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Feedback from last week

3 - 2

 Too much slides / Too much information in too little time
 AI is a complex topic with different subjects
 Overall lecture is not enough time (1.5h + Practice)
 Use the summary and the learning results: Each slide is 

just for you to understand everything in total, but the focus of what you 
need to learn is clear based on learning results

 Trust us: First lecture of his kind – We will combine 
learning results with exam questions

 Live Coding/ Practice Coding: the code could not be read on the 
beamer:

 Uploading practice code and live code before the lecture
 Use jupyter notebook for better explanation



Lecture Overview

Overall Introduction for the Lecture
18.10.2018 – Betz Johannes

6 Pathfinding: From British Museum to A*
29.11.2018 – Lennart Adenaw

11 Reinforcement Learning
17.01.2019 – Christian Dengler

1 Introduction: Artificial Intelligence
18.10.2018 – Betz Johannes

P6:
29.11.2018 – Lennart Adenaw

P11
17.01.2019 – Christian Dengler

P1:
18.10.2018 – Betz Johannes

7 Introduction: Artificial Neural Networks
06.12.2018 – Lennart Adenaw

12 AI-Development
24.01.2019 – Johannes Betz

2 Perception
25.10.2018 – Betz Johannes

P7
06.12.2018 – Lennart Adenaw

P12
24.01.2019 – Johannes Betz

P2:
25.10.2018 – Betz Johannes

8 Deep Neural Networks
13.12.2018 – Jean-Michael Georg

13 Free Discussion
31.01.2019 – Betz/Adenaw

3 Supervised Learning: Regression
08.11.2018 – Alexander Wischnewski

P8
13.12.2018 – Jean-Michael Georg

P3:
08.11.2018 – Alexander Wischnewski

9 Convolutional Neural Networks
20.12.2018 – Jean-Michael Georg

4 Supervised Learning: Classification
15.11.2018 – Jan-Cedric Mertens

P9
20.12.2018 – Jean-Michael Georg

P4:
15.11.2018 – Jan-Cedric Mertens

10 Recurrent Neural Networks
10.01.2019 – Christian Dengler

5 Unsupervised Learning: Clustering
22.11.2018 – Jan-Cedric Mertens

P10
10.01.2019 – Christian Dengler



Objectives for Lecture 3: Regression

Remember Understand Apply Analyze Evaluate Develop

… understand the definition of a Regression problem and 
know the relevant vocabulary. 
…. understand in which areas of Automotive Technology 
Regression can be applied.  
… know the strengths and weaknesses of different basis 
functions for applying a regression model 
… choose the right loss function for training your model 
based on your dataset

…. analyze the result of the training process

…. apply and evaluate the usefulness of regularization
techniques to control model complexity

…. analyze potential problems arising from real world
datasets used in regression

…. understand the basic mathematical principles behind
regression

Depth of understanding
After the lecture you are able to…
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Motivation – Regression Example
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Input variables

Data points

Regression 
result
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Motivation – Algorithms in Machine Learning

Regression

• Predict
continuous
valued output

• Supervised

Classification

• Predict
discrete
valued output

• Supervised

Clustering

• Predict
discrete
valued output

• Unsupervised

Pattern Recognition
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Motivation – Algorithms in Machine Learning

Regression Classification Clustering

 House pricing
 Sales
 Persons weight

 Object 
detection

 Spam 
detection

 Cancer 
detection

 Genome 
patterns

 Google news
 Pointcloud

(Lidar) 
processing 3 - 8



Motivation – Regression in Automotive Technology 

• Usually electric quantities are
measured

• Necessary to convert them to
physical quantities

• Examples: 
• Accelerometers
• Gyroscopes
• Displacement sensors

Sensor calibration
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Motivation – Regression in Automotive Technology 

Parameter estimation

• Vehicle parameters like 
are often only roughly
known

• Estimation via regression
techniques
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Motivation – Regression in Automotive Technology 

Vehicle pricing

• Regression is widely
used for financial
relations

• Allows to compress data
into a simple model and
evaluate derivatives 
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Motivation – Why should you use Regression? 

