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TUTI

Objectives of the lecture 10

Remember Understand Utilize Analyze Estimate Develop

1. Make clear when to use Recurrent Neural
Networks (RNN) instead of static Neural
Networks.

3. Clarify problems that might occur when
training a RNN over long sequences, and how
they can be avoided/reduced.

4. Give a short overview of different
architectures for RNNs with use cases.
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1. Sequential Data and Use Cases

Sequential Data

Output layer
- Sigmoid

Hidden layers
—->Conv.
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Will he score?



1. Sequential Data and Use Cases

Sequential Data
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1. Sequential Data and Use Cases

Sequential Data
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1. Sequential Data and Use Cases

Sequential Data

Can | pass, should |
break?




1. Sequential Data and Use Cases

Sequential Data

O




1. Sequential Data and Use Cases

Fully connected model:

e

Single time-st
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. Sequential Data and Use Cases

Use cases

Speech recognition and generation

Music recognition and generation
Translation

Image Capturing

Video Capturing

Modeling dynamics of physical systems

-12



1. Sequential Data and Use Cases

Image Classification and Generation [12]

1- 13



1. Sequential Data and Use Cases

Image Classification and Generation [12]

Reading MNIST

1- 14



1. Sequential Data and Use Cases

Wrap up

= Often one observation does not contain the required information.

* The information is often hidden in sequences of data, but just
taking a whole sequence as input will require too many parameters

- Share parameters and add a memory to capture the important
features of the past.

1- 15
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2. Simple RNN and backpropagation through time

Dynamical Systems in Engineering

s (Position)
@ >

Fin Input v = Fiy,
Mear output y = s .

Model equations linear state-space representation

1-17
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2. Simple RNN and backpropagation through time

Dynamical Systems in Engineering

Model equations [16]:
o -7 (Mcart + Miink)S — Mynklink@ sin(a) = F

hink@ — gsin(a) = § cos(a)

: s (Position)

v
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2. Simple RNN and backpropagation through time

Dynamical Systems in Engineering

Nonlinear state-space model:

O LT (4 $
i N ; f1(3, o, &, F)
I p—
. S gPOSItIOH) 4 4
.I. I - _Of_ _fQ(eé, Od, d, F)_

1- 19



TUm

2. Simple RNN and backpropagation through time

Dynamical Systems in Engineering

Continuous-time system: Discrete-time system:
_ Forward Euler ~
x = f(x,u) Runge-Kutta 4 Xer1 = £xe, uy)
y = g(x) y: = g(X¢)

1- 20
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2. Simple RNN and backpropagation through time
Dynamical Systems in Engineering

Linear Case
Xt+1 = AXt —+ But E— B Z_l — C _L’
y: = Cxy
A

Nonlinear Case
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Xt+1 = f(Xt, l,lt)

yi: = g(Xt)
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2. Simple RNN and backpropagation through time

Notation

Engineering, e.g. Control Theory

Xt+1 = f(Xt,ut) L, £ _1 X

Yy = g(Xt)

z\‘;
\
0%
<

>

Machine Learning

h, = f(hy_1,%;) (%) f@% g;@

y: = g(hy)
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2. Simple RNN and backpropagation through time

Notation
Symbol Meaning
X Input
§ h Hidden state
2] y Output
' y Observation/Data

1- 23



2. Simple RNN and backpropagation through time

Unfolding the graph

Dynamical system:

h; = f(ht—laxt)
Yt = g(ht)

1- 24
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2. Simple RNN and backpropagation through time

Unfolding the graph

Dynamical system:
h; = f(ht—l ) Xt)

y: = g(hy)

Evalute/Simulate RNN (Inference) :

1- 25



2. Simple RNN and backpropagation through time

Unfolding the graph

Dynamical system:

ht — taﬂh(Wht_l + UXt + b)
yt = Vhy +v

1- 26
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2. Simple RNN and backpropagation through time

Optimization setting

Loss function as a sum over timesteps: L =), L, =), L(y:, J:)

1- 27
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2. Simple RNN and backpropagation through time

Loss Function

As for static Neural Networks: minimize the cross-entropy between
the generating distribution and our model P.

Lt — _1OgP(Ot — yt‘xtaxt—la s JxlﬂhO)

E.g. for a normal distribution N (p(x¢, z—1, ..., 1, ho),1%) we restore
the quadratic loss function

L, = %(yt _M(ﬂfta---))Q
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2. Simple RNN and backpropagation through time

Backpropagation through time (BPTT)

Backpropagation, applied to the unfolded graph of a sequence.

