
Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Artificial Intelligence in Automotive Technology
Johannes Betz / Prof. Dr.-Ing. Markus Lienkamp /Prof. Dr.-Ing. Boris Lohmann

Lecture Overview

1 Introduction: Artificial Intelligence
18.10.2018 – Betz Johannes

6 Pathfinding: From British Museum to A*
29.11.2018 – Lennart Adenaw

11 Reinforcement Learning
17.01.2019 – Christian Dengler

Practice 1
18.10.2018 – Betz Johannes

Practice 6
29.11.2018 – Lennart Adenaw

Practice 11
17.01.2019 – Christian Dengler

2 Perception
25.10.2018 – Betz Johannes

7 Introduction: Artificial Neural Networks
06.12.2018 – Lennart Adenaw

12 AI-Development
24.01.2019 – Johannes Betz

Practice 2
25.10.2018 – Betz Johannes

Practice 7
06.12.2018 – Lennart Adenaw

Practice 12
24.01.2019 – Johannes Betz

3 Supervised Learning: Regression
08.11.2018 – Alexander Wischnewski

8 Deep Neural Networks
13.12.2018 – Jean-Michael Georg

13 Free Discussion
31.01.2019 – Betz/Adenaw

Practice 3
08.11.2018 – Alexander Wischnewski

Practice 8
13.12.2018 – Jean-Michael Georg

4 Supervised Learning: Classification
15.11.2018 – Jan-Cedric Mertens

9 Convolutional Neural Networks
20.12.2018 – Jean-Michael Georg

Practice 4
15.11.2018 – Jan-Cedric Mertens

Practice 9
20.12.2018 – Jean-Michael Georg

5 Unsupervised Learning: Clustering
22.11.2018 – Jan-Cedric Mertens

10 Recurrent Neural Networks
10.01.2019 – Christian Dengler

Practice 5
22.11.2018 – Jan-Cedric Mertens

Practice 10
10.01.2019 – Christian Dengler

2-3

Feedback from last week

 Too much slides / Too much information in too little time
 AI is a complex topic with different subjects
 Overall lecture is not enough time (1.5h + Practice)
We will define learning results for each lecture now: Each slide

is just for you to understand everything in total, but the focus of what you
should learn (especially for the exam) is more clear

 AI in the detail: First lecture was just there to give an overview and to
define the methods and terms  Lecture 2-12 will go into more detail

 Too much typos or spelling mistakes: Yes, shame on me. We will have
additional corrections now.

2-4

Objectives for Lecture 2: Perception

Remember Understand Utilize Analyze Evaluate Develop

Depth of understanding

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: Computer Vision
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-6

What is Artificial Intelligence? - Perception

The world is a complex and dynamic place
Source: Bryn Balcome, „What is level-5 Motorsport?“, GTC 2017 conference

2-7

What is Artificial Intelligence? - Perception

The world is a complex and dynamic place
Source: Paris Streets in the eyes of Tesla Autopilot: https://www.youtube.com/watch?time_continue=1&v=_1MHGUC_BzQ

2-8

What is Artificial Intelligence?

Source: Artificial Intelligence – A modern Approach / https://itrade.gov.il/uk/2018/10/19/vayavisions-autonomous-vehicle-perception-system-raised-8m/

1. Reasoning & Problem Solving
2. Knowledge Representation
3. Planning
4. Learning

5. Natural Language Processing (NLP)
6. Perception
7. Motion and Manipulation
8. Social Intelligence

Breaking down the general problem of creating AI into 9 sub-problems:

2-9

Computer Vision - The Perception Problem

Problem Description:
• A computer is acquiring the ability to perceive the environment
• Sensors are used as input: Camera, Lidar, Ultrasonic, Radar, microphones,

…
• Machine Perception: Capability to interpret data related to the environment
• Computer Vision (CV): The camera input (images/videos) is analyzed and

information is extracted

Focus in this lecture: Computer Vision (CV) and Camera
• Camera is the cheapest sensor of the car
• Camera is similar to „Human Eyes“
• Camera imagery includes almost every information about the

environment
• Camera images can be process by classical CV-Algorithms and

Deep Learning-Algorithms

Source: https://www.bhphotovideo.com/c/product/1308820-REG/nikon_d5600_dslr_camera_with.html

2-10

Computer Vision - Why it matters

Source: http://www.magazine.unimore.it/site/home/international-news/articolo820043703.html /https://medium.com/health-ai/heat-screening-for-breast-cancer-computer-vision-for-dieting-brain-wave-
passwords-c5294b5e73b / http://osxdaily.com/2017/11/10/can-use-iphone-x-without-face-id/ http://gamechanger.co.ke/product/xbox-360-kinect-sensor/
https://www.express.de/duesseldorf/duesseldorf-archiv/fahndungsfoto-hier-ueberfallen-zwei-raeuber-eine-tankstelle-in-duesseldorf--24421170