 Based on the combination of data and model structure, it is
possible to predict the outcome of a process or system

 Training data set is usually only a representation at sparse points
and contains lots of noise

 Allows usage of information in simulation, optimization, etc. 

Model 
structure

Training 
Data

Previously
unseen sets of
input variables

Predictive
Model 

Predictions about
output variables
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Relation of statistics and machine learning

How can we extract information from data and use them to
reason and predict in beforehand unseen cases? (learning) 

 Nearly all classic machine learning methods can be reinterpreted
in terms of statistics

 Focus in machine learning is mainly on prediction
 Statistics often focusses on relation analysis
 Lots of advanced regression techniques build upon a statistical

interpretation of regression
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Additional Information
Definition according to Wikipedia:
In statistical modeling, regression analysis is a set of statistical processes for 
estimating the relationships among variables. It includes many techniques for modeling 
and analyzing several variables, when the focus is on the relationship between a 
dependent variable and one or more independent variables (or 'predictors'). More 
specifically, regression analysis helps one understand how the typical value of the 
dependent variable (or 'criterion variable') changes when any one of the independent 
variables is varied, while the other independent variables are held fixed. 

Definition according to a Machine Learning Blog:
Regression is a method of modelling a target value based on independent predictors. 
This method is mostly used for forecasting and finding out cause and effect relationship 
between variables. Regression techniques mostly differ based on the number of 
independent variables and the type of relationship between the independent and 
dependent variables.

Source: https://en.wikipedia.org/wiki/Regression_analysis

Source: https://towardsdatascience.com/introduction-to-
machine-learning-algorithms-linear-regression-
14c4e325882a

3 - 14



Agenda

Supervised Learning: Regression
Johannes Betz / Prof. Dr. Markus Lienkamp / Prof. Dr. Boris Lohmann

(Alexander Wischnewski, M. Sc.)

1. Chapter: Motivation
2. Chapter: Linear Models
3. Chapter: Loss functions
4. Chapter: Regularization & Validation
5. Chapter: Practical considerations
6. Chapter: Summary



Linear Basis Function Model

Output Variables

Weight
Parameters

Basis Functions

Input Variables

Basis Functions

Weight
Parameters

Bias Term
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Representing the dataset as a matrix

Design Matrix
Weight vectorOutput vector
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Nonlinear
optimization

• Specify set of
parameters

• Solve nonlinear
optimization
problem

Gaussian
Processes

• Uses kernel
methods

• No parameters

• Bayesian
interpretation

Support Vector
Machines

• Uses kernel
methods

• No parameters

• Mostly used for
classification

Nonlinear regression
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Workflow – How do we obtain model parameters?

1. Choose
model

• Type of basis functions

• Number of basis functions

2. Find 
Parameters 

• Specify a loss function which measures „how good the model fits the
data“ 

• Specify constraints on the parameters

• Use explicit solution or iterative algorithms to obtain parameters

3. Validate
Model

• Use a second dataset which was not used for training to evaluate the
performance of your model

• This ensures the ability to generalize to unseen data
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Basis functions – examples

Linear 
function

Polynomial
function

Sinusoidal
function

Gaussian
basis function
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Basis functions – Polynomials

 Globally defined on the independent
variable domain

 Design matrix becomes ill-
conditioned for large input domain
variables for standard polynomials

 Hyperparameter: 
 Polynomial degree

𝜙 𝑥 ൌ 1
𝜙ଵ 𝑥 ൌ 𝑥

𝜙ଶ 𝑥 ൌ 𝑥ଶ

𝜙ଷ 𝑥 ൌ 𝑥ଷ

…
𝜙 𝑥 ൌ 𝑥
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Basis functions – Gaussians

expሺ
െ 𝑥 െ 𝜇 ଶ

2𝑠ଶ ሻ

 Locally defined on the independent
variable domain

 Sparse design matrix
 Infinitly differentiable
 Hyperparameter: 

 Number of Gaussian functions
 Width 𝑠 of each basis function
 Mean 𝜇 of each basis function
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Basis functions – comparison of local and global 

Global basis function Local basis function
Spread parameter: 0.3
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Additional Information

The previous slide compares the reaction of the regression to outliers if different basis functions are
used. All examples are calculated using a quadratic loss function. Details on other possibilities follow 
in the upcoming slides. 

