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Objectives for Lecture 7: Introduction to Neural Nets

Remember Understand Apply Analyze Evaluate Develop

… understand and explain what an artificial neuron is

… draw graphical representations of artifical neurons

… update the weights of a neuron using Gradient Descent

… understand and solve simple regression and

classification tasks using a single artificial neuron

… understand how multiple artificial neurons form a neural

network

… explain functional completeness of simple neural

networks

… understand simple multi-layer architectures

… remember and understand basic neural network

vocabulary

Depth of understanding

After the lecture you are able to…



Introduction

Neural Nets

Image to Text Translation
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Introduction

Neural Nets

Speech Recognition

Speech Segmentation

Text-to-Speech
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Introduction

Neural Nets

Using Machine Learning to Map Poverty from Satellite Imagery
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Introduction

Neural Nets

Image Colorization

Artistic Style Transfer

Caption Generation
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Introduction

Neural Nets
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Introduction

Neural Nets

What is the similarity between these tasks?

How can one general approach fit them all?
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Introduction

How to introduce Neural Nets

http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-1col-dkrieselcom.pdf

Spinal cord

Brain

Node of

Ranvier

Schwann cell

Myelin sheath

Axon

Nucleus

Cell body

Dendrite

7 - 11



Introduction

How to introduce Neural Nets

http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-1col-dkrieselcom.pdf

Spinal cord

Brain

Node of

Ranvier

Schwann cell

Myelin sheath

Axon

Nucleus

Cell body

Dendrite

7 - 12



Introduction

Universal Approximation Theorem

Neural

Net

Input Output

Explicit In- / 

Output Relation

≈
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Neural Nets are Universal Approximators:



Introduction

Universal Approximation Theorem

Neural

Net

Input Output

Explicit In- / 

Output Relation

≈
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Benefit of Neural Nets:
Often, no explicit In- / 

Output Relation is known!



Introduction

Universal Approximation Theorem

Neural

Net

Input Output

Explicit In- / 

Output Relation

≈
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Benefit of Neural Nets:
Mostly, In-/Outputs can be

observed



Introduction

Universal Approximation Theorem

Neural

Net

Input Output

Explicit In- / 

Output Relation

≈
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Benefit of Neural Nets:
Neural Nets can learn from

observations

(Supervised) Machine Learning



Additional Slides

The Universal Approximation Theorem for ANN shows that even relatively simple ANN can

appoximate any analytic function with arbitrary accuracy. Even though the Universal Approximation 

Theorem does not proof that the necessary parameters and architectures of the desired ANN can be

found easily or by the means of finite time or input data, countless practical examples prove the

applicability to real life problems. 

Since ANN are trained only by input data and expected outputs, they do not require full analytic

knowledge of the physical domains being appoximated, thus making them powerful tools when

analytical solutions are unknown, too complex or not real-time ready as long as inputs and outputs of

the physical system to be modeled can be observed – or in case of outputs, generated manually. 

That being said, analytical solutions still ought to be sought whenever possible because they offer

extended insights into the modeled domain as well as a potentially higher numeric accuracy. 
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Towards Artificial Neurons

Linear Regression

The Simplest Approximation:
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Additional Slides

In order to derive the necessary ideas and maths for the understanding of neural networks, which are

proven to be „universal approximators“, we start by taking a closer look at the simplest form of

mathematical approximation – linear regression without basis functions. 

Linear regression can be used to define and introduce a number of important concepts in the context

of deep learning like Weights, Biases, Loss Function, Forward Pass and Gradient Descent. 