Autonomous
Driving

Health Security

Comfort AccessFun & Games

2-11

Computer Vision – Human Vision

https://www.howitworksdaily.com/science-of-vision-how-do-our-eyes-enable-us-to-see/

How Humans see

2-12

Computer Vision – Problem for computers

• Objects can be highly variable in
shape – e.g., trees, cars, animals, …

• Loss of information in sensing
process – 3D objects projected onto
2D images

• Missing data: Occlusions and hidden
surfaces

• Shadows and noise obscure signal

Illumination Variability

Occlusion

Source: https://slideplayer.com/slide/7773132/ https://www.robots.ox.ac.uk/~vgg/publications/2011/Parkhi11/parkhi11.pdf

2-13

Computer Vision – Problem for computers

Intra Class Variability
Source: http://www.robots.ox.ac.uk/~vgg/publications/2012/parkhi12a/parkhi12a.pdf

2-14

Computer Vision – History

• 1966: Minsky assigns computer vision as
an undergrad summer project

• 1970’s: Some progress on interpreting
selected images

• 1980’s: ANNs come and go; shift toward
geometry and increased mathematical
rigor

• 1990’s: Face recognition; statistical
analysis in vogue  Rule Based

• 2000’s: Broader recognition; large
annotated datasets available; video
processing starts

• 2010’s: Deep learning with ConvNets
 Classification

Source: https://www.slideshare.net/tw_dsconf/computer-vision-crash-course-56934508 /
https://ibug.doc.ic.ac.uk/research/detection-static-geometric-facial-features/
https://computervisionblog.wordpress.com/2018/03/25/deep-learning-approaches-for-object-detection/

2-15

Computer Vision – The CV-Pipeline

1. Choosing
Hardware:

Camera, Lens,…

2. Acquire an
image/video

stream

3. Integrate the
image in your

software pipeline

4. Preprocess the
image for further

evaluation

5. Detect/Extract
features in the

image

6. Extract
information from

the features

7. Setup your
CV-Application

97 %: Audi R8
V= 120 Km/h

a = 0 m/s2 Car

Source: https://picclick.com/Point-Grey-Flea2-FL2-08S2M-IEEE-1394-Mono-Digital-Camera-252748955187.html / https://www.pexels.com/photo/man-holding-black-silver-bridge-camera-taking-photo-during-daytime-167571/ /
https://de.wikipedia.org/wiki/Datei:OpenCV_Logo_with_text.png /
ttps://www.researchgate.net/publication/323952018_Practices_and_pitfalls_in_inferring_neural_representations/figures?lo=1&utm_source=google&utm_medium=organic /
https://stackoverflow.com/questions/35299878/probabilistic-hough-transform-line-segment-connection / https://www.autoscout24.de/auto/audi/audi-r8/

Additional Slide

16

Interactive Lecture Code: Access the camera

1. Choose the right hardware (camera and lens): For choosing the right camera, there is no general
procedure. You have to choose regarding the application you want to achieve, the software you are
using and on your budget. In the automotive sector the company FLIR (https://eu.ptgrey.com/)
provides a good portfolio of different camera types.

In this lecture we are using the ZED Stereo Camera (https://www.stereolabs.com/zed/) which
provides a dual 4MP Camera with high frame rates, an USB 3.0 connection and a 110°field of view.
Stereolabs provides different SDK´s for accessing the camera via C++ and Python Code

2. Choose the right software: In this lecture we are working with OpenCV in Python3. All examples
we are display are written in Python with the ZED SDK. If you want to use the code with other
images, the only thing you have to change is the way of acquiring an image.

Lecture Code which is displayed now: 01_Camera_input.py

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: Computer Vision
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-18

Machine Vision – Image Acquisition

Camera Framegrabber Software

Source: https://www.researchgate.net/publication/281476188_Smartphone_image_acquisition_forensics_using_sensor_fingerprint/figures?lo=1 / https://picclick.com/Point-
Grey-Flea2-FL2-08S2M-IEEE-1394-Mono-Digital-Camera-252748955187.html / https://de.wikipedia.org/wiki/Datei:OpenCV_Logo_with_text.png /
https://www.activesilicon.com/de/product-category/frame-grabbers-de/ http://home.bt.com/tech-gadgets/computing/give-your-pc-a-new-lease-of-life-5-upgrade-options-
you-should-be-considering-11363940257353

Lens

Light

2-19

Machine Vision – Image Acquisition

 Lights: The human eye can see well over a wide range of lighting
conditions, but a machine vision system is not as capable. You
must therefore carefully illuminate the scene under observation so
that the machine vision system can “see” it clearly.

 Problem for Autonomous Driving: Light changes during the day,
weather etc.