1- 29



2. Simple RNN and backpropagation through time

Backpropagation through time (BPTT)

Backpropagation, applied to the unfolded graph of the sequence.

o) I — OL Oh” OL  OhT 1 OL  Oh™ 2

OWT = = oh™T gWT + OhT—LT 9WT + OhT—2T 9WT ..
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2. Simple RNN and backpropagation through time

Backpropagation through time (BPTT)

Similar to a deep neural network, with the number of layers increasing
with the number of timesteps (deep computation graph).

1- 31
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2. Simple RNN and backpropagation through time

Truncated Backpropagation through time

Backpropagation, applied to the unfolded graph of a chunk of the
sequence of length 7. Similar to minibatches in supervised learning.

t >+ 7

1- 32
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2. Simple RNN and backpropagation through time

Truncated Backpropagation through time

Truncated Backpropagation through time is biased! Unbiased
versions e.g. in [1].

oL
50 On a truncated sequence

oL
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oL .
0 On the complete sequence
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2. Simple RNN and backpropagation through time

State initialization

How can we chose hg ?

» [nitialize as zero [2]
= Noisy zero mean [5]
= Treat as parameter to learn [6]

* |nitialize using a second Neural Network [3]

1- 34
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2. Simple RNN and backpropagation through time

Feedback of the output

Feedback of the output. We can split the computation graph by using
the target values from the data - supervised learning

1- 35
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2. Simple RNN and backpropagation through time

Teacher forcing

Feedback of the output. We can split the computation graph by using
the target values from the data - supervised learning

g
OLOROL0)
2
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2. Simple RNN and backpropagation through time

Teacher forcing

Feedback of the output. We can split the computation graph by using
the target values from the data - supervised learning




TUm

2. Simple RNN and backpropagation through time

Teacher forcing

Problem with accumulating errors when sampling longer sequences.

@ data
o NN

I I 1
10 15 20

1- 38
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2. Simple RNN and backpropagation through time

Regularization using Dropout

Problematic when used on shared weights

* Regularize non-shared parameter
only

« Sample one dropout pattern for the
shared parameters and reuse it for
the timesteps in the minibatch

1- 39
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. Simple RNN and backpropagation through time

Wrap up

A RNN is just a state-space model with free parameters that we
want to learn.
Gradient descend using backpropagation as usual, but:

o Computation graph deep (need to store and compute a lot)
-> use truncated sequences

o But truncated sequences lead to bias in the gradient

If we use output as input again, we can use teacher forcing
-> no need to backpropagate over sequences
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3. Challenge of long term dependencies

Vanishing or exploding Gradients

Suppose we have a recurrent function

hiy1 =

hiyr =
Ohiy
Oh;

For long sequences
Ohi 1k,

lim =

k— o0 8ht

-42



3. Challenge of long term dependencies

Vanishing or exploding Gradients

ht_|_1 = tanh(Wht + UXt + b)
y: = Vhy +v

For backpropagation we need

OLi1x  OLyyp/Ohyyy

ohf  ohT ,\ oh!

Ohy
on?

— dlag(l — ht+1 © ht_|_1)W
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3. Challenge of long term dependencies

Vanishing or exploding Gradients

For matrices, we need to look at the spectral norm = largest
singular value

v = max|[diag(1 — tanh(....)?)|

One can show that

Ohy 4
<
et < hwl
oh; . k
<
pek| < ywl

-44



3. Challenge of long term dependencies

Vanishing or exploding Gradients

We want

Hah“’“ < Wi ~ 1

onT

We know 7, so Initializing W using a good distribution helps at the
beginning of the training.

- 45



3. Challenge of long term dependencies
Exploding gradient, Gradient clipping

If gradient is to big, use only the direction, not the magnitude.

(0.35
0.30
0.25 .
o
0.20 £
Q
0.15
0.10
'0.05

Image from [10]
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3. Challenge of long term dependencies

Vanishing Gradient, Skip Connections

,<Jump over” iterative gradients

Today: use different parameterization, e.g. gated network



. Challenge of long term dependencies

Wrap up

Reusing the same weights can lead to very big or very small
gradients that can slow down training.

