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Feedback from last week

 Repeating the Quiz – Yes, its possible now!



5 - 4

Objectives for Lecture 5: Clustering

Remember Understand Apply Analyze Evaluate Develop

… understand the concept of clustering and its association 
to pattern recognition.
… analyze the quality of given clusters regarding to 
different criteria.

… understand the workflow of unsupervised learning.

… understand the concepts of different clustering methods 
together with their pro and cons.
… implement, train and use a clustering method with 
python libraries.

… identify if a problem belongs to regression, classification 
or clustering.

Depth of understanding
After the lecture you are able to…
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Clustering

[1]

“Grouping of similar things that are close together, 
sometimes surrounding something” [2]
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Clustering

“Grouping of similar things that are close together, 
sometimes surrounding something” [2]

[3]
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Method Overview

Regression

• Predict
continuous
valued output

• Supervised

Classification

• Predict
discrete
valued output

• Supervised

Clustering

• Predict
discrete
valued output

• Unsupervised

Pattern Recognition
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Method Overview

Regression Classification Clustering

 House pricing
 Number of sales
 Persons weight

 Object detection
 Spam detection
 Cancer detection

 Genome patterns
 Google news
 Pointcloud (Lidar) 

processing
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General Approach

Dataset
(Features)

Cluster

Clustering

News (Keywords, …) Similarities? Cluster
Genomes (Size, …) Similarities? Cluster 
Points (Position, …) Similarities? Cluster
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Clustering - Example

Cluster 
Points

Classifiy
subset of
Cluster

Assign class
to cluster

[4]
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Clustering vs. Segmentation

 Both terms are interchangable

 Statistical background: Clustering

 Business background: Segment

 Clustering produces segments and vice versa
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Formal Definition - Clustering

 Elements 𝑒𝑒 ∈ 𝐸𝐸
 Cluster c ∈ 𝐶𝐶, 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐 ⊆ 𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎 ⋃𝑐𝑐 ∈ 𝐶𝐶 = 𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎 ⋂𝑐𝑐 ∈ 𝐶𝐶 = ∅
 Representative 𝑟𝑟𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐)

 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐 = ∑𝑒𝑒∈𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟𝑐𝑐 , 𝑒𝑒)2

 Clustering: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑𝑐𝑐∈𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐)
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Formal Definition - Distance

Manhattan
𝑥𝑥1 − 𝑥𝑥2 + |𝑦𝑦1 − 𝑦𝑦2|

Chebyshev
max( 𝑥𝑥1 − 𝑥𝑥2 , 𝑦𝑦1 − 𝑦𝑦2 )

Euclidian
(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2
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Recap Classification

 Classification
 Labeled training data (supervised)
 Given classes

 Example: Dart
 Shooting a target
 3 classes for points
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Clustering

 Grouping a set of data objects into clusters
 Cluster: a collection of elements
 Similar to one another within the same cluster
 Dissimilar to the objects in other clusters

 Difference to Classification
 No given clusters/classes
 Unsupervised learning

 Application
 Get insights in large datasets
 Preprocessing for other algorithms
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Supervised Learning - Classification

Labeled Data

Training-Set

Classifier

Training

Test-Set

Quality

(Hidden labels)

Validation

Adjustment
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Unsupervised Learning - Clustering

Dataset
Clustering

Training

Adjustment

Quality

Validation
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Quality Measure of a Cluster

 Distances to representatives depend on 𝑘𝑘
 𝑘𝑘 = 2: very large distances
 𝑘𝑘 = 𝑛𝑛 − 1: very small distances

 Similarity 𝑠𝑠𝑠𝑠𝑠𝑠(𝑜𝑜)
 Within a cluster: 𝑜𝑜 ∈ 𝑎𝑎 ∈ 𝐶𝐶
 Average distance to all elements within the same cluster

 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 = 1
|𝑎𝑎|
∑𝑒𝑒∈𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑒𝑒)

 Dissimilarity 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜)
 To other clusters: 𝑒𝑒 ∉ 𝑏𝑏 ∈ 𝐶𝐶
 Average distance to all elements of the second closest cluster

 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 = min
𝑐𝑐≠𝑎𝑎

( 1
|𝑐𝑐|
∑𝑒𝑒∈𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜, 𝑒𝑒))
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Quality Measure of a Cluster

 Silhouette coefficient

 𝑠𝑠 𝑜𝑜 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜 −𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜
max 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 ,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜

 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜) = 0, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠 𝑜𝑜 = 0
 𝑠𝑠(𝑜𝑜) ∈ [−1, 1]