 Optics and lenses: The lens gathers the light reflected (or
transmitted) from objects in the camera’s field-of-view, and forms
an image in the camera sensor. The proper lens allows you to
adjust the field-of-view (FOV) and to place the camera at a
convenient working distance from the scene. To pick the proper
lens you will first need to know the FOV and the working distance.
The FOV is the size of the area you want to capture.

Source: https://www.teledynedalsa.com/en/learn/knowledge-center/machine-vision-101-an-introduction/

2-20

Machine Vision – Image Acquisition

 Camera: The camera contains a sensor that converts light from the
lens into electrical signals. These signals are digitized into an array
of values called pixels. The resolution (precision) of the inspection
depends upon the working distance, the field-of-view (FOV), and the
number of physical pixels in the camera's sensor. A standard VGA
camera has 640 x 480 physical pixels (= width x height), and each
physical pixel is about 7.4 microns square

 Framegrabber and Software: Normally a digital Framegrabber
sends the digitialzed image over a cable/Bussystem (FireWire,
USB 2.0/3.0, Ethernet) into the computer. The grabbing can be done
asynchronous or synchronous. After a frame was grabbed the image
is put in the computer memory and can be processed by specific
software e.g. OpenCV

Source: https://www.teledynedalsa.com/en/learn/knowledge-center/machine-vision-101-an-introduction/

Additional Slide

21

Image Resolution

Source: https://en.wikipedia.org/wiki/Display_resolution#/media/File:Vector_Video_Standards8.svg

Additional Slide

22

Interactive Lecture Code: Capture an Image

1. First of all we have to access the camera again.

2. In the second step, we have to parametrize the camera:
2.1 Resolution of the Image: VGA, HD720, HD1080,HD2k
2.2 Framerate per second: 15,30,60,100

Not every framerate works with every resolution
2.3 Initialize the camera.

3. Chose how many Images should be taken.
4. Save the images to a folder.

Lecture Code which is displayed now: 02_Image_capture.py

2-23

Machine Vision – Computer Vision Software

 Commercial Software (Free for
students)

 Computer Vision System Toolbox
 Language: Matlab
 Operating System: Linux, macOS,

Windows
 Includes:

 Input/Output graphics, CV-basics,
camera calibration, feature
detection/extraction, deep learning

 Pros: Easy to use, good
documentation, GPU boost

 Cons: Closed Environment,
Performance

Source: https://www.youtube.com/watch?v=yipHjyLUzA4

2-24

Machine Vision – Computer Vision Software

 Free software for everyone
 OpenCV (Open Source Computer

Vision)
 Language: C++, Python
 Operating System: Linux, macOS,

Windows
 Includes:

 Input/Output Graphics, CV Basics,
Camera Calibration, Feature
Detection/Extraction, Deep Learning,
Egomotion, Motion Tracking

 Pros: Everything you need, Good
Documentation, powerful, GPU boost

 Cons: Installation (especially GPU)
Source: https://www.pinterest.de/pin/174092341823170778/?lp=true

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: History, Pipeline, Definitions
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-26

Image Processing

Image processing is a method to perform some operations on an image in order
to get an enhanced image or to extract useful information from it.

In Image processing different computer vision algorithms/ mathematical
operations are used

Source: Georgia Tech – CS 6476 Computer Vision – Fall 2018Lecture 6

2-27

Image Processing – The Pipeline

Object Camera &
Lens

Digital TransformationCamera Calibration Color Spaces

Affine Transformation Contrast Enhancement Filtering

Resampling/Compression Save to Image

2-28

Image Processing – Camera Calibration

 A camera projects 3D world-points onto a 2D image plane
 Todays cameras are cheap and produce distortion (radial, tangential)
 Camera Calibration: Finding the internal quantities of the camera and

lens that affect the imaging processing:
• Extrinsic camera parameters: Position of camera center, camera heading..
• Intrinsic camera parameters: Focal length, image sensor format,…
• Lens distortion parameters

Source: https://de.mathworks.com/help/vision/ug/camera-calibration.html

Additional Slide

29

Types of Distortion
Real cameras use curved lenses to form an image, and light rays often bend a little too much or too
little at the edges of these lenses. This creates an effect that distorts the edges of images, so that
lines or objects appear more or less curved than they actually are. This is called radial distortion,
and it’s the most common type of distortion.
Another type of distortion, is tangential distortion. This occurs when a camera’s lens is not aligned
perfectly parallel to the imaging plane, where the camera film or sensor is. This makes an image look
tilted so that some objects appear farther away or closer than they actually are.

2-30

Image Processing – Camera Calibration Process

1. Distorted
Picture: Lines or
objects appear
more or less
curved than they
actually are.

2. Find and draw
corners in the
picture  Find
the distortion
coefficients and
correction

3. Undistortion:
Compute the
distortion matrix
and apply it to the
picture

Additional Slide

31

Distorted Undistorted

Additional Slide

32

Interactive Lecture Code: Calibrate the Camera

1. Now we want to use our camera for further applications. To get undistorted images, we have to
calibrate the camera. We can do this with different ways.