The upper plots are constructed based on slightly noisy observations of a quadratic polynomial
function. The ground truth is 𝑦 ൌ 3𝑥ଶ െ 2𝑥  3. The upper left plot uses a quadratic polynomial as
regression model. Since this exactly matches the underlying generation model, the coefficients are
estimated to 2.99, -1.96 and 2.96. The estimation quality is really good which is also reflected in the
plot. The upper right plot uses seven gaussian basis function equally spaced along the relevant 
interval of independent variables. The prediction quality is only slightly worse than that of the
polynomial model. However, note the little oscillations which are induced by the fact that the
regression model does not perfectly fit the underlying model. This leads to local overfitting. 

The lower plots contain four outliers. This heavily influences the polynomial model (right). Its
characteristic does not fit the rest of the data at all. This is also reflected in the coefficients, which are
estimated to -0.38, 5.55 and 0.97. Note that not even the coefficient signs are estimated correctly. As 
a consequence of the global nature of the basis functions, the model does not match the data over
the complete interval. The gaussian model performs way better. It is only affected locally by the
outliers and performs well on the rest of the intervall. 
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Sigmoid
Functions

• Bounded

• Globally defined

Bin functions

• Bounded

• Locally defined

• No continuity

Piecewise linear

• Not bounded

• Globally defined

Basis functions – other
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Additional Information

Background details on different basis functions:
• http://madrury.github.io/jekyll/update/statistics/2017/08/04/basis-expansions.html
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Loss functions

 The loss functions measures the accuracy of the model based on 
the training dataset

 The best model we can obtain, is the minimum loss model
 Choice of a loss function is fundamental in the regression problem

 Minimize the loss function 𝐿 for the training dataset consisting of
independent variables 𝑥 and target variables 𝑦 by variation of the
basis function weights 𝑤. 
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Loss functions – Mean Squared Error (MSE or L2) 

Pro‘s: 
 Very important in practical

applications
 Solution can be easily

obtained analytically
Con‘s:  
 Not robust to outliers

Examples: 
 Basic regression
 Energy optimization
 Control applications
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Loss functions – Mean Absolute Error (MAE or L1) 

Pro‘s: 
 Robust to outliers

Con‘s: 
 No analytical solution
 Non-differentiable in the

origin

Examples: 
 Financial applications
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Loss functions – Huber Loss 

Pro‘s: 
 Combines strengths and

weaknesses of L1 and L2 
loss functions

 Robust + differentiable

Con‘s: 
 More hyperparameters
 No analytical solution
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Loss functions – Comparison

 L2 loss is differentiable
 L1 loss is more intuitive 
 Huber Loss combines

theoretical strengths of
both

Practical hints: 
 Start with L2 loss

whenever possible
 Think about physical

insights and your intent!  
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Additional Information

Additional material on loss functions:
• Good overview and basic discussion of pro‘s and con‘s of different loss functions
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
In detail comparison of MSE and MAE loss functions and their robustness
http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/
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Analytic Solution – Low dimensional example

Solve the optimization problem

with the model

Insert the model and data points

In general, optimal solutions are obtained at the points where the
gradient vanishes to zero. 
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Analytic Solution – Low dimensional example

Calculate the gradient

and set it equal to zero
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Analytic Solution – Low dimensional example

Solve the resulting equation (also called normal equation): 
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Analytic Solution – General form 

 Minimizing MSE loss function can be rewritten in matrix form 

 Optimum value for 𝑤 is equal to setting the gradient to zero and
solve for

 The importance of this loss function is tightly related to the fact that
the analytical solution is available and can be calculated explicitly
for low- to medium sized datasets! 
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Additional Information