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 = 1
|𝑐𝑐|
∑𝑜𝑜∈𝑐𝑐 𝑠𝑠(𝑜𝑜)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸 = 1
|𝐸𝐸|
∑𝑜𝑜∈𝐸𝐸 𝑠𝑠(𝑜𝑜)
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Hierarchical Clustering

1. Start with one cluster per element
2. Combine the two closest (most similar) clusters
3. Until all elements are in one cluster

 Top down (divisive)/Bottom up (agglomerative) D

E

B

A C

A
B
C
D
E
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Distance between Clusters

 Single Link
 Smallest distance between two

point of different clusters

 Complete Link
 Largerst distance between two

points of different clusters

 Average Link
 Average distance between all 

points of one cluster to all points of
a different cluster
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Dendrogram

 Root: Cluster with all points
 Leaf: Cluster with one point
 Edges: Combine two clusters
 Depth: Distance between two combined clusters 

[5]
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Dendogram - Example

[6]
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Hierarchical Clustering - Silhouette coefficient
[7]
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Hierarchical Clustering - Example

[8]

Presenter
Presentation Notes
Left Szenario:��Draw two small cluster in the centers�Draw two bigger cluster (top/bottom) containing all points (and the small clusters)

Right Szenario: 
Draw 4 clusters
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Discussion Hierarchical Clustering

 Pro:
 Generic: No cluster number or parameters must be defined
 Visualization: E.g dendrogram shows hierarchy 
 Hierarchy: Relationship between clusters
 Deterministic: Generates always the same clusters

 Contra:
 Scalability: Runtime 𝒪𝒪(𝑛𝑛3)
 Choice: The final cluster must be selected from the hierarchy



Agenda

Supervised Learning: Classification
Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann 

(Jan Cedric Mertens, M.Sc.)

1. Chapter: Introduction
1.1 Overview
1.2 Training and Validation

2. Chapter: Methods
2.1 Hierarchical Clustering
2.2 k-means
2.3 DBSCAN

3. Chapter: Application
4. Chapter: Summary



5 - 32

K-Means - Basic Idea

 Minimize squared distances to 
the cluster mean (variability)

 Minimize the summed 
variability of all clusters

Large Sum  Poor clustering
Minimal Sum  Optimal clustering

 Computationally challenging
 NP-hard



5 - 33

K-Means Algorithm (Lloyd)

 Given:
 Number of desired clusters k
 Dataset 

 Initialization: 
 Choose k arbitrary 

representatives

 Repeat until stable:
 Assign objects to nearest 

representative
 Compute center of each cluster 

as new representative
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K-Means Algorithm (Lloyd)
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K-Means Algorithm – How to choose k?

 A priori knowledge of an expert
 „There are five different types of bacteria“: k = 5

 Search for a good k 
 Naïve approach: Brute Force with k = 2 … n-1
 Run hierarchical clustering on subset of data
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K-Means Algorithm – How to choose k?

[9]
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K-Means Algorithm – How to choose k?

[9]
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K-Means Algorithm – How to choose k?

[9]
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K-Means Algorithm – How to choose k?

[9]
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K-Means Algorithm – How to choose k?

[9]
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K-Means Algorithm – How to choose k?

k = 2 k = 3

k = 4 k = 5
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K-Means Algorithm – How to handle randomness?

Unlucky initial representatives



5 - 48

K-Means Algorithm – How to handle randomness?

 Naïve approach
 Get a small random subset 𝐷𝐷 from 𝐸𝐸
 Cluster 𝐷𝐷 and use found representatives for initialization

 Improved approach
 Get 𝑚𝑚 small random subsets 𝐴𝐴…𝑀𝑀 ⊂ 𝐸𝐸
 Cluster 𝐴𝐴 to 𝑀𝑀 and save representatives 𝑅𝑅𝐴𝐴 …𝑅𝑅𝑀𝑀
 Cluster the merged set 𝐴𝐴𝐴𝐴 = 𝐴𝐴 ∪⋯∪𝑀𝑀,𝑚𝑚 times with 𝑅𝑅𝐴𝐴 …𝑅𝑅𝑀𝑀 as 

initital representatives
 Use the represenation (𝑅𝑅𝐴𝐴 …𝑅𝑅𝑀𝑀) of the best clustering of 𝐴𝐴𝐴𝐴 as 

initial representation for 𝐸𝐸
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K-Means Example

[10]
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Discussion K-Means

 Pro:
 Efficiency: 𝒪𝒪(𝑡𝑡𝑡𝑡𝑡𝑡) with typically k,t << n

• n = #objects, k = #cluster, t = #iterations 

 Implementation: Easy to use

 Contra:
 Applicability: mean must exist
 Noise: Sensitive to outliers
 Specification: k must be defined
 Initialization: Might run in local optimum
 Cluster Form: Convex space partitions
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Voronoi Model