2. First of all we can use an internal calibration software. The ZED SDK is providing such an
calibration software which makes it easy and fast to compute the distortion matrix. But be aware, not
all camera SDK´s provide such a software.

3. We can do the calibration on our own. To do this, we have to write specific code which finds the
parameters for distortions of the camera, intrinsic and extrinsic parameters of camera etc. We are
using the OpenCV Python Tutorial which can be found here: https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html

3.1 Print out a checkerboard : https://www.mrpt.org/downloads/camera-calibration-checker-
board_9x7.pdf
3.2 Take at least 10 different pictures with the checkerboard and save them.
3.2 Calculate the corners and distances in each picture.
3.3 Calculate the camera matrix, distortion coefficients, rotation and translation vectors.
3.4 Undistort any image with these parameters.

Lecture Code which is displayed now: 03_Camera_calibration.py

2-33

Image Processing – What is an image?

• A digital image is a numeric representation, normally binary, of a two-
dimensional image.

 Standard: A digital image is just a matrix of values based on color.

Pixel (4,2):
Red: 20
Green 20
Blue 20

Pixel (4,7):
Red: 150
Green: 150
Blue: 150

x

y

0
1
2
3
4
5
.
.
.

0 1 2 3 4 5 …

2-34
Source: https://en.wikipedia.org/wiki/Bayer_filter

• A Digital image consists of a rectangular grid of evenly spaced pixels.
• Each pixel can be thought of as a measurement or sample of the light from

a subject.
• Commonly, the original samples are obtained using a scanner or digital

camera by averaging the amount of red, green and blue light that falls
on the sensitive area of each of its CCD sensing elements.

2-35

Image Processing – Digital Transformation & Color Space

6 10 85 45 13 1 1 1 40 34 35
1 40 1 1 1 40 34 1 1 34 34
1 40 1 40 45 1 40 8 13 40 40
45 1 45 1 8 13 39 39 20 34 39
8 13 8 13 13 1 10 10 1 40 34
13 1 13 1 13 13 1 1 13 39 40
13 13 13 13 1 1 8 13 45 10 39
1 1 1 1 45 45 102 3 8 13 10
13 8 13 1 1 8 10 45 1 1 35
13 8 13 1 1 1 1 1 1 1 1
13 8 13 8 13 8 13 8 13 8 13

• Images represented as a matrix
• Suppose we have a NxM RGB image with a variable called im

–im(1,1,1) = top-left pixel value in R-channel
–im(y, x, b) = y pixels down, x pixels to right in the bth channel
–im(N, M, 3) = bottom-right pixel in B-channel

6 10 85 45 13 1 1 1 40 34 35
1 40 1 1 1 40 34 1 1 34 34
1 40 1 40 45 1 40 8 13 40 40
45 1 45 1 8 13 39 39 20 34 39
8 13 8 13 13 1 10 10 1 40 34
13 1 13 1 13 13 1 1 13 39 40
13 13 13 13 1 1 8 13 45 10 39
1 1 1 1 45 45 102 3 8 13 10
13 8 13 1 1 8 10 45 1 1 35
13 8 13 1 1 1 1 1 1 1 1
13 8 13 8 13 8 13 8 13 8 13

6 10 85 45 13 1 1 1 40 34 35
1 40 1 1 1 40 34 1 1 34 34
1 40 1 40 45 1 40 8 13 40 40
45 1 45 1 8 13 39 39 20 34 39
8 13 8 13 13 1 10 10 1 40 34
13 1 13 1 13 13 1 1 13 39 40
13 13 13 13 1 1 8 13 45 10 39
1 1 1 1 45 45 102 3 8 13 10
13 8 13 1 1 8 10 45 1 1 0.99
13 8 13 1 1 1 1 1 1 1 1
13 8 13 8 13 8 13 8 13 8 13

R
G

B

row column

2-36

Image Processing – Color Spaces

 Reproducing human color perception/vision
 Different color spaces for different problems (monitor, printer, …)
 Different color spaces for more exact color extraction
 Most common color spaces are RGB and HSV

Source:
https://old.medialooks.com/mformats/docs/CK%20Advanced.html
https://cs.wikipedia.org/wiki/Soubor:HSV_color_solid_cylinder.png
https://design.tutsplus.com/articles/advanced-color-theory-what-is-color-management--cms-26307
https://www.codeproject.com/articles/243610/the-known-colors-palette-tool-final-revision-hopef

RGB HSV CMYK CIE

2-37

RGB – Red Green Blue

Image Processing – Color Spaces

 Values between 0 – 255 (8bit)
 0,0,0: Black
 255,255,255: White

Source: https://old.medialooks.com/mformats/docs/CK%20Advanced.html

R = 255
(G=0,B=0)