Big gradients should be diminished in some way, e.g. cut norm,
cut single entires

Small gradients can be tackled by using inputs from multiple
steps in the past

Good initialization of the recurrent weights can avoid small or
big gradients at the beginning of the training.
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4. Advanced RNN structures

Input — Output relations

Many to many Many to one One to many
E.g. Approximate E.g. classify a E.g. describe an
the dynamics of a video iImage with a

physical system sentence

1- 50



4. Advanced RNN structures

Multilayer RNN

Short analysis of the influence of multiple layers in [11]

1-51



4. Advanced RNN structures

Bidirectional RNN [4]

Including future information can be helpful. E.g. handwriting
recognition.

QQQQ

1- 52



4. Advanced RNN structures

Sequence to sequence [7]

1) A sequence is encoded by a RNN with parameters W
2) The information is decoded by RNN with parameters W
E.g. translation into different languages.

1- 53



. Advanced RNN structures

Long short-term memory (LSTM) [8]

ldea of not updating the whole hidden state each time

Protect the state from being overwritten by useless information
Be selective in

o What to write (input gate) i, = o(W;h;_1 + U;x; + b;)

o What to read (output gate) o; = o(W,h;_1 + U,x; + b,)

o What to forget (forget gate) f, — O'(tht_l + Urxy + bf)

Ct = ft ®Ct_1 + it ® t&ﬂh(Whht_l + UhXt + bh)
h; =00 ¢
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4. Advanced RNN structures

LSTM Structure

:f . )—»(—J?‘

4’@\0

()

o)
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4. Advanced RNN structures

LSTM, forget

v

v
A 4

v
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4. Advanced RNN structures

LSTM, input
Ct—1 Ct
> :C—J—? >

.@C —SO—
h;_4 h
_ - - t
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4. Advanced RNN structures

LSTM, output

s>

g
&)
o
‘e
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4. Advanced RNN structures

LSTM example in Vinyals et al. [9]

Vision Language
Deep CNN Generating
RINN

{0

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

1-
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4. Advanced RNN structures

LSTM example in [9]

log pi(51) | | log pa(52) log pra(5n)
a t 1 1
| Fr p! P2 PN
a5 1 1 t t
sassbying g
= > >
it > >
e - — = Ty —
el (a2 9
T 1 i
:3;' WeSo WeS WeSH-|
1 t t t
image S0 Si SIN-1
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4. Advanced RNN structures

motorcycle on a dirt road.

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
. frisbee.

Two hockey players are A little girl in a pink hat is A refrigerator ﬂlled.with lots of
fighting over the puck blowing bubbles. food and drinks.
. A e

A close up of a cat laying

A red motorcycle parked on the A yellow school bus parked
on a couch.

side of the road..™
o 7

1- 61
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4. Advanced RNN structures

Gated Recurrent Unit (GRU)

= Same idea using gates, here
o |nput/write i = oc(W;h;_1 + U;x; + b;)
o Forget fi=1—-1,
o Qutputread 0y = 0(Wohy_1 + Uyx; + by)

ht_|_1 — (1 — it) ® ht—l + it ® ta,nh(Whht—1 + Uh(Ot ® Xt) + bh)

= Read first then write!
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4. Advanced RNN structures

GRU Structure

4 ]

Y

\ 4
[T
[
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. Advanced RNN structures

Wrap up

Many structures and activations possible: deep RNN,
bidirectional RNN, sequence to sequence, LSTM-cells, GRU,...

Hard to know a priori what will work best. Currently LSTM and
GRU used a lot.

1- 64



Wrap up

= Recurrent Neural Network = Dynamical System

= Common use cases: Wherever data appears in sequences, e.g.
audio, video, text, language...

» Unfolding in time is simular to training deep neural network, but
additional difficulties appear: deep computation graph, initial state,
biased gradient, gradients small or large...

= Different RNN structures might be favorable for different
situations: bidirection RNN, sequence to sequence, gated
networks...

= No ,one fits all® solution, still topic of research.

1- 65
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5. Recurrent Neural Networks in Automobility

Recurrent neural networks for driver activity anticipation via
sensory-fusion architecture
Jain, A.; Singh, A.; Koppula, H. S.; Soh, S. & Saxena, A.
2016 IEEE International Conference on Robotics and Automation (ICRA), 2016

Maneuver anticipation

Predict the drivers action multiple
seconds ahead.