Detailed derivation of least squares solution

Taking the gradient with respect to 𝑤

From the necessary condition for a minimum, it follows that

The term is also called the Moore-Penrose pseudo-inverse. It is also the MSE 
solution of an overdetermined system of equations of the form 𝑏 ൌ 𝐴𝑥 with A being a tall, full-rank 
matrix. Note the equivalence of the problem formulation using the Data Matrix before. 
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Sequential Analytic Solution - Motivation

 Consider the following cases:
 Apply regression during operation of the product
 There is not enough memory to store all data points

 A possible solution is given by Recursive Least Squares (RLS) 

Actual best
estimate

New data
point

RLS Update 
rule
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Sequential Analytic Solution – The algorithm

 New data point: 𝑥, 𝑦ത
 Update the parameters

 And the memory matrix 𝑃

 with 𝐼 being the identity matrix of appropriate dimension

Prediction based
on old parameters

Residual Correction gainOld parameter
estimate
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Additional Information

Please note the following facts: 

The initialization of this algorithm is a crucial part in its application. There are two major possibilities: 
• Initialize by using the first datapoints available
• Initialize using values which you assume to be right, e.g. obtained from first principles

The first technique leads to the solution of the ordinate least squares problem. The second technique
however, is tighly related to the regularization techniques already discussed. If one initializes the
parameters as follows

𝑃 0 ൌ 𝜆ିଵ𝐼
𝑤 0 ൌ 0

the resulting solution 𝑤 𝑘 is equivalent to the solution of the L2 regularized least squares problem. 
Moreover, you have the possibility to set a starting value. This can be helpful if a first principles model is
available which should be refined online. 

Moreover, the presented algorithm is tightly connected to the Kalman Filter algorithm. In this case, 𝑃 takes
the role of the estimation covariance matrix and 𝑤 is the corresponding state estimate. More details on this
correspondence can be understood from the carefuly comparison of the update equations of both
algorithms. This constitutes the fact, that the Kalman Filter delivers the least squares state estimate. 
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Sequential Analytic Solution – Forgetting factor

 Some applications show slowly varying conditions in the long term, 
but can be considered stationary on short to medium time periods
 Aging of products leads to slight parameter changes
 Vehicle mass is usually constant over a significant period of time

 The RLS algorithm can deal with this by introduction of a forgetting
factor 𝛾. This leads to a reduction of weight for old samples. 
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Numerical Iterative Solutions

 Regression can be solved
numerically

 Important for large-scale
problems and for non-
quadratic loss functions

 Popular methods:
 Gradient descent
 Gauss-Newton
 Levenberg-Marquardt

Pro‘s: 
 Very generic

Con‘s: 
 Knowledge about numeric

optimization necessary

Parameter

C
os

tf
un

ct
io

n Optimum
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Constraints on the weights

 Weights can be interpreted as physical quantities
 Temperature (non-negative)
 Spring constants (non-negative) 
 Mass (non-negative)

 A valid range is known for the weights
 Tire and other friction models
 Efficiency ( 0 – 100 % ) 

 Improves robustness
 More difficult to solve
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How to solve the regression problem?

Analytic
Solution

Is the cost function quadratic? 

Is all data available
instantanously? 

Sequential
Analytic Solution

Is the dataset
very large? 

yes no

yes

Numeric
Iterative 
Solution

yes

no

no

Are there parameter
constraints? 

yesno
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How to choose the model? 

• Not enough features
• Wrong structure

• Too many features
• Unrelevant features

Underfitted Well done Overfitted
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Overfitting – Choice of hyperparameters

 Overfitting is the
failure to generalize
properly between
the data points

 Cost function
decreases with
increased model
complexity

 Noise and
unrelevant effects
become too
important

Figure source: Bishop – Pattern Recognition and
Machine Learning
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Overfitting – Curse of dimensionality

 Overfitting occurs if
 data points are sparse
 Model complexity is high 

 Sparsity of data points is
difficult to grasp

 Sparsity increases fast with
increased input dimension

16 samples
in one, two and
three dimensional 
space
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Additional Information

The curse of dimensionality is a widespread problem along all data based algorithms. The most
intuitive is the combinatorical aspect mentioned on the slide before. It affects the required sample 
size as well as the computational effort needed. Beside the mathematical implications, it is therefore
of big impact regarding feasible implementations in a descent time and can be considered critical for
the application of systems with real time constraints. 