G = 255
(R=0,B=0)

B = 255
(R=0,G=0)

0

Additional Slide

38

RGB
The most common is the RGB color space with 8 bits per channel, corresponding to (28)3 =
16,777,216 (approx. 16.8 million) theoretically possible colors.
With 16 bits (per channel) this results in 281,474,976,710,656 (281 trillion) color options

2-39

HSV – Hue Saturation Value

Image Processing – Color Spaces

 Hue (0° Red, 120° Green, 240° Blue)
 Saturation (0% Gray – 100% saturated Color)
 Value (0% dark – 100% light)

Source: https://cs.wikipedia.org/wiki/Soubor:HSV_color_solid_cylinder.png

H
(S=1,V=1)

S
(H=1,V=1)

V
(H=1,S=0)

Additional Slide

40

Interactive Lecture Code: Live Color Change

1. Now we are showing how to extract different colors or color spaces from an image.

2. First we are displaying a live stream from the camera. The live stream is just displaying one
frame/image after another. Each frame/image can be seen as a matrix of values.

3. We are changing the current live stream to a greyscale image.

4. We are splitting the live stream into three images. Each image is showing either the red, blue or
green colors of the live stream.

5. At the end, we are changing the color space from RGB to HSV. In addition, we are splitting the
HSV live stream into three images. Each image is showing the Hue, Saturation and Value of the live
stream.

Lecture Code which is displayed now: 04_Change_color_spaces.py

2-41

Image Processing – Filtering

• Image filters in spatial domain: Filter is a mathematical operation
of a grid of numbers  Methods: Smoothing, sharpening,
measuring texture

• Image filters in the frequency domain: Filtering is a way to modify
the frequencies of images  Methods: Denoising, sampling, image
compression

• Templates and Image Pyramids: Filtering is a way to match a
template to the image  Methods: Detection, coarse-to-fine
registration

2-42

Image Processing – Filtering

• Preprocessing image to emphasize information for next steps
• Mathematic multiplication with quadratic or odd kernel, convolution

matrix or mask
• Convolution kernel depending on purpose/effect

1 2 3 2

2 1 4 4

1 2 3 4

2 2 2 5

...

...

...

1/16 2/16 1/16

2/16 4/16 2/16

1/16 2/16 1/16

...

...

...

...

...

2
2 3

3

Image Filter
(kernel)

New Image

2-43

Image Processing – Filtering Examples

1
9ൗ
1 1 1
1 1 1
1 1 1

Mean

1
16ൗ

1 2 1
2 4 2
1 2 1

1
256ൗ

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

Blur
Gauss 5x5 Sharpen

0 െ1 0
െ1 5 െ1
0 െ1 0

Blur
Gauss 3x3

Additional Slide

44

Gaussian Filter
• Remove “high-frequency” components from the image (low-pass filter)

Images become more smooth
• Convolution with itself is another Gaussian

– So can smooth with small-width kernel, repeat, and get same result as larger-width kernel
would have

– Convolving two times with Gaussian kernel of width σ is same as convolving once with
kernel of width σ√2

• Separable kernel
– Factors into product of two 1D Gaussians

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Additional Slide

45

Interactive Lecture Code: Image Filter

1. Now we are showing how to apply a filter to a live image.

2. First we are displaying a live stream from the camera. The live stream is just displaying one
frame/image after another. Each frame/image can be seen as a matrix of values.

3. We are changing the current live stream to a greyscale image.

4. In the next step we are applying a 2D Convolutional Filter to the live stream.

5. After that we are applying a Blurring/smoothing filter (Gaussian Blur) Filter to the live stream.

Lecture Code which is displayed now: 05_Image_filtering.py

2-46

Image Processing – Contrast Enhancement

Contrast: Contrast is the range of difference between different tones in a
photograph. In black and white photography, contrast describes the difference
between the darkest and lightest tones, but it also defines the grayscale. In
color photography, contrast applies to how sharply colors stand out from one
another.

P(f) = Number of Pixel f = tonal distribution

Source: http://eeweb.poly.edu/~yao/EL5123/lecture3_contrast_enhancement.pdf

• Low contrast  Image
values concentrated near a
narrow range (mostly dark, or
bright or medium values).

• Contrast of an image can be
revealed by its histogram:
Representation of the tonal
distribution in an digital image.

• Contrast enhancement 
Change the image value
distribution to cover a wide
range.