—>multiple sensors and LSTM's
fused

1- 67



5. Recurrent Neural Networks in Automobility

Recurrent neural networks for driver activity anticipation via sensory-fusion architecture

(b) Computing features vectors (c) Sequence of feature vectors (d) Fusion RNN

(a) Face Tracking

(e

) Output

Facial landmarks and pose

T 1 1
Softmax CO O OO)

© 0 0O)

11111 l=

Fusion
Layer

LSTM
Networks

1Tttt

Outside
Features

& :

Outside context

Inside
Features

t=0 |
Inside Features

N Left Lane
Right Lane

W Left Turn

W Right Tum

m Straight

Multiple LSTM, one for each sensor (camera, GPS, vehicle

dynamics,...)
= Sensor fusion on hidden states as fully connected
= Loss function with increased loss in late predictions

1- 68




5. Recurrent Neural Networks in Automobility

Recurrent neural networks for driver activity anticipation via sensory-fusion architecture

Lane change Turns
Method Pr (%) Re (%) m;gﬁ;‘? o | P Re (%) m;gﬁ;‘? ®

Chance 33.3 33.3 - 33.3 33.3 -
SVM [27] | 73.7 £ 34 578 £ 28 2.40 647 £ 65 472 +76 2.40
Random-Forest | 71.2 & 24 534 4 3.2 3.00 68.6 =35 444 £ 35 1.20
IOHMM [19] | 81.6 = 1.0 796 £ 1.9 3.98 776 £33 759 £ 25 4.42
AIO-HMM [19] | 838 £ 1.3 792 +£29 3.80 80.8 £34 752+ 24 4.16
S-RNN | 854 £ 0.7 86.0 £ 1.4 3.53 7524+ 14 753 £ 2.1 3.68
Our F-RNN-UL | 92.7 £ 2.1 844 %+ 28 3.46 81.2 =35 786 £ 28 3.94
Methods F-RNN-EL | 882 4+ 14 86.0 £ 0.7 3.42 838 £ 21 799 L35 3.78

= Comparison of different modifications, and also comparison with

other works.

1- 69




5. Recurrent Neural Networks in Automobility

Deep steering: Learning end-to-end driving model from

spatial and temporal visual cues
Chi, L. & Mu, Y.

arXiv preprint, 2017

Steering angle? Brake?
Visual Perception Accelerate? Change Lane?

In—vehicle
dashcam

ing ®
Only prediction in the paper, N0 drivind



5. Recurrent Neural Networks in Automobility

Deep steering: Learning end-to-end driving model from spatial and temporal visual cues

,Feature extraction sub-network*

3X3>< 54)( 1
Compiled Video Frames 5X5X64X2 ST-Conv ! i |
320X 240X3X 15 —/"'1/» [15><10><54><1o] / ConvLSTM
S5X5X64X2 ST-Conv {14)<sxa4x 10
/1 20X 14X64X 11 /
_— ( ) m [W]
} | Fc;ua] )
5X 5% 64X 2 ST-Conv (2aX18X 64X 12) (Fc (128) )
2xuxaxy o / Crels )
/6 } !
[_Fc(128) | __FC(256) |
ST-Conv (52X39X64X13) _ Jr_
| Crcazs) )
I
| D
A~

Feature (128-dimensional)
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5. Recurrent Neural Networks in Automobility

Deep steering: Learning end-to-end driving model from spatial and temporal visual cues

Feature (128-d) ——

e

Output
(speed, torque, wheel angle)

»oteering-prediction sub-network*

Temporal
Unrolling

4

Feature (128-d) —

Feature (128-d) —
.
——eomeat

.

Feature (128-d) —

3

—hCE_unca_t;E

I
—-Q concat _:}
— L5TM

—-(;uncat e

o

~( f__;unca;}—

T

L F

Output

— —

T

ok

|

Output




5. Recurrent Neural Networks in Automobility

Deep steering: Learning end-to-end driving model from spatial and temporal visual cues

:.1 4
r7 B
. » B

=——V\/GG-16 =—=Deep Steering Ground Truth
0.5
1.4

’ 0.4
03

0.9 T
{ 0.2

|
A l ":' | 01

0.4 Bk'f?‘ ‘ f }I . \ : I
" '.1';1 N Wi _ | \ '\ alt | ': [ ll.'."_ A ) II| ’ 0
AL W™ “’?““' W\
w i

-0.2

Wheel Angle

0.6 1 . .‘ [ 0.3
l | 04

-1.1
\ 05




5. Recurrent Neural Networks in Automobility

Practical classification of different moving targets using automotive radar

and deep neural networks
Angelov, A.; Robertson, A.; Murray-Smith, R. & Fioranelli, F.