Despite the raw number of samples, it is helpful in regression if the samples are „nicely“ located in 
the sample space. This usually transforms to well-spread along the domain of interest. It is often
possible to design the sample points in advance to the experiment carried out. In this case, 
techniques like Design of Experiment can help to optimize the location of sample points. This helps
increasing the model quality with a limited sample size. (Further details can be found here: 
https://en.wikipedia.org/wiki/Design_of_experiments)

There are other effects related to the dimensionality of the spaces as well. A fundamental one which
is more difficult to grasp is the fact, that distances become less meaningful in high dimensional 
space. (Details can be found here: https://en.wikipedia.org/wiki/Curse_of_dimensionality)
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Validation datasets

 Difficult to judge overfitting in high-dimensional domains and
autonomous systems

 A standard technique is to separate the data into training and
validation data

Training Data

Validation 
Data

A
v
a
ila

b
le

D
a
ta

Train model A

Train model
on complete

Dataset
Train model B

Train model C Evaluate

Evaluate

Evaluate

Best model
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Validation datasets

 Different hyperparameters can be used to tune the model
 Validation technique works for all of them

Increased Model Complexity

Figure source: Bishop –
Pattern Recognition and
Machine Learning
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Common pitfalls with validation datasets

 Be aware that your validation dataset must reflect the future
properties of the underlying physical relationship. 

 Do not reuse validation datasets. If the same validation set is used
again and again for testing the model performance it is somehow
incorporated into the modelling process and does not give the
expected results anymore! 

 Split the data before fitting the model is therefore essential. Taking
2/3 of the data as training data is a good starting value. 

Visualize your data as much as possible! 
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k-Fold Cross-validation

 In case of limited data size sets, one may not want to remove a 
substantial part of the data for the fitting process

 One can use smaller validations sets to estimate the true
prediction error by splitting the data into multiple ‚folds‘ 

 Variance of the estimation error is an indicator for model stability

Training Data

Validation 
Data

Validation 
Data

Validation 
Data

Validation 
Data

fold
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Regularization

 From a design point of view, we want to choose model structure
based on underlying physical principles and not on the
characteristics of the dataset
 Polynomial basis functions tend to have large coefficients for sparse

datasets
 Gaussian basis functions tend to overfit locally, which leads to single, 

large coefficients
 A technique to circumvent this is regularization

 Penalize high coefficients in the optimization prevents these effects
 Weighting of penalty term gives an intuitive hyperparameter to control

model complexity
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Typical Regularization – Ridge Regression

 Other names: L2 regularization, 
Thikonov regularization

 Prevents overfitting well
 Analytic solution is available as an 

extension to the MSE problem
 Difficult to apply and tune in high-

dimensional feature spaces

Regularization Term
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Typical Regularization – Lasso Regression

 Other names: L1 regularization
 Tends to produce sparse solutions

and can therefore be applied for
feature selection

 Sparse solution means, that several
coefficients go to zero:

Regularization Term
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Additional Information

Comparison between ridge and lasso regularization:
• https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/
• https://codingstartups.com/practical-machine-learning-ridge-regression-vs-lasso/
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Application of regularization

 Use high dimensional input space for test model
 Ridge regression is applied
 Regularized solutions perform far better at interpolation
 Note: You must evaluate at points BETWEEN your sample points
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Tuning regularization with validation data

Increased Model Complexity

Figure source: Bishop –
Pattern Recognition and
Machine Learning
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Bias Variance Trade Off