2-47

Image Processing – Contrast Enhancement

Source: http://eeweb.poly.edu/~yao/EL5123/lecture3_contrast_enhancement.pdf

2-48

Image Processing – Contrast Enhancement

Histogram
Equalization

Adaptive Histogram
Equalization:
CLAHE (Contrast
Limited Adaptive
Histogram
Equalization)

Source: https://research.ijcaonline.org/volume64/number17/pxc3885679.pdf

Methods

Additional Slide

49

Interactive Lecture Code: Contrast Enhancement

1. Now we are showing how to do a contrast enhancement for an image

2. First we are taking an image with the camera

3. Then we are plotting a histogram, which gives us an overview over the pixel density

4. At the end we are applying a histogram equalization with the function cv2.equalizeHist

Lecture Code which is displayed now: 06_Contrast_Enhancement.py

2-50

Image Processing – Affine Transformations

• In geometry, an affine transformation, affine map or an affinity (from the
Latin, affinis, "connected with") is a function between affine spaces which
preserves points, straight lines and planes.

• Sets of parallel lines remain parallel after an affine transformation.
• An affine transformation does not necessarily preserve angles between

lines or distances between points, though it does preserve ratios of
distances between points lying on a straight line.

Rotate
cos(θ) sin(θ) 0
-sin(θ) cos(θ) 0

0 0 1

Shear
1 cx=0.5 0

cy=0 1 0
0 0 1

Reflect
-1 0 0
0 1 0
0 0 1

Scale
cx=2 0 0

0 cy=1 0
0 0 1

Source: https://en.wikipedia.org/wiki/Affine_transformation

2-51

Image Processing – Re-Sampling

• Resampling is the mathematical technique used to create a new version
of the image with a different width and/or height in pixels. Increasing the
size of an image is called upsampling; reducing its size is called
downsampling.

• A value for each cell in the new raster object must be computed by
sampling or interpolating over some neighborhood of cells in the
corresponding position in the original raster object.

Source: https://desktop.arcgis.com/de/arcmap/latest/extensions/spatial-analyst/performing-analysis/cell-size-and-resampling-in-analysis.htm

2-52

Image Processing – Re-Sampling

Source: http://www.dl-c.com/Temp/downloads/Whitepapers/Resampling.pdf

Before After Before After Before After

Before After Before After Before After

Nearest Neighbor
Method

Nearest Neighbor
Method

Bicubic
Method

Bicubic Smoother
Method

Lanczos 4x4
Method

Bilinear
Method

Bicubic Sharper
Method

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: History, Pipeline, Definitions
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-54

Feature Extraction

Which of the following features could be useful in the identification of lane lines on
the road?

Source: Udacity Course „Selfdriving Nanodegre“ Lecture 1

2-55

Feature Extraction

• A Feature is a piece of information which is relevant for solving the
computational task related to a certain application

• Feature Detection includes methods for computing abstractions of
image information and making local decisions at every image point
whether there is an image feature of a given type at that point or
not.
o The resulting features will be subsets of the image domain, often in

the form of isolated points, continuous curves or connected regions.
o Examples: Edges, Corners, Region of Interest, Ridges

• Feature Extraction: Once features have been detected, a local
image patch around the feature can be extracted. For Computer
Vision this means the isolation of various desired portions or
shapes (features) of a digitized image or video stream

2-56

Feature Extraction

• Feature points are used for:
• Image alignment
• 3D reconstruction
• Motion tracking
• Robot navigation
• Indexing and database retrieval
• Object recognition

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 05

2-57

Feature Extraction – Edge Detection

• Goal: Identify sudden changes
(discontinuities) in an image
 Intuitively, most semantic and shape

information from the image can be
encoded in the edges

 More compact than pixels

• Ideal: Artist’s line drawing (but artist is
also using object-level knowledge)

Source: https://curiator.com/art/ben-heine/1

2-58

Feature Extraction – Edge Detection

 Edges are caused
by a variety of
factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

• An edge is a
place of rapid
change in the
image intensity
function

image
intensity function

(along horizontal scanline) first derivative

Extrema = Edge
Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 07

2-59

Feature Extraction – Edge Detection

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 07

intensity
function
(along

horizontal
scanline)

first derivative

2-60

Feature Extraction – Canny Edge Detection

• Don’t do Edge Detection by yourself: Use the Canny Edge
Detection Algorithm

• This is probably the most widely used edge detector in
Computer Vision

• Theoretical model: step-edges corrupted by additive Gaussian
noise

• Canny has shown that the first derivative of the Gaussian
closely approximates the operator that optimizes the product of
signal-to-noise ratio and localization

Paper:
J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

27,000 citations!

2-61

Feature Extraction – Canny Edge Detection

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression: Thin multi-pixel wide “ridges” down to single pixel width
4. Thresholding and linking (hysteresis):

 Define two thresholds: low and high
 Use the high threshold to start edge curves and the low threshold to continue them

• Adjust Thresholds: Threshold at low/high levels to get weak/strong edge pixels
• Adjust Kernel-Size: Large kernel detects large scale, low kernel fine features

Source: Udacity Course „Selfdriving Nanodegre“ Lecture 1

Additional Slide

62

Interactive Lecture Code: Canny Edge Detection

1. Now we are showing how to apply a canny edge detection to a live image.

2. First we are displaying a live stream from the camera. The live stream is just displaying one
frame/image after another. Each frame/image can be seen as a matrix of values.