From linear regression one can then derive more complex forms of regression by introducing

non-linearities into the corresponding models. From this line of thought, the basic model of a Neuron 

as it is used in ANN can be derived. 
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Additional Slides

The idea of linear regression is to find Weights w and Bias b, such that the resulting function

𝑦 = 𝑓 w ∙ x, b = σ𝑖𝑤𝑖 𝑥𝑖 + b approximates a data set with inputs x ∈ 𝑋 and Outputs ො𝑦 ∈ 𝑌 as 

accurately as possible.
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Towards Artificial Neurons

Linear Regression

Graphical Representation:

7 - 23
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Towards Artificial Neurons

Linear Regression
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Graphical Representation:
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Towards Artificial Neurons

Linear Regression
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Graphical Representation – 3 Inputs Example:



Towards Artificial Neurons

Linear Regression
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Forward Pass:



Additional Slides

Since this is an introduction to neural networks, neural network vocabulary is employed. Hence, the

neural network term „Forward Pass“ is used, although it is not a term used in linear regression, 

because it refers to the corresponding process in an artificial neuron.

The „Backward Pass“ which is part of the „Backpropagation“ idea will be introduced the next lecture.
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Towards Artificial Neurons

Linear Regression
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Loss Function
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Loss Function:

Training Data



Towards Artificial Neurons

Linear Regression

7 - 29

Optimization Problem:



Towards Artificial Neurons

Linear Regression

7 - 30

Linear Regression Lecture:

Analytic Solution

Is the cost function quadratic? 

Is all data available
instantanously? 

Sequential
Analytic Solution

Is the dataset very
large? 

yes no

yes

Numeric Iterative 
Solution

yes

no

no

Are there parameter
constraints? 

yesno
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Towards Artificial Neurons

Gradient Descent

- Gradient defines steepest ascent (         ) 

- Update weights by a step in the opposite direction (i.e. steepest descent, length 𝛼)

- Stop when optimization criterium is met (e.g. loss threshold 𝜖) or after N iterations

7 - 32

Approach:



Towards Artificial Neurons

Gradient Descent
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Well behaved:



Towards Artificial Neurons

Gradient Descent
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Finding the Gradient:
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Gradient Descent
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Finding the Gradient:
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Gradient Descent
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Finding the Gradient:
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Gradient Descent
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Finding the Gradient:
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Gradient Descent
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Finding the Gradient:



Towards Artificial Neurons

Gradient Descent

7 - 39

Numerical Example:



Towards Artificial Neurons

Gradient Descent
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Numerical Example – One Iteration



Towards Artificial Neurons

Gradient Descent
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Towards Artificial Neurons

Gradient Descent
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Numerical Example – One Iteration



Towards Artificial Neurons

Gradient Descent

7 - 43

0.1

1

0.3 2.02175

0.7725

0.55725
0.5725

2.00725 2

Σ

𝑥1 𝑤1

𝑥2

𝑥3

𝑦𝑤2

𝑤3

𝑏

ො𝑦

Numerical Example – One Iteration



Towards Artificial Neurons

Gradient Descent

7 - 44

Stuck in Local Minimum:



Towards Artificial Neurons

Gradient Descent
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Vanishing Gradient:



Towards Artificial Neurons

Gradient Descent
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Oscillating:



Towards Artificial Neurons

Gradient Descent
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Jumping out of Minima:
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Towards Artificial Neurons

Input Data
Specific Observations of the Domain

Abstraction of the Domain
Regression

Prediction
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Wrap Up:
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Wrap Up:



Towards Artificial Neurons

The Neuron

7 - 51

Introduction of an Activation Function:
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Towards Artificial Neurons

The Neuron

7 - 52

Properties:

• One Output

• One or many Inputs

• Bias 𝑏, Weights 𝑤

• Activation Function 𝑓

•



Additional Slides

In order to enable approximation of non-linear domains, the Linear Regression model is augmented

by a non-linear activation function. The resulting model is called an Artificial Neuron and serves as

the base component of an ANN. 

Aritificial Neurons can be wired together to form arbitrarily large structures in which arrays of Neurons 

of the same hierarchy level are called „Layers“. 

