for deep neural networks because of the memory and

computation scaling of where N is the number of

parameters. Several researchers adress this though.

Hansen, N.

The CMA Evolution Strategy: A Tutorial

CoRR, 2016, abs/1604.00772

1-

CMA-ES

3.4 Exploration in parameter space

98
GIF from: http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Full algorithm can be found in:

The steps of the algorithm are:

Hansen, N.

The CMA Evolution Strategy: A

Tutorial

CoRR, 2016, abs/1604.00772

1-

Other black-box optimization algorithms

3.4 Exploration in parameter space

99

▪ Natural Evolution Strategies

▪ Neuroevolution

▪ Differential Evolution

Wierstra, D.; Schaul, T.; Peters, J. & Schmidhuber, J.

Natural evolution strategies

Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence).

IEEE Congress on, 2008, 3381-3387

Stanley, K. O. & Miikkulainen, R.

Evolving Neural Networks through Augmenting Topologies

Evolutionary Computation, 2002, 10, 99-127

Das, S. & Suganthan, P. N.

Differential evolution: a survey of the state-of-the-art

IEEE transactions on evolutionary computation, IEEE, 2011, 15, 4-31

1-

Evaluation

Source: https://splinternews.com/12-years-of-steve-jobs-saying-one-more-thing-like-hes-c-1793850336

1-

Evaluation

▪ In this lecture we are doing in regularly evaluation of each lecture

▪ We want your feedback for every individual lecture

▪ We evaluate the lecture each week

▪ We give feedback based on the evaluation the week after

1-

Evaluation – Step by Step

1. Get out your smartphones

2. Open an app for QR-code Reading

3. Read the following QR-code on the right side

4. Open the website

5. Answer the questions

6. Send the evaluation

OR

1. Open the following website in your browser:

https://evasys.zv.tum.de/evasys/online.php?p=AIAT-11

2. Answer the questions

3. Send the evaluation

https://evasys.zv.tum.de/evasys/online.php?p=AIAT-11

1-

RL at the chair of automatic control

If you would love to get deeper into RL:

Master theses will be available starting end of april 2019.

Contact: c.dengler@tum.de

Video created by Nikolas Wilhelm during his master thesis
103