3. We are changing the current live stream to a greyscale image.

4. After that we are applying a Blurring/smoothing filter (Gaussian Blur) filter to the live stream.

5. At the end, we are applying a Canny Edge Detection to the livestream.
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html

Lecture Code which is displayed now: 07_Canny_Edge_Detection.py

2-63

Feature Extraction – Line, Circle,… Detection

 Edge detection makes it possible to reduce the amount of data in
an image considerably. However the output from an edge detector
is still an image described by it’s pixels.

 If lines, ellipses and so forth could be defined by their characteristic
equations, the amount of data would be reduced even more.

 We can use the Hough Line Algorithm, which was originally
developed to recognize lines and has later been generalized to
cover arbitrary shapes e. g. circles

The Problem

2-64

Feature Extraction – Hough Line

The algorithm for detecting straight lines can be divided into the following steps:
1. Edge detection, e.g. using the Canny edge detector
2. Mapping of edge points to the Hough space and storage in an accumulator.
3. Interpretation of the accumulator to yield lines of infinite length. The

interpretation is done by thresholding and possibly other constraints.
4. Conversion of infinite lines to finite lines.

Image Space Hough Space

Additional Slide

65

Image Space Hough Space Image Space Hough Space

Image Space Hough Space Image Space Hough Space

Line to Point Point to Line

Line to Point Point to Line

2-66

Feature Extraction – Hough Line Example

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 07

Additional Slide

67

Interactive Lecture Code: Hough Line Detection

1. Now we are showing how to apply a canny edge detection to a live image

2. First we are displaying a live stream from the camera. The live stream is just displaying one
frame after another. Each frame can be seen as a matrix of values

3. We are changing the current live stream to a greyscale image

4. After that we are applying a Blurring/smoothing filter (Gaussian Blur) Filter to the live stream

5. After that we are applying a Canny Edge Detection to the livestream.

6. At the end we are applying a Hough line detection with the function cv2. https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html

The function needs different parameters for input

Lecture Code which is displayed now: 08_Hough_Line_Detection.py

2-68

Feature Extraction – Corner Detection

• We should easily recognize the point by looking through a
small window

• Shifting a window in any direction should give a large
change in intensity

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

“flat” region:
no change in all
directions

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 08

2-69

Feature Extraction – Corner Detection

1. Original Image 2. Compute Corner
Response R

3. Find Points with larger
corner Response

4. Points of local maxima of R 5. Show points in image

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 08

2-70

Feature Extraction – Depth Detection

 Disparity between 2 images → disparity map

Focal length f

Baseline B

Disparity d = x1-x2

Depth Z

Z = B*f/dx1 x2

2-71

Feature Extraction – Depth map

Additional Slide

72

Feature Extraction – Dilation, Erosion, Opening, Closing

• Morphology-based operations to connect points and edges and build regions/areas
• A set of operations that process images based on shapes. Morphological operations apply
a structuring element to an input image and generate an output image.
• Dilation and Erosion are minkowski addition and subtraction
• Opening and Closing are combined Dilation and Erosion

Additional Slide

73

Dilation:

• The operations consists of convoluting an image A with some kernel (B), which can
have any shape or size, usually a square or circle.
• Kernel B has a defined anchor point, usually being the center of the kernel.
• As kernel B is scanned over the image, we compute the maximal pixel value
overlapped by B and replace the image pixel in the anchor point position with that
maximal value. As you can deduce, this maximizing operation causes bright regions
within an image to "grow" (therefore the name dilation). Take as an example the image
above. Applying dilation we can get:

Feature Extraction – Dilation, Erosion, Opening, Closing

Additional Slide

74

Feature Extraction – Dilation, Erosion, Opening, Closing

Erosion:

This operation is the sister of dilation. What this does is to compute a local minimum
over the area of the kernel.
As kernel B is scanned over the image, we compute the minimal pixel value overlapped
by B and replace the image pixel under the anchor point with that minimal value.
Analogously to the example for dilation, we can apply the erosion operator to the
original image (shown above). You can see in the result below that the bright areas of
the image (the background, apparently), get thinner, whereas the dark zones (the
"writing") gets bigger.