Each ANN has an „Input Layer“ where the data is fed into the network, a number of „Hidden Layers“ 

made up of artificial Neurons and an „Output Layer“ which contains the results of the forward pass. 
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Towards Artificial Neurons

The Neuron

7 - 54

Linear Regression Binary Classification



Towards Artificial Neurons

The Neuron

Suppose the following Setup:
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Towards Artificial Neurons

The Neuron
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Towards Artificial Neurons

The Neuron

Activation Function

7 - 57

Step Function



Towards Artificial Neurons

The Neuron

7 - 58

Activation Function

Step Function



Additional Slides

To derive an Artificial Neuron from the Linear Regression model, an activation function was added. In 

order to perform a simple binary classification task with only one artificial neuron, a „Threshold“ or

„Step Function“ is used as the activation function. The idea behind this is to generate an output which

is either 1 or 0 depending on the class an input is coming from. 

The problem with the binary step is that gradient descent fails to converge against a reasonable set

of weights, because the derivative of the loss function will be either 0 or very large through the

introduction of a binary step activation function.
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Towards Artificial Neurons

The Neuron

Step Function Sigmoid Function

𝑓𝑓

1 1
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Towards Artificial Neurons

The Neuron

Sigmoid Function

𝑓

1

Continuously Differentiable!
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The Neuron
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The Neuron
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Towards Artificial Neurons

The Neuron
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Towards Artificial Neurons

The Neuron

Input Data:
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Towards Artificial Neurons

The Neuron

Initialization:
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Towards Artificial Neurons

The Neuron

After Training:
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Towards Artificial Neurons

The Neuron

Loss History:

Epoch:

An epoch has passed when all 

training vectors have been used

once to update the weights.
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Towards Artificial Neurons

The Neuron

Σ
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Non-Linear Input

Linear Input
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Towards Artificial Neurons

The Neuron

Input Data:
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Towards Artificial Neurons

The Neuron

Initialization:
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Towards Artificial Neurons

The Neuron

After Training :
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Towards Artificial Neurons

The Neuron
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Input Layer Output Layer

Hidden Layer



Towards Artificial Neurons

The Neuron

𝑥1

𝑥2L
in

e
a

r 
In

p
u
t

Neurons

𝑦

Net Properties:

Loss Function: Mean Squared Error

Activation Function: Sigmoid / Linear

Optimizer: Gradient Descent
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Multilayer Networks

Functional Completeness

Boolean Operators: AND
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Multilayer Networks

Functional Completeness

Boolean Operators: OR
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Multilayer Networks

Functional Completeness

Boolean Operators: NAND
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Multilayer Networks

Functional Completeness

Boolean Operators: XOR

𝑥2

𝑥1

1

1

7 - 79

No linear separability



Multilayer Networks

Functional Completeness

Boolean Operators: XOR 𝑥2

𝑥1

1

1

NAND

OR

AND

𝑥2

𝑥1
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Multilayer Networks

Functional Completeness

Boolean Operators: XOR
NAND

OR
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𝑦
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Multilayer Networks

MNIST Example

https://www.researchgate.net/publication/306056875_An_analysis_of_image_storage_systems_for_scalable_training_of_deep_neural_

networks/figures?lo=1

http://conx.readthedocs.io/en/latest/_images/MNIST_6_0.png

28x28 Grayscale
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Multilayer Networks

MNIST Example

https://www.researchgate.net/publication/306056875_An_analysis_of_image_storage_systems_for_scalable_training_of_deep_neural_

networks/figures?lo=1

Properties:

• 60.000 handwritten numbers

• 28x28 pixels

• 0 to 255 grayscale

• Numbers 0 to 9

Task

Train a classifier that can identify

the handwritten numbers
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Possible Solution:

Multilayer Networks

MNIST Example

https://achintavarna.wordpress.com/2017/11/17/keras-tutorial-for-beginners-a-simple-neural-network-to-identify-numbers-mnist-data/
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Summary

What we learned today:

Neural Networks are mathematical tools that can approximate

any mathematical function

Gradient Descent is an approach suitable for weight adjustments

A single Neuron can perform Linear Regression and Binary Classification

Non-Linear, Multiple Classification and Regression is best performed by

Neural Networks

Vocabulary and Ideas
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