IET Radar, Sonar & Navigation, IET, 2018

27

:>

> o¢o
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5. Recurrent Neural Networks in Automobility

Practical classification of different moving targets using automotive radar and deep neural networks

Raw ADC Range FFT +
data | ‘ IR Filtering ‘ ’ i

Kalman
Filtering

Range bins

with target
detection
~ e
| STFT for )
Range-Time spectrograms Estimated target track
image \.. =
v
4 )
Neural
Network
g J
2
' N
Prediction
. A
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5. Recurrent Neural Networks in Automobility

Practical classification of different moving targets using automotive radar and deep neural networks

| 2D Convolutional Layer (30 filters, 5x5) | | 2D Convolutional Layer (64 filters, 7x7) | | Time Distributed2D Convolutional Layer (2 filters, 5x5)
v v v
[ Max Poolingi Layer (2x2) i 4 Max Pooﬁnll Layer (3x3) | ] Time Distributed Max Pooling Layer (2x2)
| 2D Convolutional LIyer (15 filters, 3X3) J I 3x(Conv (64, 1x1) + Conv ?‘. 3x3) + Conv (256, 1x1)) ] Time Distributed Flattening Layer
4x(Conv (128, 1x1) + Conv (128, 3x3) + Conv (512, 1x1 .
| Max Poolinli Layer (2x2) | IS i ey Coms P2, et | | LSTM Layer (50 neural units)
| 6x(Conv (256, 1x1) + Conv (256, 3x3) + Conv (1024, 1x1)) | v
[ Dionowt Lz”’ e I 1 [ Fully Connected Layer (1 neural unit)
[ Faily Con T T | 3x(Conv (512, 1x1) + Conv (512, 3x3) + Conv (2048, 1x1)) | c
et v
18 :
A Pooling La
[ Fully Connected Layer (50 neural units) ] [ YErge SO ST ]
T J ST | Fully Connected Layer (1000 neural units) ]
el v
4 | Fully Connected Layer (2 neural units) ]
b

Fig. 3 Representation of the different network architectures
(a) Convolutional neural network similar to VGG type, (b) Convolutional residual network, (¢) Combination of convolutional and recurrent LSTM network
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5. Recurrent Neural Networks in Automobility

Practical classification of different moving targets using automotive radar and deep neural networks

Table 3 Test accuracy for two network architectures
evaluated on three class problems

Evaluation/ VGG-like VGG-like CNN- CNN-
network type CNN(2s CNN (0.5s LSTM (2s LSTM (0.5
long long long s long

datasets) datasets) datasets) datasets)

car-person- 79% 83% 93% 83%

bicycle

classification

car-person-2 81% 78% 80% 84%

people

classification

Table 4 Test accuracy for three types of networks (VGG-
like, CNN-LSTM, and VGG-LSTM) on all considered

problems, with regularisation and batch normalisation

Evaluation/ VGG-like VGG-like CNN- CNN-
networktype CNN(2s CNN (0.5s LSTM(2s LSTM
long long long (0.5 s long

datasets) datasets) datasets) datasets)

car-person- 78.6% 81.1% 50% 73.5%

bicycle

classification

car-person-2 77.8% 88.6% 44 4% 78.3%

people

classification

all-4-classes- — — — 70%

classification

(VGG LSTM)
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Evaluation

One more thing...

Source: https://splinternews.com/12-years-of-steve-jobs-saying-one-more-thing-like-hes-c-1793850336



Evaluation

In this lecture we are doing in regularly evaluation of each lecture

We want your feedback for every individual lecture

We evaluate the lecture each week

We give feedback based on the evaluation the week after
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Evaluation — Step by Step

Get out your smartphones
Open an app for QR-code Reading

Read the following QR-code on the right side 9

Open the website
Answer the questions
Send the evaluation

OR

Open the following website in your browser:
https://evasys.zv.tum.de/evasys/online.php?p=AIAT-10

Answer the questions
Send the evaluation



https://evasys.zv.tum.de/evasys/online.php?p=AIAT-10
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