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: History, Pipeline, Definitions
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-76

Feature Analysis – Image Classification

Training
Labels

Training Images

Classifier
Training

Image
Features

Trained
Classifier

Source: https://www.datacamp.com/community/tutorials/object-detection-guide

Additional Slide

77

Interactive Lecture Code: Image classification

The live software displayed now is based on software for running the live camera recognition demo
with an artificial neural network based on the code from https://github.com/dusty-nv/jetson-inference

For running the code you need an Nvidia Jetson TX2

Lecture Code which is displayed now: 08_Hough_Line_Detection.py

2-78

Feature Analysis – Classification

Object Bag of
‘features’

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-79

Feature Analysis – Classification

Feature Techniques
 Raw pixels

 Histograms of
features (HOG)…

 GIST descriptors

 …

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-80

Feature Analysis – Classification

Methods for Classification:

1. Logic

2. Machine Learning

3. Deep Learning

Source: https://de.mathworks.com/solutions/deep-learning/convolutional-neural-network.html?requestedDomain
/https://commons.wikimedia.org/wiki/Logic_diagram

2-81

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-82

Feature Analysis – Classification

 Tested with
 RGB
 LAB
 Grayscale

 Gamma Normalization and Compression
 Square root
 Log

Slightly better performance vs. grayscale

Very slightly better performance vs. no adjustment

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-83

uncentered

centered

cubic-corrected

diagonal

Sobel

Outperforms

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-84

 Histogram of gradient orientations
 Votes weighted by magnitude
 Bilinear interpolation between cells

Orientation: 9 bins
(for unsigned
angles 0 -180)

Histograms in
k*k pixel cells

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-85

Normalize with respect to
surrounding cells

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-86

X=
features = 15 x 7 x 9 x 4 = 3780

cells

orientations

normalizations by
neighboring cells

Original Formulation

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-87

X=

features = 15 x 7 x 9 x 4 = 3780

cells

orientations

normalizations by
neighboring cells

features = 15 x 7 x (3 x 9) + 4 = 3780

cells

orientations

magnitude of
neighbor cells

UoCTTI variant

Original Formulation

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-88

pos w neg w

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

2-89

pedestrian

Feature Analysis – Classification

Input
Image

Normalize
gamma &
colour

Compute
Gradients

Weighted vote
into spatial &
orientiation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG´s
over detection
window

Linear
SVM

Person / non-person
classification

Source: Georgia Tech – Lecture CS 6476 Computer Vision – Lecture 18

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: History, Pipeline, Definitions
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Segmentation

2-91

Information Analysis – Optical Flow

 Optical flow or optic flow is the pattern of apparent motion of
objects, surfaces, and edges in a visual scene caused by the
relative motion between an observer and a scene

 A video is a sequence of frames captured
over time

 Now our image data is a function of
space
(x, y) and time (t)

2-92

Information Analysis – Egomotion Estimation

 In robotics and computer vision, visual odometry is the process of
determining the position and orientation of a robot by analyzing the
associated camera images.

2-93

Information Analysis – Egomotion Estimation

1. Acquire input images: using camera (Mono, Stereo,…)
2. Image correction: apply image processing techniques
3. Feature detection: define interest operators, and match features across frames

and construct optical flow field.
1. Use correlation to establish correspondence of two images, and no long term feature

tracking.
2. Feature extraction and correlation.
3. Construct optical flow field (Lucas–Kanade method).

4. Check flow field vectors for potential tracking errors and remove outliers.
5. Estimation of the camera motion from the optical flow.

1. Choice 1: Kalman filter for state estimate distribution maintenance.
2. Choice 2: find the geometric and 3D properties of the features that minimize a cost

function based on the re-projection error between two adjacent images. This can be
done by mathematical minimization or random sampling.

6. Periodic repopulation of trackpoints to maintain coverage across the image.

2-94

Information Analysis – Object Tracking

Agenda

Perception
Johannes Betz / Prof. Dr. Markus Lienkamp /

Prof. Dr. Boris Lohmann

(Johannes Betz, M. Sc.)

1. Chapter: History, Pipeline, Definitions
2. Chapter: Machine Vision
3. Chapter: Image Processing
4. Chapter: Features
5. Chapter: Feature Analysis
6. Chapter: Information Analysis
7. Chapter: Summary

2-96

Summary

What did we learn today:
 Perception is an Artificial Intelligence problem
 We can divide perception into Machine Vision and Computer Vision
 We focus on Machine Vision and Computer Vision  The ability to

retrieve information out of a camera
 Reasons for using a camera in a vehicle: cameras are cheap, easy to

access and provide a lot of information about the current environment
 Similarity to human eye

 There are important differences between Machine Vison setups: We
need to know what camera, lenses, computer setup and environment
we are operating in when using machine vision

2-97

Summary

What did we learn today:
 We defined a computer vision pipeline
 Matlab/Simulik and the OpenCV Library are the first software tools

to choose for processing digital images
 First of all we have to process the image for getting better

information (features) out of one picture: Denoise, Contrast
Enhancement, Color Space change…

 Then we have to extract the features like Edges, Corners,…
 We can then use the features for getting information out of the

picture: Detect and Recognize objects, Classify objects,…
 We can use machine learning algorithms