 The Voroni diagramm partiones
the space in Voroni cells for 
each point p

 The Voroni cell for point p 
covers the area which nearest 
data point is p 
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Variants - K-Medoids, K-Median Clustering

 Representative: Mean  Object from cluster
 Means do not always exist

 Distance: squared distance  normal 
distance
 Influence of outliers is reduced

 Two variants for representative: 
 Medoid: Object in the middle
 Median: Artificial object in the middle

 Basic idea:
 Minimal distance between the objects of a 

cluster to its representative
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Discussion k-Means, k-Medoid & k-Median

K-means K-medoid K-median

data Numerical data
(mean)

metric ordered
attributed data

efficiency High O(tkn) Low O(tk(n-k)^2) High O(tkn)

Senitivity to
outlivers

High Low Low

 Pro
 Implementation: Easy to use

 Contra
 Specification: k must be defined
 Cluster Form: Convex space partitions
 Initialization: Might run in local optimum
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Density Based Clustering - DBSCAN

 Density-Based Spatial Clustering Application with Noise

 Two parameters

 𝜀𝜀-radius neighborhood
 Minimum Points

 Three Point-classes
 Core
 Border
 Outlier
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DBSCAN – Density Reachability

 𝑝𝑝𝑛𝑛 is „reachable“ from 𝑝𝑝1, if there is a path 𝑝𝑝1 … 𝑝𝑝𝑛𝑛 where
each 𝑝𝑝𝑖𝑖 on the path must be a core point, except for 𝑝𝑝𝑛𝑛



5 - 57

DBSCAN – Example
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Discussion DBSCAN

 Pro:
 Cluster Form: Arbitrary space partitions
 Specification: k is determined automatically
 Noise: Separates clusters from noise
 Efficiency: DBSCAN 𝒪𝒪(𝑛𝑛2)

 Contra:
 Specification: Parameters difficult to determine
 Sensitivity: Very sensitive to parameter changes
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Applications
Google News

Genome Patterns [14]
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Applications

Computing
Cluster

Sozial Network

Market
Segmentation

[11] [12]

[13]
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Application

 Customer Clustering
 Amazon: Product suggestion (personalised advertisment)
 Netflix: Movie suggestion

 Netflix 1,000,000 $ challange from 2006
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Clustering for automotive technology

 Traffic analysis
 Collect mobility data of cars

or density of certain regions

 Use cluster algorithm to identify 
different groups 

• e.g. commuter, points of interest

 Extract generalisation of trajectories
and traffic flow

 Use knowledge for city planing and to
identify bottlenecks
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Clustering for automotive technology

 High Level Object-Fusion

 Object-Detection based 
on limited data (only 
from one sensor)

 Object-Fusion based on 
processed Object-List 
(already information 
loss)

Camera
(Basler)

Object-List
(Position, Velocity)

Object-List
(Classification)

Object-Fusion

Object-List
(Position, Velocity

Classification)

Lidar
(Velodyne)
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Clustering for automotive technology

 Low Level Object-Fusion

 Overlay Lidar point-
cloud with camera 
image

 Find cluster in 
augmented pointcloud

 Object Detection based 
on fused raw-data

Lidar
(Velodyne)

Camera
(Basler)

Sensor-Fusion

Augmented
Point-Cloud

Point-Cloud RGB Image

Clustering

Object Detection
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Clustering for automotive technology

[15]
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Clustering for automotive technology

[4]
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Summary

Regression

• Predict
continuous
valued output

• Supervised

Classification

• Predict
discrete
valued output

• Supervised

Clustering

• Predict
discrete
valued output

• Unsupervised

Pattern Recognition
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Summary

What did we learn today:
 Clustering is about finding groups in a dataset.
 Clustering is an optimisation problem.
 Elements within a cluster are similar.
 Elements form different clusters are dissimilar. 
 The distance can be used to express similarity.
 Clustering is an unsupervised method, no labels are required.
 The silhouette can be used to express the quality of a cluster. 
 Segmentation and Clustering are interchangeable terms.
 The concepts of hirarchical clustering, k-means and DBSCAN.
 Hirarchical clustering builds a dendogram.
 The number of desired clusters can be selected afterwards
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Summary

What did we learn today:
 K-means is a fast but greedy and non determninistic algorithm.
 The number of clusters must be selected beforehand.
 Only convex space partitions can be generated.
 DBSCAN is a density based method and can deal with noise.
 Elements are classified as core, border or outlier.  
 Complex forms can be grouped as clusters
 Clustering is applied as preprocessing or to find coherences.
 Wide range of clustering applications, but rarely as stand alone.
 Experts or classification methods give clusters afterwards meaning.
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