 The issue of over- and underfitting can be formalized
 Study the predictor performance on a previously unseen data set
 Assume that the observations are corrupted by noise
 The variance of the test data is then written as

Bias Variance Noise
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Additional Information

Derivation of the Bias-Variance decomposition following
https://towardsdatascience.com/mse-and-bias-variance-decomposition-77449dd2ff55

Using the fact that holds for the first and the second term we obtain

Since we evaluate on previously unseen data, the last term vanishes ( The noise of new
measurements is independent of the fitted model and zero mean). 
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Regularization in context of Bias-Variance Trade-Off

 Imagine you can
repeat the fitting
process lots of times

 This renders the
fitting process a 
random experiment

 Model Bias:  The 
mean error over all 
possible fits of the
model

 Model Variance: The 
variance of all 
possible fits of the
model

H
ig

h 
Bi

as

H
ig

h 
Va

ria
nc

e

Figure source: Bishop – Pattern Recognition and
Machine Learning
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Regularization in context of Bias-Variance Trade-Off

 Bulls-Eye: True model
 Each hit is a realization of

prediction model
 In general, we cannot

ensure to reach low bias
and low variance at the
same time

 We have to balance bias
and variance according to
our objective

 Low bias and low variance
require large, high quality
datasets

Source: Scott Fortmann-Roe
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Comparison regression and intuitive solution

 Regression: Minimize the error in output domain
 Independent Variables are assumed noise free
 Often not true in engineering applications

Total least squares
Principal component analysisStandard linear regression
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Normalization – Input data

 Regression implies inversion of design matrix
 Numerically expensive and can get unstable
 In general, all matrix entries variables should lie within the same 

order of magnitude!
 Examples for scaling and mean value normalization

 Multiple length measures should be transformed to the same unit
 Variables which do not have any physical relation should be

transformed based on their min/max values
 Temperatures are likely to be far away from zero, they should be

normalized by a mean temperature
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Normalization – Input data
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Additional Information

The plots in the slide before were obtained by fitting a regression based on the simple polynomial
basis to the data points. The basis functions in this example are

1 𝑥 𝑥 𝑥ଶ

This leads to the fact, that the design matrix becomes ill-conditioned very fast for large input data. It
results from the polynomials which lead to a design matrix (depicted for x = 1000 and 1001) of

1 1000 1000000 1000000000
1 1001 1002001 1003003001
… … … …

Instead of (depicted for x = 0 and x = 1)
1 0 0 0
1 1 1 1

The latter matrix is far easier to solve by numeric computations. The intuition behind this is that the
‚spread‘ between the matrix entries is much smaller. This helps the computer to obtain a numerically
stable result since the precision is limited even in floating point operations. As a result from this, the
maximum ‚spread‘ leading to reliable results is depending on the available computation precision. 
This is much more critical on embedded hardware. 
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Normalization – Output data

 In engineering applications we often face the task to fit parameters
such that multiple objectives are met

 These may not lie within the same units or scale
 Example: 

 Estimate the driven curvature 𝜅 based on speed 𝑣, yaw rate 𝜓ሶ  and
lateral acceleration 𝑎௬

 Model equations: 𝜓ሶ ൌ 𝑣𝜅 and 𝑎௬ ൌ 𝑣ଶ𝜅
 Scale varies heavily with speed and is inconsistent between the two

equations

 Better use: టሶ

௩
ൌ 𝜅 and 

௩మ ൌ 𝜅

 Scaling the output equations can also be used to weight equations
which are more important than others
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Summary

 We learned about:
• the characteristics of a regression problem and learned about

the differences to clustering and classification
• the difference between linear and nonlinear regression
• use cases and applications for regression in Automotive 

Technology
• different applications for local and global basis functions
• different loss functions
• iterative and analytic solution methods for model training
• regularization techniques and validation techniques
• details which are important for succesful application of

regression to real world data
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Related Literature

 Christopher M. Bishop, Machine Learning and Pattern Recognition
 Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements 

of Statistical Learning
 Kevin P. Murphy, Machine Learning – A Probabilistic Perspective
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